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The conditional density process

We shall consider the problem of how best to model the dynamics of an asset
price when we are given option prices for a range of strikes and maturities as
initial data.

This problem has a long history.

When option pricing theory was being developed in the 1970s, it was originally
thought that the option price could be modelled as a function of two
variables—the value of the underlying asset, and time.

It was eventually recognised however that option prices have the potential to
carry more information than that simply entailed in the current level of the
underlying asset.

To put it another way, option prices to some extent have a life of their own, and
need to be modelled along side the dynamics of the underlying asset.
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This point was implicitly recognised in the work of Breeden & Litzenberger
(1978) who showed that the (risk-neutral) probability density for the value of an
asset at some future time T could be obtained from the system of call option
prices with maturity T by differentiating the price twice with respect to the
strike price.

This observation was one of a series of developments that eventually led to the
idea that option prices should be used as “inputs” to asset pricing models
(rather than only as “outputs”).

Since then a great deal of work has been carried out on how to use option price
data as inputs in asset pricing models—but even now there is no generally
accepted or universal scheme for carrying this out.

A major step forward was taken by Dupire (1994) and others, who considered
the situation where the asset price could be modelled by a diffusion process.
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In particular, it was noted that the Fokker-Planck equation (or Kolmogorov
forward equation) for the risk-neutral probability density can be used to show
that the local price volatility (when regarded as a function of the value of the
asset and of time) is completely determined by the system of option prices for all
strikes and a band of maturities.

On the other hand, it appears to be too restrictive to assume from the outset
that asset prices can be modelled by simple diffusion processes.

There does not seem to be any economic justification for assuming that
volatility should be given by a function of the current level of the asset.

On the other hand, the category of general stochastic volatility models is very
large, and once one leaves the special case of simple diffusion models it is not so
clear how to organise the general theory, and in particular how to treat the
“input” problem (calibration) from a broad perspective.

Keeping all this in mind, our approach will be to model the conditional
probability density process, with respect to a suitable choice of measure, for the
asset price at some fixed future time.
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Modelling the conditional density process

The ingredients will consist of a filtered probability space (Ω,Ft, {Ft},Q)
together with an {Ft}-adapted Brownian motion {Wt}.

Here Q denotes the martingale measure associated with the choice of some
non-dividend-paying asset as numeraire.

We let {St} denote the {Ft}-adapted price process of a non-dividend-paying
asset, and we assume that prices are given in units of the numeraire asset.

It follows then that {St} is a martingale, and that the Q-dynamics of {St} are
of the form

dSt = ΣtdWt, (1)

for some stochastic volatility process {Σt}.

We shall not attempt to model the dynamics of the volatility of the asset directly.

There are of course a number of models of this type (Heston, SABR, etc), but
we shall take a different approach.
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Instead, we shall model the dynamics of the conditional probability density of the
asset price at some fixed time T .

More specifically, we fix a time T > 0, and assume for t < T the existence of an
Ft-conditional probability density ftT (x) > 0 for ST .

In particular:

(a) For all bounded, measurable functions g(x) we have∫ ∞
−∞

g(x)ftT (x)dx = E [g(ST ) | Ft] . (2)

(b) We have the martingale property

E [ftT (x) | Fs] = fsT (x), 0 ≤ s ≤ t < T. (3)

(c) The asset price can be expressed in terms of the density by writing

St =

∫ ∞
−∞

xftT (x)dx. (4)
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It follows that if CtT (K) denotes the price at time t of a T -maturity, K-strike
call option, then

CtT (K) =

∫ ∞
−∞

(x−K)+ftT (x)dx. (5)

On the other hand, by differentiating CtT (K) twice with respect to the strike K
we obtain

∂2CtT (x)

∂x2
= ftT (x). (6)

Clearly knowledge of the T -maturity call option prices at time t for all K allows
us to reconstruct the density ftT (x).

