Exotic Options in Multiple Priors Models

Tatjana Chudjakow Institute of Mathematical Economics, Bielefeld University

Bachelier Finance Society

6th World CongressJune 23, 2010

Outline

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Motivation

Classical Exercise Problem for American Options

[Conclusions](#page-26-0)

American options:

- **The right to buy or sell an underlying** S **at any time prior to maturity** T subject to ^a contract
- Realizing the profit $A(t,(S_s)_{s \leq t})$ when exercised at t

Problem of the buyer:

 Exercise the option optimally choosing ^a strategy that maximizes the expected reward of the option, i.e. choose a stopping time τ^* that maximizes

 $\mathbb{E}^P((A(\tau,(S_s)_{s\leq \tau})))$ over all stopping times $\tau\leq T$

under an appropriately chosen measure P

Classical Solution in discrete Time

$$
U_T = A(T, (S_s)_{s \le T})/(1+r)^T
$$

$$
U_t = \max\{A(t, (S_s)_{s \le t})/(1+r)^t, \mathbb{E}^P(U_{t+1}|\mathcal{F}_t)\}
$$

for $t < T$

Stop as soon as the value process reaches the payoff process

Motivation for Multiple Priors Models

[Motivation](#page-2-0) General [Framework](#page-8-0)Exotic [Options](#page-17-0) in Multiplepriors Models**[Conclusions](#page-26-0)**

What is if the market is imperfect?

Information is imprecise?

Regulation imposes constraints on trading rules?

Several answers are possible:

- Superhedging
- Utility indifference pricing
- Risk measure pricing

Our approach:

Aim of the paper

[Motivation](#page-2-0)

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Ambiguity pricing

- Take the perspective of ^a decision maker who is uncertain about the underlying's dynamics and uses ^a set of priors instead of ^a single one
	- Being pessimistic she maximizes the lowest expected return of option

maximize $\inf_{P \in \mathcal{P}}$ $\mathbb{E}^P(A(\tau,S_{\tau})/(1+r)^{\tau})$

- Concentrate on the effect of ambiguity and assume risk neutrality
- Model ^a consistent market under multiple priors assumption
- Study several exotic options of American style in the framework of ambiguity pricing
- F Analyze the difference between classical expected return based pricing and the coherent risk pricing

Results

[Motivation](#page-2-0)

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Economically

- Ambiguity pricing leads to ^a valuation under ^a specific pricing measure
- The pricing measure is rather ^a part of the solution then of the model itself
- The pricing measure captures the fears of the decision maker and depends on the state and the payoff structure

Mathematically

- F The pricing measure might looses the independence property
- F Cut off rules are still optimal in this model
- × The use of the worst-case measure increases the complexity

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

General Framework

The Mathematical Setup

[Conclusions](#page-26-0)

A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ $_0)$

> $\Box \Omega = \otimes_{t=1}^{T}$ $\{1\}_{t=1}^T\{0,1\}$ – the set of sequences with values in $\{0,1\}$

 $\Box\;\mathcal{F}$ – the σ -field generated by all projections $\epsilon_t:\Omega\rightarrow\{0,1\}$

- \Box \mathbb{P}_0 $_0$ – the uniform on (Ω ,\mathcal{F})
- **A filtration** $(\mathcal{F}_t)_{t=0,\dots,T}$ generated by the sequence $\epsilon_1,\dots,\epsilon_t$ with $\mathcal{F}_t = \sigma(\epsilon_1, \ldots, \epsilon_t)$, \mathcal{F}_0 = $=\{\emptyset,\Omega\}$, $\mathcal F$ $=\mathcal{F}_T$

