

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Kathrin Glau, Nele Vandaele, Michèle Vanmaele

Bachelier Finance Society World Congress 2010 June 22-26, 2010

Nele Vandaele --- Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

- A compact representation for the pricing formula by using the Jamshidian decomposition
- Hedging strategies with default-free zero coupon bonds (delta-hedging ↔ quadratic hedging)
- Numerical implementation and results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

1 Introduction

- 2 Pricing of swaption
- 3 Hedging of swaption
- 4 Numerical results

Nele Vandaele --- Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

1 Introduction

- Model
- Swaption
- Tools for option pricing and hedging

2 Pricing of swaption

- 3 Hedging of swaption
- 4 Numerical results

・ロト ・回ト ・ヨト ・ヨト

B(t, T)

$$\blacksquare B(T,T)=1$$

No coupons, No default

•
$$B(t, T) < 1$$
 for every $t < T$

•
$$f(t, u)$$
 instantaneous forward rate:
 $B(t, T) = \exp(-\int_{t}^{T} f(t, u) du)$

E

ヘロト ヘヨト ヘヨト ヘヨト

Dynamics of forward interest rate

$$df(t, T) = \alpha(t, T)dt + \sigma'(t, T)dW_t$$

with W standard d-dimensional Brownian motion under \mathbb{P} α and σ adapted stochastic processes in \mathbb{R} , resp \mathbb{R}^d ' denotes transpose

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Dynamics of zero coupon bonds

$$dB(t, T) = B(t, T)(a(t, T)dt - \sigma^{*\prime}(t, T)dW_t)$$

with

$$a(t, T) = f(t, t) - \alpha^*(t, T) + \frac{1}{2} |\sigma^*(t, T)|^2$$
$$\alpha^*(t, T) = \int_t^T \alpha(t, u) du$$
$$\sigma^*(t, T) = \int_t^T \sigma(t, u) du.$$

Э

・ロン ・雪 と ・ ヨ と ・ ヨ と

Lévy driven HJM model

Dynamics of forward interest rate

$$df(t, T) = \alpha(t, T)dt - \sigma(t, T)d\boldsymbol{L}_t$$

with L: one-dimensional time-inhomogeneous Lévy process The law of L_t is characterized by the characteristic function

$$E[e^{izL_t}] = e^{\int_0^t \theta_s(iz)ds, \quad \forall t \in [0, T^*]}$$

with θ_s cumulant associated with *L* by the Lévy-Khintchine triplet (b_s, c_s, F_s) :

$$\theta_s(z) := b_s z + \frac{1}{2}c_s z^2 + \int_{\mathbb{R}} (e^{xz} - 1 - xz)F_s(dx)$$

with b_t , $c_t \in \mathbb{R}$, $c_t \ge 0$, F_t Lévy measure $a_t, a_t, a_t, a_t, a_t, a_t, a_t$

Lévy driven HJM model

Dynamics of forward interest rate

$$df(t, T) = \alpha(t, T)dt - \sigma(t, T)d\boldsymbol{L}_t$$

with L: one-dimensional time-inhomogeneous Lévy process The law of L_t is characterized by the characteristic function

$$E[e^{izL_t}] = e^{\int_0^t \theta_s(iz)ds, \quad \forall t \in [0, T^*]}$$

with θ_s cumulant associated with *L* by the Lévy-Khintchine triplet (b_s, c_s, F_s) :

$$\theta_s(z) := b_s z + \frac{1}{2}c_s z^2 + \int_{\mathbb{R}} (e^{xz} - 1 - xz)F_s(dx)$$

with b_t , $c_t \in \mathbb{R}$, $c_t \ge 0$, F_t Lévy measure

Integrability assumptions:

$$\int_0^{T^*} \left(|b_s| + |c_s| + \int_{\mathbb{R}} (x^2 \wedge 1) F_s(dx) \right) ds < \infty$$

