

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Kathrin Glau, Nele Vandaele, Michèle Vanmaele

Bachelier Finance Society World Congress 2010 June 22-26, 2010

Nele Vandaele — [Hedging of swaptions in a L´evy driven Heath-Jarrow-Morton framework](#page-52-0) 1/42

- A compact representation for the pricing formula by using the Jamshidian decomposition
- Hedging strategies with default-free zero coupon bonds (delta-hedging \leftrightarrow quadratic hedging)
- Numerical implementation and results

イロト イ押 トイヨト イヨト

1 [Introduction](#page-3-0)

- 2 [Pricing of swaption](#page-20-0)
- 3 [Hedging of swaption](#page-29-0)
- 4 [Numerical results](#page-43-0)

э

イロメ イ部メ イモメ イモメ

1 [Introduction](#page-3-0)

- [Model](#page-4-0)
- [Swaption](#page-14-0)
- [Tools for option pricing and hedging](#page-17-0)

2 [Pricing of swaption](#page-20-0)

3 [Hedging of swaption](#page-29-0)

[Numerical results](#page-43-0)

イロト イ部 トイモト イモト

$B(t, T)$

$$
\blacksquare \, B(\mathcal{T},\mathcal{T})=1
$$

No coupons, No default \blacksquare

$$
\blacksquare \ B(t, T) < 1 \text{ for every } t < T
$$

•
$$
f(t, u)
$$
 instantaneous forward rate:

$$
B(t, T) = \exp(-\int_t^T f(t, u) du)
$$

Þ

イロメ イ団メ イモメ イモメー

Dynamics of forward interest rate

$$
df(t, T) = \alpha(t, T)dt + \sigma'(t, T)dW_t
$$

with W standard d-dimensional Brownian motion under $\mathbb P$ α and σ adapted stochastic processes in $\mathbb R$, resp $\mathbb R^d$ $'$ denotes transpose

イロト イ押 トイヨト イヨト

Dynamics of zero coupon bonds

$$
dB(t, T) = B(t, T)(a(t, T)dt - \sigma^{*}(t, T)dW_t)
$$

with

$$
a(t, T) = f(t, t) - \alpha^*(t, T) + \frac{1}{2} |\sigma^*(t, T)|^2
$$

$$
\alpha^*(t, T) = \int_t^T \alpha(t, u) du
$$

$$
\sigma^*(t, T) = \int_t^T \sigma(t, u) du.
$$

イロト イ部 トイモト イモト

Lévy driven HJM model

Dynamics of forward interest rate

$$
df(t, T) = \alpha(t, T)dt - \sigma(t, T)dL_t
$$

with L : one-dimensional time-inhomogeneous Lévy process The law of L_t is characterized by the characteristic function

$$
E[e^{izL_t}] = e^{\int_0^t \theta_s(iz)ds}, \quad \forall t \in [0, T^*]
$$

with θ_{s} cumulant associated with L by the Lévy-Khintchine triplet (b_{s}, c_{s}, F_{s}) :

$$
\theta_s(z) := b_s z + \frac{1}{2}c_s z^2 + \int_{\mathbb{R}} (e^{xz} - 1 - xz) F_s(dx)
$$

with b_t , $c_t \in \mathbb{R}$, $c_t \geq 0$, F_t Lévy measure Ω

Dynamics of forward interest rate

$$
df(t, T) = \alpha(t, T)dt - \sigma(t, T)dL_t
$$

with L : one-dimensional time-inhomogeneous Lévy process The law of L_t is characterized by the characteristic function

$$
E[e^{izL_t}] = e^{\int_0^t \theta_s(iz)ds}, \quad \forall t \in [0, T^*]
$$

with θ_s cumulant associated with L by the Lévy-Khintchine triplet (b_s, c_s, F_s) :

$$
\theta_s(z):=b_s z+\frac{1}{2}c_s z^2+\int_{\mathbb{R}}(e^{xz}-1-xz)\mathcal{F}_s(dx)
$$

with b_t , $c_t \in \mathbb{R}$, $c_t \geq 0$, \bar{F}_t Lévy measure

Integrability assumptions:

$$
\int_0^{T^*} \left(|b_s| + |c_s| + \int_{\mathbb{R}} (x^2 \wedge 1) \mathcal{F}_s(dx) \right) ds < \infty
$$