The goal now is to model the dynamics of the density process {ftT (x)}.
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Modelling the volatility structure

We assume that the dynamical equation for {ftT (x)} takes the form

dftT (x) = ftT (x)VtT (x) dWt. (7)

The normalisation condition ∫ ∞
−∞

ftT (x)dx = 1 (8)

then implies that VtT (x) is of the form

VtT (x) = σtT (x)−
∫ ∞
−∞

σtT (y)ftT (y)dy, (9)

for some {σtT (x)}.

Thus, once we specify {σtT (x)} and the initial density f0T (x), the dynamics of
the density are given by

dftT (x) = ftT (x)

[
σtT (x)−

∫ ∞
−∞

σtT (y)ftT (y)dy

]
dWt. (10)
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Now we are in a position to say what we mean by a “model” for {ftT (x)}.

In this specification we are motivated by advances in the studies of
infinite-dimensional SDEs and SPDEs in the context of interest-rate theory.

By a “model” for the density process {ftT} we understand the following:

(1) A specification of an initial density f0T (x).

(2) A specification of the volatility structure {σtT (x)} in the form of a
functional

σtT (x) = Φ[ftT (·), t, x]. (11)

The initial density f0T (x) is determined by the specification of initial option
price data for maturity T and all strikes K.

C0(T,K) = E[(ST −K)+] =

∫
(x−K)+f0T (x)dx. (12)

Assuming that C0 is twice differentiable with respect to the strike, we have:

f0T (x) =
∂2C0(T, x)

∂x2
. (13)
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Ideally, we would then like to be able to specify the functional Φ[ftT (·), t, x]
modulo just enough freedom to let us input initial option price data for all
maturities τ in the range 0 < τ < T , and all strikes K.

That is one scenario that would lead to an interesting class of models.

But more generally we might like to be in a position to specify more data—or
less data—to fix the model, depending on the context in which the model will be
used.

The idea is to develop a methodology that is sufficiently flexible to
accommodate various different types of option markets.

In what follows we present some specific examples of models showing how these
goals can be realised, at least in part.
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Example I: Bachelier model

The so-called Bachelier model, assuming S0 = 0, is given by

St = νWt, (14)

where ν is a constant. This is a very simple model, too simple for practical
application, but it is not without interest.

The conditional density is

ftT (x) =
1

ν
√

2π(T − t)
exp

(
−1

2

(x− St)2

ν2(T − t)

)
(0 ≤ t < T ). (15)

Applying Ito’s Lemma to (15), we obtain the following SDE for {ftT (x)}:

dftT (x) = ftT (x)

[
x

ν(T − t)
−
∫ ∞
−∞

y

ν(T − t)
ftT (y)dy

]
dWt. (16)
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Hence we see that the “master” equation

dftT (x) = ftT (x)

[
σtT (x)−

∫ ∞
−∞

σtT (y)ftT (y)dy

]
dWt (17)

is indeed satisfied if we set:

f0T (x) =
1

ν
√

2πT
exp

(
−1

2

x2

ν2T

)
,

σtT (x) =
x

ν(T − t)
. (18)

The pair f0T (x), σtT (x) indicated above thus gives the Bachelier model.

Note: The initial density f0T (x) is already fully determined in this model, apart
from the specification of the parameter ν, and so is the volatility structure
σtT (x).

We may therefore regard the Bachelier model as almost completely “rigid”, since
there is rather little scope for the input of initial option data.

We observe in particular that the Bachelier volatility structure (18) is
deterministic and “semi-linear”.
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Example II: Bachelier volatility structure, with an arbitrary initial density

Again we consider the dynamics

dftT (x) = ftT (x)

[
σtT (x)−

∫ ∞
−∞

σtT (y)ftT (y)dy

]
dWt. (19)

In this example we take an arbitrary initial density and combine this with a
semilinear (“Bachelier-type”) volatility structure:

f0T (x) = f̄0T (x)

σtT (x) =
σT

T − t
x. (20)

Here f̄0T (x) is the initial density implied by T -maturity option data at time 0.