There are constants $M, \epsilon > 0$ such that for every $u \in [-(1 + \epsilon)M, (1 + \epsilon)M]$:

$$\int_0^{T^*}\int_{\{|x|>1\}}\exp(ux)F_s(dx)ds<\infty$$

\Rightarrow L is an exponential special semimartingale

・ロン ・雪 と ・ ヨ と

Savings account and default-free zero coupon bond prices:

$$B_t = B(0,t) \exp(\int_0^t A(s,t) ds - \int_0^t \Sigma(s,t) dL_s)$$

$$B(t,T) = B(0,T) B_t \exp(-\int_0^t A(s,T) ds + \int_0^t \Sigma(s,T) dL_s)$$

with for $s \land T = \min(s, T)$ and $s \in [0, T^*]$

$$A(s, T) = \int_{s \wedge T}^{T} \alpha(s, u) du$$
 and $\Sigma(s, T) = \int_{s \wedge T}^{T} \sigma(s, u) du$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Unique martingale measure=spot measure

 $A(s, T) = \theta_s(\Sigma(s, T))$

with θ the cumulant associated with L by (b_s, c_s, F_s)

$$\theta_s(z) = b_s z + \frac{1}{2}c_s z^2 + \int_{\mathbb{R}} (e^{xz} - 1 - xz)F_s(dx)$$

 \Rightarrow Discounted zero-coupon bonds are martingales

ヘロト ヘ部ト ヘヨト ヘヨト

Forward MM

$$\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}} = \frac{1}{B_{T}B(0,T)} = \exp(-\int_{0}^{T}\theta_{s}(\Sigma(s,T)ds + \int_{0}^{T}\Sigma(s,T)dL_{s}))$$
$$\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}}\Big|_{\mathcal{F}_{t}} = \frac{B(t,T)}{B_{t}B(0,T)} = \exp(-\int_{0}^{t}\theta_{s}(\Sigma(s,T))ds + \int_{0}^{t}\Sigma(s,T)dL_{s})$$

L: time-inhomogeneous Lévy process under $\mathbb{P}_{\mathcal{T}}$ and special with characteristics $(b_s^{\mathbb{P}_{\mathcal{T}}}, c_s^{\mathbb{P}_{\mathcal{T}}}, \mathcal{F}_s^{\mathbb{P}_{\mathcal{T}}})$:

$$b_{s}^{\mathbb{P}_{T}} = b_{s} + c_{s}\Sigma(s, T) + \int_{\mathbb{R}} x(e^{\Sigma(s, T)x} - 1)F_{s}(dx)$$
$$c_{s}^{\mathbb{P}_{T}} = c_{s}$$
$$F_{s}^{\mathbb{P}_{T}}(dx) = e^{\Sigma(s, T)x}F_{s}(dx)$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

Forward MM

$$\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}} = \frac{1}{B_{T}B(0,T)} = \exp(-\int_{0}^{T}\theta_{s}(\Sigma(s,T)ds + \int_{0}^{T}\Sigma(s,T)dL_{s}))$$
$$\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}}\Big|_{\mathcal{F}_{t}} = \frac{B(t,T)}{B_{t}B(0,T)} = \exp(-\int_{0}^{t}\theta_{s}(\Sigma(s,T))ds + \int_{0}^{t}\Sigma(s,T)dL_{s})$$

L: time-inhomogeneous Lévy process under \mathbb{P}_{T} and special with characteristics $(b_{s}^{\mathbb{P}_{T}}, c_{s}^{\mathbb{P}_{T}}, F_{s}^{\mathbb{P}_{T}})$:

$$b_{s}^{\mathbb{P}_{T}} = b_{s} + c_{s}\Sigma(s, T) + \int_{\mathbb{R}} x(e^{\Sigma(s, T)x} - 1)F_{s}(dx)$$
$$c_{s}^{\mathbb{P}_{T}} = c_{s}$$
$$\mathcal{F}_{s}^{\mathbb{P}_{T}}(dx) = e^{\Sigma(s, T)x}F_{s}(dx)$$

・ロト ・回ト ・ヨト ・ヨト

Swaption: option granting its owner the right but not the obligation to enter into an underlying interest rate swap.

- Interest rate swap: contract to exchange different interest rate payments, typically a fixed rate payment is exchanged with a floating one.
- A: Payer swaption
- B: Receiver swaption

ヘロト ヘ部ト ヘヨト ヘヨト

Swaption: option granting its owner the right but not the obligation to enter into an underlying interest rate swap.

- Interest rate swap: contract to exchange different interest rate payments, typically a fixed rate payment is exchanged with a floating one.
- A: Payer swaption
- B: Receiver swaption

・ロト ・ 一下・ ・ ヨト ・ ヨト

Swaption: option granting its owner the right but not the obligation to enter into an underlying interest rate swap.

