An Improved Procedure for VaR/CVaR Estimation under Stochastic Volatility Models

> CH Sean Han QF, NTHU, Taiwan

> > BFS2010

(Joint work with T.-Y. Chen and W.-H. Liu)

Outline

- Risk Management in Practice: Value at Risk (VaR) / Conditional Value at Risk (CVaR)
- Volatility Estimation: Corrected Fourier Transform Method
- Estimate Extreme Probability by Efficient Importance Sampling
- Backtesting for VaR Estimation

Value at Risk

• Let r(t) be an asset return at time t. Its $\alpha \times 100\%$ VaR, denoted by VaR_{α} , is defined by the $(1-\alpha) \times 100\%$ percentile of r(t). That is,

$$P(r(t) \le VaR_{\alpha}) = 1 - \alpha$$

That is a risk controller has a $\alpha \times 100\%$ confidence that the asset price will not drop below VaR_{α} at time t.

Aspects about VaR

 Mathematically, it is not a coherent risk measure* because it doesn't satisfy the risk diversification principal. Instead, CVaR does!.
 Practically, VaR is commonly required by financial regulations (Basel II Accord).

* Artzner P., F. Delbaen, J.-M. Eber, and D. Heath, "Coherent Measures of Risk," *Mathematical Finance*, 9 (1999): 203-28.

Estimation of VaR

- Riskmetrics: normal assumption under EWMA model.
- Historical Simulation: generate scenarios
- Model Dependent Approach: Discrete-Time vs. Continuous-Time Models

A Nonparametric Method to Estimate Volatility: Fourier Transform Method*

Assume a diffusion process

$$du(t) = \mu(t)dt + \sigma(t)dW_t,$$

• Task: Given return time series u(t), estimate the volatility $\sigma(t)$.

* Malliavin and Mancino(2002, 2009)

Fourier Transform Method(Step 1)

Compute the Fourier coefficients of du by $a_0(du) = \frac{1}{2\pi} \int_0^{2\pi} du(t),$ $a_k(du) = \frac{1}{\pi} \int_0^{2\pi} \cos(kt) du(t),$ $b_k(du) = \frac{1}{\pi} \int_0^{2\pi} \sin(kt) du(t).$ Then, $u(t) = a_0 + \sum_{k=1}^{\infty} \left| -\frac{b_k(du)}{k} \cos(kt) + \frac{a_k(du)}{k} \sin(kt) \right|.$

Fourier Transform Method(Step 2)

Fourier coefficients of variance $\sigma^2(t)$,

$$a_{k}(\sigma^{2}) = \lim_{N \to \infty} \frac{\pi}{2N+1} \sum_{s=-N}^{N-k} \left[a_{s}^{*}(du) a_{s+k}^{*}(du) + b_{s}^{*}(du) b_{s+k}^{*}(du) \right],$$

$$b_{k}(\sigma^{2}) = \lim_{N \to \infty} \frac{\pi}{2N+1} \sum_{s=-N}^{N-k} \left[a_{s}^{*}(du) b_{s+k}^{*}(du) - b_{s}^{*}(du) a_{s+k}^{*}(du) \right],$$

where n_0 is any positive integer so that

$$\sigma_N^2(t) = \sum_{k=0}^N \left[a_k(\sigma^2) \cos(kt) + a_k(\sigma^2) \sin(kt) \right].$$

Fourier Transform Method(Step 3)

Reconstruct the time series variance $\sigma^2(t)$. Finally, $\sigma_N^2(t)$ is an approximation of $\sigma^2(t)$ as N approaches infinity, which can be given by classical Fourier-Fejer inversion formula.

$$\sigma^2(t) = \lim_{N \to \infty} \sigma_N^2(t)$$
 in prob.

Smoothing

- We add a function into the final computation of time series variance in order to smooth it.
 - $\sigma^{2}(t) = \lim_{N \to \infty} \sum_{k=0}^{N} \varphi(\delta k) \Big[a_{k} \big(\sigma^{2} \big) \cos(kt) + b_{k} \big(\sigma^{2} \big) \sin(kt) \Big],$ where $\varphi(x) = \frac{\sin^{2}(x)}{x^{2}}$ is a function in order to smooth the trajectory and δ is a smoothing parameter.
- Reno (2008) alerts the boundary effect in the Fourier transform method.