Figure 1: Binomial tree

The Mathematical Setup

T **^A convex set of priors** P defined via

> $\mathcal{P}=$ $\{P \in \Delta(\Omega, \mathcal{F}) | P(\epsilon_t = 1 | \mathcal{F}_t)\}$ $_{-1}) \in [\underline{p}, \overline{p}] \ \forall t \leq T$

for a fixed interval $[\underline{p},\overline{p}]\subset (0,1)$

- E $\mathcal P$ contains all product measures defined via $P_p(\epsilon_{t+1} = 1 | \mathcal F_t) = p$ for a fixed $p\in [\underline{p},\overline{p}]$ and all $t\leq T$
- Г \blacksquare Denote by P the measure $P_{\overline{p}}$ and by \underline{P} the measure $P_{\underline{p}}$
- $\blacksquare \ \epsilon_1, \ldots, \epsilon_t$ are i.i.d under all product measures $P_p \in \mathcal{P}$
	- In general, no independence

Properties of P

[Motivation](#page-2-0)

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Lemma 1 The above defined set of priors ^P satisfies

1. For all $P \in \mathcal{P}$ $P \sim \mathbb{P}_0$

- All measures in P agree on the null sets
- F ■ We can identify $\mathcal P$ with the set of density processes $\mathcal D=\{\mathcal D_t|t\leq T\}$ where

$$
\mathcal{D}_t = \left\{ \left. \frac{dP}{d\mathbb{P}_0} \right|_{\mathcal{F}_t} | P \in \mathcal{P} \right\}
$$

i inf is always a \min

Properties of P

[Motivation](#page-2-0) General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Lemma 2 $\mathcal P$ is time-consistent in the following sense: Let $P,Q\in\mathcal P,$ $(p_t)_t,(q_t)_t\in (\mathcal{D}_t)_t.$ For a fixed stopping time $\tau\leq T$ define the measure R via

$$
r_t = \begin{cases} p_t & \text{if } t \le \tau \\ \frac{p_\tau q_t}{q_\tau} & \text{else} \end{cases}
$$

Then $R \in \mathcal{P}$.

Time-consistency is equivalent to

F ^a version of The Law of Iterated Expectations

fork-stability (FÖLLMER/SCHIED (2004))

r. rectangularity (EPSTEIN/SCHNEIDER (2003))

 \Rightarrow Allows to change the measure between periods

The Market Structure

[Motivation](#page-2-0) General [Framework](#page-8-0)Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Ambiguous version of the COX–ROSS–RUBINSTEIN model

^A market with ² assets:

 \square A riskless asset B with interest rate $r>0$

 $\mathcal{L}^{\mathcal{A}}$ A risky asset S evolving according to $S_0 = 1$ and

$$
S_{t+1} = \begin{cases} S_t \cdot u & \text{if } \epsilon_{t+1} = 1 \\ S_t \cdot d & \text{if } \epsilon_{t+1} = 0 \end{cases}
$$

Assume $u \cdot d = 1$ and $0 < d < 1 + r < u$

 \blacksquare \relax{P}/\underline{P} is the measure with the highest/lowest mean return

Path-dependent increments

Dynamical model adjustment without learning

The Decision Problem

[Motivation](#page-2-0) General [Framework](#page-8-0)Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Exercise problem of an ambiguity averse buyer

- For an option paying off $A(t,(S_s)_{s \le t})$ when exercised at t :
- Choose a stopping time τ^* that maximizes

min $P \in \mathcal{P}$ $\mathbb E$ $\, P \,$ $\binom{P}{x}$ $A(\tau, ($ $S\,$ s $\binom{s}{s}$ $s \leq \tau$ $_{\tau})/(1+r$ $r)$ τ σ)

over all stopping times $\tau\leq T$

Compute

$$
U_t^{\mathcal{P}} = \operatorname*{esssup}_{\tau \ge t} \operatorname*{essinf}_{P \in \mathcal{P}} \mathbb{E}^P(A(\tau, (S_s)_{s \le \tau})/(1+r)^\tau | \mathcal{F}_t)
$$