- Interest rate swap: contract to exchange different interest rate payments, typically a fixed rate payment is exchanged with a floating one.
- A: Payer swaption
- B: Receiver swaption

Jamshidian

- Closed-form expression for European option price on coupon-bearing bond
- P(r, t, s): Price at time t of a pure discount bond maturing at time s, given that r(t) = r and $R_{r,t,s}$ is a normal random variable

$$\left(\sum a_j P(R_{r,t,T}, T, s_j) - K\right)^+ = \sum a_j \left(P(R_{r,t,T}, T, s_j) - K_j\right)^+$$

with $K_j = P(r^*, T, s_j)$ and r^* is solution to equation $\sum a_j P(r^*, T, s_j) = K$

Holds for any short rate model as long as zero coupon bond prices are all decreasing (comonotone) functions of interest rate

Jamshidian

- Closed-form expression for European option price on coupon-bearing bond
- P(r, t, s): Price at time t of a pure discount bond maturing at time s, given that r(t) = r and $R_{r,t,s}$ is a normal random variable

$$\left(\sum a_j P(R_{r,t,T}, T, s_j) - K\right)^+ = \sum a_j \left(P(R_{r,t,T}, T, s_j) - K_j\right)^+$$

with $K_j = P(r^*, T, s_j)$ and r^* is solution to equation $\sum a_j P(r^*, T, s_j) = K$

 Holds for any short rate model as long as zero coupon bond prices are all decreasing (comonotone) functions of interest rate

Fourier transformation

Theorem Eberlein, Glau, Papapantoleon (2009) If the following conditions are satisfied: (C1) The dampened function $g = e^{-Rx} f(x)$ is a bounded, continuous function in $L^1(\mathbb{R})$. (C2) The moment generating function $M_{X_{\tau}}(R)$ of rv X_{τ} exists. (C3) The (extended) Fourier transform \hat{g} belongs to $L^1(\mathbb{R})$, $\Rightarrow E[f(X_T - s)] = \frac{e^{-\kappa s}}{2\pi} \int_{m} e^{ius} \varphi_{X_T}(-u - iR) \hat{f}(u + iR) du,$ with φ_{X_T} characteristic function of the random variable X_T .

1 Introduction

- 2 Pricing of swaption
- 3 Hedging of swaption
- 4 Numerical results

・ロト ・ 日 ト ・ モ ト ・ モ ト

Pricing of swaption

Assumptions on volatility structure

■ Volatility structure σ: bounded and deterministic. For 0 ≤ s and T ≤ T*:

$$0 \leq \Sigma(s,T) = \int_{s \wedge T}^{T} \sigma(s,u) du \leq M' < M,$$

• For all $T \in [0, T^*]$ we assume that $\sigma(\cdot, T) \not\equiv 0$ and

 $\sigma(s,T) = \sigma_1(s)\sigma_2(T) \quad 0 \le s \le T,$

where $\sigma_1 : [0, T^*] \to \mathbb{R}^+$ and $\sigma_2 : [0, T^*] \to \mathbb{R}^+$ are continuously differentiable.

• $\inf_{s \in [0,T^*]} \sigma_1(s) \ge \underline{\sigma}_1 > 0$

- Payer swaption can be seen as a put option with strike price 1 on a coupon-bearing bond.
- Payer swaption's payoff at T_0 :

$$(1-\sum_{j=1}^n c_j B(T_0, T_j))^+,$$

- $T_1 < T_2 < \ldots < T_n$: payment dates of the swap with $T_1 > T_0$
- $\delta_j := T_j T_{j-1}$: length of the accrual periods $[T_{j-1}, T_j]$ • κ : fixed interest rate of the swap
- coupons $c_i = \kappa \delta_i$ for i = 1, ..., n-1 and $c_n = 1 + \kappa \delta_n$

Pricing of swaption

Start from

$$\mathsf{PS}_t = B_t E[\frac{1}{B_{T_0}}(1 - \sum_{j=1}^n c_j B(T_0, T_j))^+ \mid \mathcal{F}_t] \qquad t \in [0, T_0]$$

with expectation under risk-neutral measure \mathbb{P}^\ast

• Change to forward measure \mathbb{P}_{T_0} eliminating instantaneous interest rate B_{T_0} under expectation

$$\mathsf{PS}_t = B(t, T_0) E^{\mathbb{P}_{T_0}}[(1 - \sum_{j=1}^n c_j B(T_0, T_j))^+ \mid \mathcal{F}_t] \quad t \in [0, T_0]$$