A Price Correction Scheme: First Order

 Idea: (Nonlinear) Least Squares Method for first-order correction

$$r_{t} \approx \sigma_{t} \delta_{t} \varepsilon_{t}$$
$$\approx \exp\left(\left(a + b\hat{Y}_{t}\right)/2\right) \delta_{t} \varepsilon_{t}.$$

Then by MLE to regress out a and b

$$\ln\left(\frac{r_t}{\delta_t}\right)^2 = a + b\hat{Y}_t + \ln\varepsilon_t^2.$$

Simulation Study – Local Volatility

Stochastic Volatility Model Estimation

 Assuming that the driving volatility process is governed by the Ornstein-Uhlenbeck process,

$$dY_t = \alpha \left(m - Y_t \right) dt + \beta dW_t. \tag{1}$$

• We use the corrected estimator $a + b\hat{Y}_t$ to further estimate model parameters (α, β, m) of \hat{Y}_t by means of maximum likelihood method.

Stochastic Volatility Model Estimation (cont.)

• For a given set of observations $(Y_1, Y_2, ..., Y_N)$ the likelihood function is

$$L(\alpha,\beta,m) = \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi\beta^{2}\Delta_{t}}} \exp\left\{-\frac{1}{2\beta^{2}\Delta_{t}} \left[Y_{t+1} - (\alpha m\Delta_{t} + (1-\alpha\Delta_{t})Y_{t})\right]^{2}\right\},\$$

where Δ_t denotes the length of discretized time interval.

Stochastic Volatility Model Estimation (cont.)

 By maximizing the right hand side over the parameters (α, β,m), we obtain the following maximum likelihood estimators

$$\hat{\alpha} = \frac{1}{\Delta_{t}} \left[1 - \frac{\left(\sum_{t=2}^{N} Y_{t}\right) \left(\sum_{t=1}^{N-1} Y_{t}\right) - (N-1) \left(\sum_{t=1}^{N-1} Y_{t}Y_{t+1}\right)}{\left(\sum_{t=1}^{N-1} Y_{t}\right)^{2} - (N-1) \left(\sum_{t=1}^{N-1} Y_{t}^{2}\right)} \right], \quad (3)$$

$$\hat{\beta} = \sqrt{\frac{1}{N\Delta_{t}} \sum_{t=1}^{N-1} \left[Y_{t+1} - \left(\alpha m \Delta_{t} + (1-\alpha \Delta_{t}) Y_{t}\right) \right]^{2}}, \quad (4)$$

$$\hat{m} = \frac{-1}{\hat{\alpha}\Delta_{t}} \left[\frac{\left(\sum_{t=2}^{N} Y_{t}\right) \left(\sum_{t=1}^{N-1} Y_{t}^{2}\right) - \left(\sum_{t=1}^{N-1} Y_{t}\right) \left(\sum_{t=1}^{N-1} Y_{t}Y_{t+1}\right)}{\left(\sum_{t=1}^{N-1} Y_{t}\right)^{2} - (N-1) \left(\sum_{t=1}^{N-1} Y_{t}^{2}\right)} \right], \quad (5)$$

Simulation Study – Stochastic Vol

- Let the stochastic volatility model $\begin{cases} dS_t = \mu S_t dt + \exp(Y_t/2) S_t dW_{1t}, \\ dY_t = \alpha (m - Y_t) dt + \beta dW_{2t}. \end{cases}$
- To empirically test our price correction scheme, we set model parameters as follows: $\mu = 0.01, S_0 = 50, Y_0 = -2, m = -2, \alpha = 5, \beta = 1,$ and with the discretization length $\Delta_t = 1/5000$ so as to generate volatility series $\sigma_t = \exp(Y_t/2)$ and asset price series S_t .

Simulation Study(cont.)

- Two criteria are used for performance comparison: Mean squared errors (MSE) and Maximum absolute errors (MAE).
- Comparison results are shown below:

	Fourier method	Corrected Fourier method
Mean squared error	0.0324	0.0025
Maximum absolute error	0.3504	0.1563

Estimate Extreme Probability

- Given a Markovian dynamic model of an asset price S_t , its return process is $r_T = \ln(S_T/S_0)$.
- Given a loss threshold D, the extreme probability is defined by

$$P(0,S_0;D) = E\left[I(r_T \le D) \middle| S_0\right].$$

Note: solve VaR_{α} from $P(0, S_0; VaR_{\alpha}) = 1 - \alpha$. $CVaR = E[r_T | r_T \le VaR_{\alpha}]$. (Expected Shortfall)

