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American options:

� The right to buy or sell an underlying S at any time prior to maturity T
subject to a contract

� Realizing the profit A(t, (Ss)s≤t) when exercised at t

Problem of the buyer:

� Exercise the option optimally choosing a strategy that maximizes the

expected reward of the option, i.e. choose a stopping time τ∗ that

maximizes

E
P ((A(τ, (Ss)s≤τ ))) over all stopping times τ ≤ T

under an appropriately chosen measure P
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How to choose P?

� P is the equivalent martingale measure in complete markets

� P is the physical measure in real option models

Solution

� For fixed stochastic basis backward induction leads to the solution

� Snell envelope defines the value function of the problem through

UT = A(T, (Ss)s≤T )/(1 + r)T

Ut = max{A(t, (Ss)s≤t)/(1 + r)t,EP (Ut+1|Ft)}

for t < T

� Stop as soon as the value process reaches the payoff process
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� What is if the market is imperfect?

� Information is imprecise?

� Regulation imposes constraints on trading rules?

Several answers are possible:

� Superhedging

� Utility indifference pricing

� Risk measure pricing

Our approach:

� Ambiguity pricing
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Ambiguity pricing

� Take the perspective of a decision maker who is uncertain about the

underlying’s dynamics and uses a set of priors instead of a single one

� Being pessimistic she maximizes the lowest expected return of option

maximize inf
P∈P

E
P (A(τ, Sτ )/(1 + r)τ )

� Concentrate on the effect of ambiguity and assume risk neutrality

� Model a consistent market under multiple priors assumption

� Study several exotic options of American style in the framework of

ambiguity pricing

� Analyze the difference between classical expected return based pricing

and the coherent risk pricing
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Economically

� Ambiguity pricing leads to a valuation under a specific pricing measure

� The pricing measure is rather a part of the solution then of the model

itself

� The pricing measure captures the fears of the decision maker and

depends on the state and the payoff structure

Mathematically

� The pricing measure might looses the independence property

� Cut off rules are still optimal in this model

� The use of the worst-case measure increases the complexity



General Framework

Motivation

General Framework

Exotic Options in Multiple
priors Models

Conclusions

slide 9



The Mathematical Setup

Motivation

General Framework

Exotic Options in Multiple
priors Models

Conclusions

slide 10

� A probability space (Ω,F ,P0)

� Ω = ⊗T
t=1{0, 1} – the set of sequences with values in {0, 1}

� F – the σ-field generated by all projections ǫt : Ω → {0, 1}

� P0 – the uniform on (Ω,F)

� A filtration (Ft)t=0,...,T generated by the sequence ǫ1, . . . , ǫt with

Ft = σ(ǫ1, . . . , ǫt), F0 = {∅,Ω}, F = FT

D

C

B

A

Figure 1: Binomial tree
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� A convex set of priors P defined via

P =
{

P ∈ ∆(Ω,F)|P (ǫt = 1|Ft−1) ∈ [p, p] ∀t ≤ T
}

for a fixed interval [p, p] ⊂ (0, 1)

� P contains all product measures defined via Pp(ǫt+1 = 1|Ft) = p for a

fixed p ∈ [p, p] and all t ≤ T

� Denote by P the measure Pp and by P the measure Pp

� ǫ1, . . . , ǫt are i.i.d under all product measures Pp ∈ P

� In general, no independence
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Lemma 1 The above defined set of priors P satisfies

1. For all P ∈ P P ∼ P0

� All measures in P agree on the null sets

� We can identify P with the set of density processes D = {Dt|t ≤ T}
where

Dt =

{

dP

dP0

∣

∣

∣

∣

Ft

|P ∈ P

}

� inf is always a min
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Lemma 2 P is time-consistent in the following sense: Let P,Q ∈ P ,

(pt)t, (qt)t ∈ (Dt)t. For a fixed stopping time τ ≤ T define the measure R
via

rt =

{

pt if t ≤ τ
pτ qt
qτ

else

Then R ∈ P .

Time-consistency is equivalent to

� a version of The Law of Iterated Expectations

� fork-stability (FÖLLMER/SCHIED (2004))

� rectangularity (EPSTEIN/SCHNEIDER (2003))

⇒ Allows to change the measure between periods
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Ambiguous version of the C OX–ROSS–RUBINSTEIN model

� A market with 2 assets:

� A riskless asset B with interest rate r > 0

� A risky asset S evolving according to S0 = 1 and

St+1 =

{

St · u if ǫt+1 = 1
St · d if ǫt+1 = 0

� Assume u · d = 1 and 0 < d < 1 + r < u

� P/P is the measure with the highest/lowest mean return

� Path-dependent increments

� Dynamical model adjustment without learning
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Exercise problem of an ambiguity averse buyer

� For an option paying off A(t, (Ss)s≤t) when exercised at t:

� Choose a stopping time τ∗ that maximizes

min
P∈P

E
P (A(τ, (Ss)s≤τ )/(1 + r)τ )

over all stopping times τ ≤ T

� Compute

UP
t = esssup

τ≥t

essinf
P∈P

E
P (A(τ, (Ss)s≤τ )/(1 + r)τ |Ft)

– the ambiguity value of the claim at time t
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Theorem 1 (R IEDEL (2009)) Given a set of measures P as above and a

bounded payoff process X , Xt = A(t, (Ss)s≤t)/(1 + r)t, define the

multiple priors Snell envelope UP recursively by

UP
T =XT (1)

UP
t =max{Xt, essinf

P∈P
E
P (UP

t+1|Ft)} for t < T

Then,

1. UP is the value process of the multiple priors stopping problem for the

payoff process X , i.e.