ヘロト ヘ部ト ヘヨト ヘヨト

Define:

Pricing of swaption

and price payer swaption

$$\mathsf{PS}_t = B(t, T_0) E^{\mathbb{P} au_0} [(1 - \sum_{j=1}^n c_j g(T_j, T_0, X_{T_0}))_+ \mid \mathcal{F}_t]$$

Define:

$$\begin{aligned} \mathbf{g}(s,t,x) &= \widetilde{D}_s^t e^{\widetilde{\Sigma}_s^t x} & \forall 0 \le s \le t \le T^* \\ \mathbf{D}_s^t &= \frac{B(0,t)}{B(0,s)} \exp\left(\int_0^s \left[\theta_u(\Sigma(u,s)) - \theta_u(\Sigma(u,t))\right] du\right) \\ \mathbf{E}_s^t &= \int_s^t \sigma_2(u) du \quad \text{and} \quad X_s = \int_0^s \sigma_1(u) dL_u \\ &\Rightarrow \mathbf{g}(s,t,X_s) = B(s,t) & \forall 0 \le s \le t \le T^* \end{aligned}$$

Pricing of swaption

and price payer swaption

$$\mathsf{PS}_t = B(t, T_0) E^{\mathbb{P}_{T_0}}[(1 - \sum_{j=1}^n c_j g(T_j, T_0, X_{T_0}))_+ \mid \mathcal{F}_t]$$

by volatility structure assumptions functions $x \mapsto g(T_0, T_j, x)$ are non-decreasing functions for $j = 1, \ldots, p_{p_j}$ and $p_j \in \mathbb{R}$

$$egin{aligned} \mathsf{PS}_t &= B(t, T_0) E^{\mathbb{P}_{T_0}} [(1 - \sum_{j=1}^n c_j g(T_j, T_0, X_{T_0}))_+ \mid \mathcal{F}_t] \ &= B(t, T_0) \sum_{j=1}^n c_j E^{\mathbb{P}_{T_0}} [(b_j - g(T_0, T_j, X_{T_0}))^+ \mid \mathcal{F}_t] \end{aligned}$$

Nele Vandaele --- Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

E

・ロ・ ・ 西・ ・ 前・ ・ 前・

$$egin{aligned} \mathsf{PS}_t &= B(t,\,T_0) E^{\mathbb{P}_{T_0}} [(1-\sum_{j=1}^n c_j g(T_j,\,T_0,X_{T_0}))_+ \mid \mathcal{F}_t] \ &= B(t,\,T_0) \sum_{j=1}^n c_j E^{\mathbb{P}_{T_0}} [(b_j-B(T_0,\,T_j))^+ \mid \mathcal{F}_t] \end{aligned}$$

weighted sum of put options with different strikes on bonds with different maturities

with b_j such that $\widetilde{D}_{T_0}^{T_j} e^{\widetilde{\Sigma}_{T_0}^{T_j} z^*} = g(T_0, T_j, z^*) = b_j$ and z^* is the solution to the equation $\sum_{i=1}^n c_i g(T_0, T_i, z^*) = 1$

・ロト ・ 一下・ ・ ヨト ・ ヨト

Pricing of swaption

 PS_t

$$B(t, T_0) \sum_{j=1}^{n} c_j \frac{e^{-RX_t}}{2\pi} \int_{\mathbb{R}} e^{iuX_t} \varphi_{X_{T_0}-X_t}^{\mathbb{P}_{T_0}} (u+iR) \hat{v}^j (-u-iR) du$$

with

$$\varphi_{X_{T_0}-X_t}^{\mathbb{P}_{T_0}}(z) = \exp \int_t^{T_0} [\theta_s(\Sigma(s,T_0)+iz\sigma_1(s))-\theta_s(\Sigma(s,T_0))]ds$$

and where

$$\hat{v}^{j}(-u-iR) = \frac{b_{j}e^{(-iu+R)z^{*}}\widetilde{\Sigma}_{T_{0}}^{T_{j}}}{(-iu+R)(-iu+\widetilde{\Sigma}_{T_{0}}^{T_{j}}+R)}$$