Importance Sampling

- Given the Black-Scholes Model under measure P, choose $\frac{dP}{d\tilde{P}} = Q_T(h) = \exp\left(h\tilde{W}_T - \frac{h^2T}{2}\right)$ satisfing $\tilde{E}[S_T] = S_0 \exp(D)$.
- Then $h = \frac{\mu}{\sigma} \frac{D}{\sigma T}$, the extreme probability becomes $P(0, S_0) = \tilde{E} \Big[I \Big(r_T \le D \Big) Q_T \Big(h \Big) \Big| S_0 \Big].$ (6)
- The unbiased importance sampling estimator of $P(0, S_0)$ is $\frac{1}{N} \sum_{i=1}^{N} I(r_T^{(i)} \le D) Q_T^{(i)}(h).$ (7)

Trajectories under different measures: Black-Scholes Model

Simulation of the stock price :

Importance Sampling(cont.)

Theorem:

Under the Black-Scholes model, the proposed importance sampling estimator is asymptotically optimal or efficient under some scaling scenarios in time and space.

Proof: The variance rate of the proposed importance sampling scheme approaches zero.

Importance Sampling under Stochastic Volatility Model

- Stochastic volatility model: $\begin{cases}
 dS_t = \mu S_t dt + \sigma_t S_t dW_{1t} \\
 \sigma_t = \exp(Y_t/2) \\
 dY_t = \alpha (m - Y_t) dt + \beta dW_{2t}
 \end{cases}$
- Ergodic property of the averaged variance

process

$$\frac{1}{T}\int_0^T f(Y_t^{\varepsilon})^2 dt \xrightarrow{a.s.} \overline{\sigma}^2, \text{ for } \varepsilon \to 0$$

where ε denotes a small time scale and Y_t^{ε} denotes a fast mean-reverting process.

Importance Sampling under Stochastic Volatility Model(cont.)

• E.g.
$$\alpha = \frac{1}{\varepsilon}, \beta = \sqrt{\frac{2\nu}{\varepsilon}}.$$

- So that the importance sampling as forementioned can be applied.
- CVaR estimation can be easily solved.

Numerical Results of VaR/CVaR Estimation

• Given model parameters of stochastic volatility: $m = -5, \alpha = 5, \beta = 1, S_0 = 50, Y_0 = -3, \mu = 0$

	$c = VaR_{99\%}$	CVaR		
ρ		N. Approx.	IS	
0. 8	-0. 0339	-0.0347	-0.0386 (7.5073E-05)	
0.4	-0. 0335	-0.0343	-0.0378 (7.3833E-05)	
0	-0.0323	-0.0331	-0.0367 (7.2498E-05)	
-0.4	-0.0317	-0.0325	-0.0366 (7.2739E-05)	
-0.8	-0.0310	-0.0319	-0.0351 (6.9643E-05)	

SV Model Estimation: CAD/USD

Data sample period: 1998.01.05-2009.07.24

SV Model Estimation: S&P500 / VIX

Data sample period: 2005.01.03-2009.07.24

Backtesting Outcomes of S&P 500 VaR Estimate

Data sample period: 2005.01.03-2009.07.24

RiskMetrics					
Significance	1%	Significance	5%		
LRuc	Reject VaR Model	LRuc	Reject VaR Model		
LRind	Reject VaR Model	LRind	Don't Reject VaR Model		
LRcc	Reject VaR Model	LRcc	Reject VaR Model		
Historical Simulation					
Significance	1%	Significance	5%		
LRuc	Reject VaR Model	LRuc	Reject VaR Model		
LRind	Don't Reject VaR Model	LRind	Don't Reject VaR Model		
LRcc	Reject VaR Model	LRcc	Reject VaR Model		
SV					
Significance	1%	Significance	5%		
LRuc	Don't Reject VaR Model	LRuc	Reject VaR Model		
LRind	Don't Reject VaR Model	LRind	Don't Reject VaR Model		
LRcc	Don't Reject VaR Model	LRcc	Reject VaR Model		
GARCH(1,1)					
Significance	1%	Significance	5%		
LRuc	Reject VaR Model	LRuc	Reject VaR Model		
LRind	Don't Reject VaR Model	LRind	Reject VaR Model		
LRcc	Reject VaR Model	LRcc	Reject VaR Model		

Conclusion

- Remove boundary effect of Fourier transform method for volatility estimation.
- (efficient) importance sampling methods are investigated.
- VaR backtesting results for FX and equity data.

Thank You