– the ambiguity value of the claim at time t

The Solution Method

[Motivation](#page-2-0) General [Framework](#page-8-0)Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Theorem 1 (RIEDEL (2009)) Given a set of measures $\mathcal P$ as above and a bounded payoff process X , $X_t = A(t,(S_s)_{s\leq t})/(1+r)^t$, define the <code>multiple</code> priors Snell envelope $U^{\mathcal{P}}$ recursively by

$$
U_T^{\mathcal{P}} = X_T
$$

\n
$$
U_t^{\mathcal{P}} = \max\{X_t, \underset{P \in \mathcal{P}}{\text{essinf}} \mathbb{E}^P(U_{t+1}^{\mathcal{P}} | \mathcal{F}_t)\} \text{ for } t < T
$$
\n(1)

Then,

1. $U^{\mathcal{P}}$ is the value process of the multiple priors stopping problem for the payoff process X , i.e.

$$
U_t^{\mathcal{P}} = \operatorname*{esssup}_{\tau \ge t} \operatorname*{essinf}_{P \in \mathcal{P}} \mathbb{E}^P(X_\tau | \mathcal{F}_t)
$$

2. An optimal stopping rule is then given by

$$
\tau^* = \inf\{t \ge 0 | U_t^{\mathcal{P}} = X_t\}
$$

The Solution Method

[Motivation](#page-2-0)

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Duality result (KARATZAS/ KOU (1998)): There exists a $\hat{P} \in \mathcal{P}$ s.t.

$$
U^{\mathcal{P}}=U^{\hat{P}}\quad\mathbb{P}_0-\text{a.s.}
$$

To solve the problem

- Identify the worst-case measure $\hat{P} \in \mathcal{P}$
- × Refer to the classical solution

Idea

F Identify the worst-case measure for monotone claims

F Decompose more complicated claims in monotone parts

 Construct the worst-case measure pasting together the worst-case densities of the monotone parts

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Exotic Options in Multiple priorsModels

Multiple Expiry Options

- T **Multiple expiry options** expiry at some date $\sigma < T$ in the future issuing a new option with conditions specified at $\sigma < T$
- Often used as employee bonus and therefore are subject to trading restrictions
- The value to the buyer/executive differs from the cost to the company of granting the option (HALL/ MURPHY (2002))
- F Multiple expiry feature causes ^a second source of uncertainty:

Dual Expiry Options – Shout Options

[Conclusions](#page-26-0)

- **Shout options** allow the buyer to shout and freeze the strike at-the-money at any time prior to maturity
- F Can be seen as the option to abandon ^a project to conditions specified by the buyer
- E **There is uncertainty about the strike at time** 0 **that is resolved at the time** of shouting
- The payoff of the shout option at shouting is an at-the-money put of European style and the problem becomes

$$
\text{maximize } A(\sigma, S_{\sigma}) = (S_{\sigma} - S_T)^+ / (1+r)^T
$$

over all stopping times $\sigma\leq T$

The task here is rather to start the process optimally than to stop it

Dual Expiry Options – Shout Options

[Motivation](#page-2-0) General [Framework](#page-8-0)Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

T ■ Since the payoff process is not adapted consider for $t\leq T$

$$
X_t = \operatorname*{essinf}_{P \in \mathcal{P}} \mathbb{E}^P((S_t - S_T)^+ / (1+r)^T | \mathcal{F}_t)
$$

= $S_t \cdot g(t, \overline{P})$
= $S_t \cdot \frac{(1-\overline{p})^T}{(1+r)^T} \left(\sum_{k=0}^{k(t)} {T-t \choose k} \left(\frac{\overline{p}}{1-\overline{p}} \right)^k (1-d^{T-2k}) \right)$

for $k(t)=\left\lfloor \frac{T}{t}\right\rfloor$ − $\frac{-t}{2}$

Lemma 3 For all stopping times $\sigma \leq T$ we have

$$
\min_{P \in \mathcal{P}} \mathbb{E}^{P}(X_{\sigma}) = \min_{P \in \mathcal{P}} \mathbb{E}^{P}(A(\sigma, S_{\sigma})/(1+r)^{T})
$$

Dual Expiry Options – Shout Floor

[Motivation](#page-2-0) General [Framework](#page-8-0)Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