E

1 Introduction

2 Pricing of swaption

- 3 Hedging of swaption
 - Delta-hedging
 - Mean variance hedging strategy

4 Numerical results

< □ > < □ > < □ > < □ > < □ > < □ >

Integrability assumptions

Volatility structure assumptions

•
$$|\sigma_1| < \overline{\sigma}_1$$
 for a certain $\overline{\sigma}_1 \in \mathbb{R}$

$$|u| \cdot |\varphi_{X_{T_0}-X_t}^{\mathbb{P}_{T_0}}(u+iR)| \text{ is integrable}$$

・ロト ・四ト ・ヨト ・ヨト

Theorem

The optimal amount, denoted by Δ_t^j , to invest in the zero coupon bond with maturity T_j to delta-hedge a short position in the forward payer swaption is given by:

$$\Delta_t^j = \frac{B(t, T_0)}{B(t, T_j)\widetilde{\Sigma}_t^{T_j}} \sum_{k=1}^n c_k(\widetilde{\Sigma}_t^{T_0} H^k(t, X_t) + \frac{\partial}{\partial X_t} H^k(t, X_t)),$$

with for $\ell=0,1$

$$\frac{\partial^{\ell} H^{k}(t,X_{t})}{\partial X_{t}^{\ell}} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{(-R+iu)X_{t}} \varphi_{X_{T_{0}}-X_{t}}^{\mathbb{P}_{T_{0}}} (u+iR) \hat{v}^{k} (-u-iR) (-R+iu)^{\ell} du.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

 $B(t, T_0)$: bond used as cash account, depends also on X $B(t, T_j)$: bond in which to invest, with $T_j \neq T_0$

solving system of equations for Δ_t^j and Δ_t^0 to obtain discrete hedging strategy:

$$\frac{\partial V_t}{\partial X_t} = -\frac{\partial \mathsf{PS}_t}{\partial X_t} + \Delta_t^j \frac{\partial B(t, T_j)}{\partial X_t} + \Delta_t^0 \frac{\partial B(t, T_0)}{\partial X_t} = 0$$

$$(\Delta_t^j - \Delta_{t-1}^j) B(t, T_j) + (\Delta_t^0 - \Delta_{t-1}^0) B(t, T_0) = 0$$

Nele Vandaele --- Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

 $B(t, T_0)$: bond used as cash account, depends also on X $B(t, T_j)$: bond in which to invest, with $T_j \neq T_0$ solving system of equations for Δ_t^j and Δ_t^0 to obtain discrete hedging strategy:

$$\begin{cases} \frac{\partial V_t}{\partial X_t} = -\frac{\partial \mathsf{PS}_t}{\partial X_t} + \Delta_t^j \frac{\partial B(t, T_j)}{\partial X_t} + \Delta_t^0 \frac{\partial B(t, T_0)}{\partial X_t} = 0\\ (\Delta_t^j - \Delta_{t-1}^j) B(t, T_j) + (\Delta_t^0 - \Delta_{t-1}^0) B(t, T_0) = 0 \end{cases}$$

・ロト ・ 一下・ ・ ヨト ・ ヨト

- Quadratic hedge in terms of discounted assets \widetilde{S}
- MVH strategy is self-financing
 ⇒ optimal amount of discounted assets is sensible amount to invest in non-discounted assets
- Minimizing the mean squared hedging error defined as

 $E[(H-(v+(\xi\cdot\widetilde{S})_T))^2]$

・ロト ・ 一下・ ・ ヨト ・ ヨト

- Unrealistic to hedge with risk-free interest rate product ⇒ choose bond $B(\cdot, T_0)$ as numéraire
- MVH strategy for payer swaption under forward measure P_{T₀} using numéraire B(·, T₀)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Unrealistic to hedge with risk-free interest rate product \implies choose bond $B(\cdot, T_0)$ as numéraire
- MVH strategy for payer swaption under forward measure \mathbb{P}_{T_0} using numéraire $B(\cdot, T_0)$