This model can also be solved explicitly, though the form the solution takes is
more subtle.

In fact we are able to show that ftT (x) takes the following form:

L.P. Hughston, Imperial College London Bachelier 2010, Toronto



Conditional Density Models - 14 - 23 June 2010

ftT (x) =
f0T (x) exp

[
−1

2
T

t(T−t) (ξtT − σtx)2
]

∫∞
−∞ f0T (x) exp

[
−1

2
T

t(T−t) (ξtT − σtx)2
]

dx
. (21)

Here {ξtT}0≤t≤T is a so-called information process, defined by

ξtT = σtST + βtT . (22)

The process {βtT}0≤t≤T is a Brownian bridge that is taken to be independent of
the random variable ST describing the terminal asset-price value.

In this model the filtration {Ft} is generated by {ξtT}. We are then able to
show that the density process satisfies the master equation,

dftT (x) = ftT (x)

[
σtT (x)−

∫ ∞
−∞

σtT (y)ftT (y)dy

]
dWt. (23)

Here the process {Wt} is defined by:

Wt = ξtT +

∫ t

0

1

T − s
ξsTds− σT

∫ t

0

1

T − s

∫ ∞
−∞

xfsT (x) dx ds. (24)

It is an exercise in martingale theory (not trivial!) to show that {Wt} is an
{Ft}-Brownian motion.
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That shows that {ftT (x)} satisfies the required dynamical equation.

This model shows much more flexibility than the elementary Bachelier model.

In fact it allows a full calibration to the implied density f̄0T (x) derived from the
initial T -maturity option data C0T (K) for all K.
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Example III: deterministic volatility structure

Now we look at a model for the density process that has the scope to be
calibrated with initial option data for all strikes and for a family of maturities τ
such that 0 < τ ≤ T .

Again we begin with the dynamical equation ftT (x).

We consider the following model:

f0T (x) = f̄0T (x),

σtT (x) = v(t, x). (25)

Here v(t, x) is a deterministic function of two variables. The solution takes the
following form:

Let the filtration {Ft} for this model be generated by the process {Zt} defined
by:

Zt = Bt +

∫ t

0

v(s, ST ) ds. (26)

Here {Bt} is a Brownian motion which is assumed to be independent of ST .
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The solution of the master equation for {ftT (x)} is then given by

ftT (x) =
f0T (x) exp

[∫ t
0 v(s, x)dZs − 1

2

∫ t
0 v

2(s, x)ds
]

∫∞
−∞ f0T (x) exp

[∫ t
0 v(s, x)dZs − 1

2

∫ t
0 v

2(s, x)ds
]

dx
. (27)

In particular, we find that the density process satisfies

dftT (x) = ftT (x)

[
v(t, x)−

∫ ∞
−∞

v(t, y)ftT (y)dy

]
dWt, (28)

where

Wt = Zt −
∫ t

s=0

∫ ∞
x=−∞

fsT (x) v(s, x)dxds. (29)

A calculation then verifies that {Wt} is indeed an {Ft}-Brownian motion.

In this model we can calibrate the initial density f0T (x) to the implied density
f̄0T (x) coming from options with maturity T .
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But we can also, at least in principle, calibrate the model to data coming from
options with maturities τ less than T .

This is because:

C0τ(K) = E
[
(Sτ −K)+

]
(τ < T )

= E

[(∫ ∞
−∞

xfτT (x)dx−K
)+
]

= Θ
[
{v(t, ·)}0≤t≤τ , τ,K

]
, (30)

where the functional Θ depends only on {v(t, ·)}0≤t≤τ , τ , and K.

For each input density f̄0T (x) and volatility structure function v(t, x) we then
obtain a corresponding price surface C0τ(K) for 0 ≤ τ ≤ T and
−∞ < K <∞.
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In conclusion, we see the implied density method offers the scope for a fresh
approach to the dynamics of the volatility surface, allowing it to be treated in a
way that is similar in some respects the theory of interest rate models.