T \blacksquare We can maximize X instead of the original payoff

As ^a consequence we have

$$
U_0^{\mathcal{P}} = \underset{P \in \mathcal{P}}{\text{essinf}} \mathbb{E}^P \left(\underset{Q \in \mathcal{P}}{\text{essinf}} \mathbb{E}^Q ((S_{\sigma^*} - S_T)^+ | \mathcal{F}_{\sigma^*}) \right)
$$

=
$$
\underset{P \in \mathcal{P}}{\text{min}} \mathbb{E}^P (S_{\sigma^*} \cdot g(\sigma^*, \overline{P}))
$$

=
$$
\mathbb{E}^P (S_{\sigma^*} \cdot g(\sigma^*, \overline{P}))
$$

where σ^* is optimal.

The worst-case measure is defined by

$$
\hat{P}(\epsilon_{t+1}|\mathcal{F}_t) = \begin{cases} \overline{p} & \text{if } \sigma^* < t \\ \underline{p} & \text{else} \end{cases}
$$

Dual Expiry Options – Shout Floor

[Motivation](#page-2-0)

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Lemma 4 The optimal stopping time for the above problem is given by

$$
\sigma^* = \inf\{t \ge 0 : f(t) = x^*\}
$$

where

$$
f(t) = g(t, \overline{P}) \cdot (\underline{p} \cdot u + (1 - \underline{p}) \cdot d)^t
$$

and x^* is the maximum of f on $[0,T]$

Proof: Generalized parking method and Optional Sampling

Remarks

1. Closed form solutions require exact study of the monotonicity of f

2.
$$
1 - \overline{p} \geq (\underline{p} \cdot u + (1 - \underline{p}) \cdot d)
$$
 is sufficient to have

$$
\sigma^*=0
$$

U–shaped Payoffs

Exotic [Options](#page-17-0) in Multiplepriors Models

- **U–shaped payoffs** consist of two monotone parts allowing to benefit from change in the underlying independently of the direction of thechange
- Often used as speculative instrument before important events

Figure 2: Payoff of Straddle

U–shaped Payoffs

[Motivation](#page-2-0) General [Framework](#page-8-0)Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

- Up- and Down-movement can increase the value of the claim
- Uncertainty does not vanish over time

Lemma 5 The value process is Markovian. For every $t \leq T$ the value function $v(t,\cdot)$ is quasi-convex and there exists a sequence $(\hat{x}_t)_{t\leq T}$ s.t. $v(t,\cdot)$ increases on $\{x_t > \hat{x}_t\}$ and decreases else.

Proof: Backward induction

Proof uses explicitly the binomial structure of the model

As ^a consequence we obtain

$$
\hat{P}(\epsilon_{t+1} = 1 | \mathcal{F}_t) = \begin{cases} \overline{p} & \text{if } S_t < \hat{x}_t \\ \underline{p} & \text{if } S_t \ge \hat{x}_t \end{cases}
$$

U–shaped Payoffs

- The worst-case measure is mean-reverting (in ^a wider sense)
- The drift changes every time S hits a barrier and can happen arbitrary often
- Fears of the decision maker are opposite to the market movement
- Increments are not independent anymore
- F Idea: Use the generalized parking method again or upper and lower bounds

General [Framework](#page-8-0)

Exotic [Options](#page-17-0) in Multiplepriors Models

[Conclusions](#page-26-0)

Conclusions

[Motivation](#page-2-0)

- A model of a multiple priors market provided
	- ^A method to evaluate options in imperfect markets proposed
- Pricing measure for several classes of payoffs derived
- Г Worst-case measure is path-dependent in general
- Г The structure of the stopping times carries over in this model
- T This is, however, due to the model and not ^a general result

Future work

- E Continuous-time analysis – Brownian motion setting
	- Infinite time modeling in continuous time
		- \Box Allows for closed form solutions and comparative statics
		- \Box Mathematical traps due to multiple measure structure
		- \Box More modeling necessary to build ^a meaningful mathematical model

Thank you for your attention!