ヘロト ヘ部ト ヘヨト ヘヨト

MVH strategy

Self-financing strategy minimizing

$$E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0} - \widetilde{V}_{\tau_0})^2] = E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0} - (\widetilde{V}_0 + \int_0^{\tau_0} \xi_u^j d\widetilde{B}(u, T_j)))^2]$$

with $PS_{T_0} = \frac{PS_{T_0}}{B(T_0, T_0)}$: (discounted) price of PS at time T_0 $\widetilde{V} = \frac{V}{B(\cdot, T_0)}$: (discounted) portfolio value process

■ Value of self-financing portfolio V:

$$egin{aligned} &V_t = &\xi_t^0 B(t, T_0) + \xi_t^j B(t, T_j) \ &= &V_0 + (\xi^0 \cdot B(\cdot, T_0))_t + (\xi^j \cdot B(\cdot, T_j))_t \end{aligned}$$

MVH strategy

Self-financing strategy minimizing

$$E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0} - \widetilde{V}_{\tau_0})^2] = E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0} - (\widetilde{V}_0 + \int_0^{\tau_0} \xi_u^j d\widetilde{B}(u, T_j)))^2]$$

with $PS_{T_0} = \frac{PS_{T_0}}{B(T_0, T_0)}$: (discounted) price of PS at time T_0 $\widetilde{V} = \frac{V}{B(\cdot, T_0)}$: (discounted) portfolio value process

■ Value of self-financing portfolio V:

$$egin{aligned} V_t =& \xi_t^0 B(t, T_0) + \xi_t^j B(t, T_j) \ =& V_0 + (\xi^0 \cdot B(\cdot, T_0))_t + (\xi^j \cdot B(\cdot, T_j))_t \end{aligned}$$

Determination

- Hubalek, Kallsen and Krawczyk (2006). Variance-optimal hedging for processes with stationary independent increments. Annals of Applied Probability, 16:853-885
 adapted to present setting
- GKW decomposition of special type of claims:

$$H(z) = \widetilde{B}(T_0, T_j)^z$$
 for a $z \in \mathbb{C}$

• Express $\mathsf{PS}_{\mathcal{T}_0}$ as $f(\widetilde{B}(\mathcal{T}_0, \mathcal{T}_j))$ with $f: (0, \infty) \to \mathbb{R}$ and

$$f(s) = \int s^z \Pi(dz)$$

for some finite complex measure Π on a strip $\{z \in \mathbb{C} : R' \leq \operatorname{Re}(z) \leq R\}$

•
$$(H_t(z))_{t\in[0,T_0]} := E^{\mathbb{P}_{T_0}}[\widetilde{B}(T_0,T_j)^z|\mathcal{F}_t]$$

■ Optimal number of risky assets related to claim H_{T₀}(z) for every t ∈ [0, T₀]:

$$\xi_t^j(z) = \frac{d\langle H(z), \widetilde{B}(\cdot, T_j) \rangle_t^{\mathbb{P}_{\tau_0}}}{d\langle \widetilde{B}(\cdot, T_j), \widetilde{B}(\cdot, T_j) \rangle_t^{\mathbb{P}_{\tau_0}}} \implies \xi_t^j = \int \xi_t^j(z) \Pi(dz)$$

・ロト ・四ト ・モト・ モー

Determination

Lemma

$$\mathsf{PS}_{T_0} = \sum_{k=1}^n c_k \frac{1}{2\pi} \int_{\mathbb{R}} e^{(iu-R)X_{T_0}} \hat{v}^k (-u-iR) du$$

can be expressed as

$$\mathsf{PS}_{\mathcal{T}_0} = \int_{\mathbb{R}} \widetilde{B}(\mathcal{T}_0, \mathcal{T}_j)^{\frac{u-\kappa}{\widetilde{\Sigma}_{\mathcal{T}_0}^T}} \Pi(du),$$

with

$$\Pi(du) = \sum_{k=1}^{n} \frac{c_k}{2\pi} (f_{T_0}^j)^{\frac{iu-R}{\Sigma_{T_0}}} \hat{v}^k (-u - iR) du,$$

$$f_{T_0}^j = \frac{B(0, T_0)}{B(0, T_j)} \exp(\int_0^{T_0} [\theta_s(\Sigma(s, T_j)) - \theta_s(\Sigma(s, T_0))] ds).$$