It is interesting that though the approach lies within the scope of
infinite-dimensional SDE theory, it leads in some instances to surprisingly
tractable and simple results, including exact solutions in some cases.

The connection with nonlinear filtering theory and information-based asset
pricing is also surprising.

In some ways the theory is most natural if we regard the assets under
consideration as being characterised entirely by the cash flows that they
eventually deliver.

Then the option pricing problem ceases to be a theory of the volatility term
structure as such.

Instead, it becomes a theory of the dynamics of the conditional densities of the
random variables that determine the cash flows.

L.P. Hughston, Imperial College London Bachelier 2010, Toronto



Conditional Density Models - 20 - 23 June 2010

References

D. C. Brody & L. P. Hughston (2001) Interest rates and information geometry.
Proc. R. Soc. Lond. A 457, 1343-1363.

D.C. Brody & L.P. Hughston (2001) Applications of Information Geometry to
Interest Rate Theory, 281-288 in Disordered and Complex Systems, eds.
P. Sollich, T. Coolen, L.P. Hughston & R.F. Streater (American Institute of
Physics).

D.C. Brody & L.P. Hughston (2002) Entropy and Information in the Interest
Rate Term Structure, Quantitative Finance 2, 70-80.

D.C. Brody & L.P. Hughston (2004) Chaos and Coherence: a New Framework
for Interest Rate Modelling, Proceedings of the Royal Society A 460, 85-110.

D.C. Brody, L.P. Hughston & A. Macrina (2007) Beyond Hazard Rates: a New
Approach to Credit Risk Modelling. In: Advances in Mathematical Finance,
Festschrift Volume in Honour of Dilip Madan, eds. R. Elliott, M. Fu, R. Jarrow,
and Ju-Yi Yen (Birkhauser/Springer).

L.P. Hughston, Imperial College London Bachelier 2010, Toronto



Conditional Density Models - 21 - 23 June 2010

D. C. Brody, L. P. Hughston & A. Macrina (2008) Information-based asset
pricing. Int. J. Theo. App. Fin. 11, No. 1, 107-142.

D. T. Breeden & R.H. Litzenberger; Prices of state-contingent claims implicit in
option prices, J. Business, 51, 621-651, 1978.

M. Davis (2004) Complete-market models of stochastic volatility. Proc. R. Soc.
Lond. A 460, 11-26.

B. Dupire (1994) Pricing with a smile. Risk 7, 18-20.

D. Filipovic (2001) Consistency Problems for Heath-Jarrow-Morton Interest Rate
Models, Lecture Notes in Mathematics 1760, Springer-Verlag, Berlin.

D. Filipovic, L. P. Hughston & A. Macrina (2010) Conditional density models for
asset pricing. Working paper.

D. Filipovic & J. Teichmann (2004) On the Geometry of the Term Structure of
Interest Rates Proc. Roy. Soc. Lond. A. 460, 129-167,

J. Gatheral (2006) The implied volatility surface: a practitioner’s guide. Wiley
Finance.

L.P. Hughston, Imperial College London Bachelier 2010, Toronto



Conditional Density Models - 22 - 23 June 2010

L.P. Hughston (2003) The Past, Present, and Future of Term Structure
Modelling, chapter 7 in Modern Risk Management: A History, introduced by
Peter Field, Risk Publications.

L.P. Hughston & A. Macrina (2008) Information, Interest, and Inflation. To
appear in Advances in Mathematics of Finance, ed. L. Stettner. Banach Center
Publications, Warsaw. ArXiv: math-pr/0710.2876.

L.P. Hughston & A. Rafailidis (2005) A Chaotic Approach to Interest Rate
Modelling, Finance and Stochastics 9, 43-65.

J. Jacod and P. Protter (2006) Risk Neutral Compatibility with Option Prices.
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