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 Risk Management in Practice: Value at Risk 
(VaR) / Conditional Value at Risk (CVaR)

 Volatility Estimation: Corrected Fourier 
Transform Method

 Estimate Extreme Probability by Efficient 
Importance Sampling

 Backtesting for VaR Estimation



 Let          be an asset return at time t. Its 
VaR, denoted by           , is defined by the                               

percentile of          . That is,

That is a risk controller has a              
confidence that the asset price will not drop 
below              at time t.
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 Mathematically, it is not a coherent risk 
measure* because it doesn't satisfy the risk 
diversification principal. Instead, CVaR does!.

 Practically, VaR is commonly required by 
financial regulations (Basel ⅡAccord).

* Artzner P., F. Delbaen, J.-M. Eber, and D. Heath, “Coherent 
Measures of Risk,” Mathematical Finance, 9 (1999): 203-28.



 Riskmetrics: normal assumption under 
EWMA model.

 Historical Simulation: generate scenarios

 Model Dependent Approach: Discrete-Time 
vs. Continuous-Time Models 



 Assume a diffusion process

 Task: Given return time series         , estimate 
the volatility     

*  Malliavin and Mancino(2002, 2009)
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 Compute the Fourier coefficients of du by

 Then,
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 Fourier coefficients of variance

where       is any positive integer so that 
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Reconstruct the time series variance
 Finally,               is an approximation of              as 

N approaches infinity, which can be given by 
classical Fourier-Fejer inversion formula. 
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 We add a function into the final computation 
of time series variance in order to smooth it.

where                            is a function in order to 
smooth the trajectory and       is a smoothing 
parameter.

 Reno (2008) alerts the boundary effect in the 
Fourier transform method.
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 Idea: (Nonlinear) Least Squares Method for 
first-order correction

 Then by MLE to regress out      and
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 Assuming that the driving volatility process  is 
governed by the Ornstein-Uhlenbeck process,

(1)

 We use the corrected estimator                 to 
further estimate model parameters                  
of         by means of maximum likelihood 
method. 
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 For a given set of observations                          
the likelihood function is

where       denotes the length of discretized
time interval.
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 By maximizing the right hand side over the 
parameters                 , we obtain the following 
maximum likelihood estimators
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 Let  the stochastic volatility model

 To empirically test our price correction 
scheme, we set model parameters as follows:  

and with the discretization length                     
so as to generate volatility series                         
and asset price series      . 
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 Two criteria are used for performance 
comparison: Mean squared errors (MSE) and 
Maximum absolute errors (MAE).

 Comparison results are shown below:

Fourier method Corrected Fourier method

Mean squared error 0.0324 0.0025

Maximum absolute error 0.3504 0.1563



 Given a Markovian dynamic model of an asset 
price      , its return process is 

 Given a loss threshold      , the extreme 
probability is defined by

Note: solve            from
 (Expected Shortfall)
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 Given the Black-Scholes Model under 
measure      , choose                                     

satisfing

 Then                   the extreme probability 

becomes                                                                      (6)

 The unbiased importance sampling estimator 
of                 is                                                                  (7)
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 Theorem: 
Under the Black-Scholes model, the 
proposed importance sampling estimator is 
asymptotically optimal or efficient under 
some scaling scenarios in time and space. 

Proof: The variance rate of the proposed 
importance sampling scheme approaches 
zero.



 Stochastic volatility model:

 Ergodic property of the averaged variance 
process

where      denotes a small time scale and        
denotes a fast mean-reverting process.
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 E.g.

 So that the importance sampling as 
forementioned can be applied.

 CVaR estimation can be easily solved. 
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 Given model parameters of stochastic 
volatility: 05, 5, 1, 50,m Sα β= − = = = 0 3,  =0Y µ= −

CVaR

N. Approx. IS

0.8 -0.0339 -0.0347
-0.0386

(7.5073E-05)

0.4 -0.0335 -0.0343
-0.0378

(7.3833E-05)

0 -0.0323 -0.0331
-0.0367

(7.2498E-05)

-0.4 -0.0317 -0.0325
-0.0366

(7.2739E-05)

-0.8 -0.0310 -0.0319
-0.0351

(6.9643E-05)

ρ
%99VaRc =

ρ

%99VaRc = %99VaRc =

99%c VaR=



 Data sample period: 1998.01.05-2009.07.24



 Data sample period: 2005.01.03-2009.07.24



Data sample period: 2005.01.03-2009.07.24
RiskMetrics

Significance 1% Significance 5%

LRuc Reject VaR Model LRuc Reject VaR Model

LRind Reject VaR Model LRind Don't Reject VaR Model

LRcc Reject VaR Model LRcc Reject VaR Model

Historical Simulation

Significance 1% Significance 5%

LRuc Reject VaR Model LRuc Reject VaR Model

LRind Don't Reject VaR Model LRind Don't Reject VaR Model

LRcc Reject VaR Model LRcc Reject VaR Model

SV

Significance 1% Significance 5%

LRuc Don't Reject VaR Model LRuc Reject VaR Model

LRind Don't Reject VaR Model LRind Don't Reject VaR Model

LRcc Don't Reject VaR Model LRcc Reject VaR Model

GARCH(1,1)

Significance 1% Significance 5%

LRuc Reject VaR Model LRuc Reject VaR Model

LRind Don't Reject VaR Model LRind Reject VaR Model

LRcc Reject VaR Model LRcc Reject VaR Model



 Remove boundary effect of Fourier transform 
method for volatility estimation.

 (efficient) importance sampling methods are 
investigated.

 VaR backtesting results for FX and equity 
data.
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