Determination

Theorem

If additionally $3M' \leq M$ and if R is chosen in $]0, \frac{M}{2\overline{\sigma_1}}] \Rightarrow$ GKW-decomposition of the PS exists. Optimal number ξ_t^j to invest in $B(\cdot, T_j)$ is according to the MVH strategy given by

$$\int_{\mathbb{R}} e^{\int_{t}^{T_{0}} \kappa_{s}^{\tilde{\chi}^{j}} (\frac{iu-R}{\tilde{\Sigma}_{T_{0}}^{T_{j}}}) ds} \widetilde{B}(t-, T_{j})^{\frac{iu-R}{\tilde{\Sigma}_{T_{0}}^{T_{j}}} - 1 \kappa_{t}^{\tilde{\chi}^{j}} (\frac{iu-R}{\tilde{\Sigma}_{T_{0}}^{T_{j}}} + 1) - \kappa_{t}^{\tilde{\chi}^{j}} (\frac{iu-R}{\tilde{\Sigma}_{T_{0}}^{T_{j}}})}{\kappa_{t}^{\tilde{\chi}^{j}}(2)} \Pi(du),$$

with $\Pi(du)$ as in previous lemma and with for $w^c = 1 - w$

 $\kappa_s^{\tilde{\chi}^j}(w) = \theta_s(w\Sigma(s,T_j) + w^c\Sigma(s,T_0)) - w\theta_s(\Sigma(s,T_j)) - w^c\theta_s(\Sigma(s,T_0)),$

1 Introduction

- 2 Pricing of swaption
- 3 Hedging of swaption
- 4 Numerical results

・ロト ・ 日 ト ・ モ ト ・ モ ト

Numerical results

- Receiver swaption
- Normal Inverse Gaussian
- Vasiček volatility structure

$$\sigma(s,T) = \hat{\sigma}e^{-a(T-s)}$$

- Maturity in 10 years
- Tenor=10 years
- Two payments/year

・ロト ・ 日 ト ・ モ ト ・ モ ト

	$B(\cdot, T_1)$	$B(\cdot, T_{10})$	$B(\cdot, T_{20})$
Delta	9.51 (0.77)	3.02 (0.24)	-2.30 (0.22)
Delta-gamma	87.93 (5.78)	35.19 (2.63)	30.01 (2.64)
MVH	4.36 (0.40)	3.88 (0.39)	3.28 (0.38)

Nele Vandaele --- Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

E

・ロト ・回ト ・ヨト ・ヨト

$$\begin{array}{c|c} a = 0.02 & a = 0.06 \\ \hline \delta = 0.1 & 30.01 \ (2.64) & 20.92 \ (1.80) \\ \delta = 0.06 & 17.68 \ (1.53) & 12.32 \ (1.07) \end{array}$$

Characteristic function of the NIG model

$$\phi(z) = \exp(-\delta(\sqrt{\alpha^2 - (\beta + iz)^2} - \sqrt{\alpha^2 - \beta^2})),$$

Vasiček volatility model

$$\sigma(s,T)=e^{-a(T-s)}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

	$B(\cdot, T_1)$	$B(\cdot, T_{10})$	$B(\cdot, T_{20})$
Delta	9.51 (0.77)	3.02 (0.24)	-2.30 (0.22)
Delta-gamma	87.93 (5.78)	35.19 (2.63)	30.01 (2.64)
MVH	4.36 (0.40)	3.88 (0.39)	3.28 (0.38)

Full risk: 3.29 (0.41)

Nele Vandaele --- Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

3

・ロト ・ 日 ト ・ モ ト ・ モ ト

	$B(\cdot, T_1)$	$B(\cdot, T_{10})$	$B(\cdot, T_{20})$
Delta	9.51 (0.77)	3.02 (0.24)	-2.30 (0.22)
Delta-gamma	87.93 (5.78)	35.19 (2.63)	30.01 (2.64)
MVH	4.36 (0.40)	3.88 (0.39)	3.28 (0.38)

Full risk: 3.29 (0.41)

Nele Vandaele --- Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

3

・ロト ・四ト ・ヨト ・ヨト

▲ロト ▲御 と ▲注 と ▲注 と

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

E

3

・ロト ・回ト ・ヨト ・ヨト

E

▲ロト ▲圖ト ▲注ト ▲注ト

Thank you for your attention

This study was supported by a grant of Research Foundation-Flanders

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Э

・ロト ・回 ト ・注 ト ・注 ト