UP
t = esssup

τ≥t

essinf
P∈P

E
P (Xτ |Ft)

2. An optimal stopping rule is then given by

τ∗ = inf{t ≥ 0|UP
t = Xt}
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Duality result (KARATZAS/ KOU (1998)): There exists a P̂ ∈ P s.t.

UP = U P̂
P0 − a.s.

To solve the problem

� Identify the worst-case measure P̂ ∈ P

� Refer to the classical solution

Idea

� Identify the worst-case measure for monotone claims

� Decompose more complicated claims in monotone parts

� Construct the worst-case measure pasting together the worst-case

densities of the monotone parts
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� Multiple expiry options expiry at some date σ < T in the future issuing

a new option with conditions specified at σ < T

� Often used as employee bonus and therefore are subject to trading

restrictions

� The value to the buyer/executive differs from the cost to the company of

granting the option (HALL/ MURPHY (2002))

� Multiple expiry feature causes a second source of uncertainty:
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� Shout options allow the buyer to shout and freeze the strike

at-the-money at any time prior to maturity

� Can be seen as the option to abandon a project to conditions specified

by the buyer

� There is uncertainty about the strike at time 0 that is resolved at the time

of shouting

� The payoff of the shout option at shouting is an at-the-money put of

European style and the problem becomes

maximize A(σ, Sσ) = (Sσ − ST )
+/(1 + r)T

over all stopping times σ ≤ T

� The task here is rather to start the process optimally than to stop it
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� Since the payoff process is not adapted consider for t ≤ T

Xt =essinf
P∈P

E
P ((St − ST )

+/(1 + r)T |Ft)

=St · g(t, P )

=St ·
(1− p)T

(1 + r)T





k(t)
∑

k=0

(

T − t

k

)(

p

1− p

)k

(1− dT−2k)





for k(t) =
⌊

T−t
2

⌋

Lemma 3 For all stopping times σ ≤ T we have

min
P∈P

E
P (Xσ) = min

P∈P
E
P (A(σ, Sσ)/(1 + r)T )
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� We can maximize X instead of the original payoff

� As a consequence we have

UP
0 = essinf

P∈P
E
P

(

essinf
Q∈P

E
Q((Sσ∗ − ST )

+|Fσ∗)

)

= min
P∈P

E
P
(

Sσ∗ · g(σ∗, P )
)

= E
P
(

Sσ∗ · g(σ∗, P )
)

where σ∗ is optimal.

� The worst-case measure is defined by

P̂ (ǫt+1|Ft) =

{

p if σ∗ < t
p else
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Lemma 4 The optimal stopping time for the above problem is given by

σ∗ = inf{t ≥ 0 : f(t) = x∗}

where

f(t) = g(t, P ) · (p · u+ (1− p) · d)t

and x∗ is the maximum of f on [0, T ]

Proof: Generalized parking method and Optional Sampling

Remarks

1. Closed form solutions require exact study of the monotonicity of f

2. 1− p ≥ (p · u+ (1− p) · d) is sufficient to have

σ∗ = 0



U–shaped Payoffs

Motivation

General Framework

Exotic Options in Multiple
priors Models

Conclusions

slide 24

� U–shaped payoffs consist of two monotone parts allowing to benefit

from change in the underlying independently of the direction of the

change

� Often used as speculative instrument before important events

Figure 2: Payoff of Straddle
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� Up- and Down-movement can increase the value of the claim

� Uncertainty does not vanish over time

Lemma 5 The value process is Markovian. For every t ≤ T the value function

v(t, ·) is quasi-convex and there exists a sequence (x̂t)t≤T s.t. v(t, ·)
increases on {xt > x̂t} and decreases else.

Proof: Backward induction

� Proof uses explicitly the binomial structure of the model

� As a consequence we obtain

P̂ (ǫt+1 = 1|Ft) =

{

p if St < x̂t
p if St ≥ x̂t
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� The worst-case measure is mean-reverting (in a wider sense)

� The drift changes every time S hits a barrier and can happen arbitrary

often

� Fears of the decision maker are opposite to the market movement

� Increments are not independent anymore

� Idea: Use the generalized parking method again or upper and lower

bounds
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Conclusions

� A model of a multiple priors market provided

� A method to evaluate options in imperfect markets proposed

� Pricing measure for several classes of payoffs derived

� Worst-case measure is path-dependent in general

� The structure of the stopping times carries over in this model

� This is, however, due to the model and not a general result
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� Continuous-time analysis – Brownian motion setting

� Infinite time modeling in continuous time

� Allows for closed form solutions and comparative statics

� Mathematical traps due to multiple measure structure

� More modeling necessary to build a meaningful mathematical

model
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Thank you for your attention!
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