There are constants $M, \epsilon > 0$ **such that for every** $u \in [-(1+\epsilon)M,(1+\epsilon)M]$:

$$
\int_0^{T^*}\int_{\{|x|>1\}} \exp(ux)F_s(dx)ds < \infty
$$

 \Rightarrow L is an exponential special semimartingale

イロメ イ団メ イモメ イモメー

Savings account and default-free zero coupon bond prices:

$$
B_t = B(0, t) \exp\left(\int_0^t A(s, t) ds - \int_0^t \Sigma(s, t) dL_s\right)
$$

$$
B(t, T) = B(0, T)B_t \exp\left(-\int_0^t A(s, T) ds + \int_0^t \Sigma(s, T) dL_s\right)
$$

with for $s \wedge T = \min(s, T)$ and $s \in [0, T^*]$

$$
A(s, T) = \int_{s \wedge T}^{T} \alpha(s, u) du \text{ and } \Sigma(s, T) = \int_{s \wedge T}^{T} \sigma(s, u) du,
$$

 $\mathcal{A} \subseteq \mathcal{A} \text{ and } \mathcal{A} \subseteq \mathcal{A} \text{ and } \mathcal{A} \subseteq \mathcal{A} \text{ and } \mathcal{A} \subseteq \mathcal{A}$

Unique martingale measure=spot measure

 $A(s, T) = \theta_s(\Sigma(s, T))$

with θ the cumulant associated with L by (b_s, c_s, F_s)

$$
\theta_s(z)=b_s z+\frac{1}{2}c_s z^2+\int_{\mathbb{R}}(e^{xz}-1-xz)\mathcal{F}_s(dx)
$$

 \Rightarrow Discounted zero-coupon bonds are martingales

イロト イ押 トイヨト イヨト

Forward MM

$$
\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}} = \frac{1}{B_{T}B(0, T)} = \exp(-\int_{0}^{T} \theta_{s}(\Sigma(s, T)ds + \int_{0}^{T} \Sigma(s, T) dL_{s})
$$
\n
$$
\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}}\bigg|_{\mathcal{F}_{t}} = \frac{B(t, T)}{B_{t}B(0, T)} = \exp(-\int_{0}^{t} \theta_{s}(\Sigma(s, T))ds + \int_{0}^{t} \Sigma(s, T) dL_{s})
$$

L: time-inhomogeneous Lévy process under \mathbb{P}_T and special with characteristics $(b_s^{\mathbb{P} \tau}, c_s^{\mathbb{P} \tau}, \mathcal{F}_s^{\mathbb{P} \tau})$:

$$
b_s^{\mathbb{P} \tau} = b_s + c_s \Sigma(s, \mathcal{T}) + \int_{\mathbb{R}} x (e^{\Sigma(s, \mathcal{T})x} - 1) F_s(dx)
$$

$$
c_s^{\mathbb{P} \tau} = c_s
$$

$$
F_s^{\mathbb{P} \tau}(dx) = e^{\Sigma(s, \mathcal{T})x} F_s(dx)
$$

イロン イ押ン イヨン イヨン

Forward MM

$$
\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}} = \frac{1}{B_{T}B(0, T)} = \exp(-\int_{0}^{T} \theta_{s}(\Sigma(s, T)ds + \int_{0}^{T} \Sigma(s, T) dL_{s})
$$
\n
$$
\frac{d\mathbb{P}_{T}}{d\mathbb{P}^{*}}\bigg|_{\mathcal{F}_{t}} = \frac{B(t, T)}{B_{t}B(0, T)} = \exp(-\int_{0}^{t} \theta_{s}(\Sigma(s, T))ds + \int_{0}^{t} \Sigma(s, T) dL_{s})
$$

L: time-inhomogeneous Lévy process under \mathbb{P}_T and special with characteristics $(b_s^{\mathbb{P} \tau}, c_s^{\mathbb{P} \tau}, F_s^{\mathbb{P} \tau})$:

$$
\begin{aligned} b_s^{\mathbb{P}\tau} &= b_s + c_s \Sigma(s,\,T) + \int_{\mathbb{R}} x (e^{\Sigma(s,\,T)x} - 1) \mathcal{F}_s(dx) \\ c_s^{\mathbb{P}\tau} &= c_s \\ \mathcal{F}_s^{\mathbb{P}\tau}(d x) &= e^{\Sigma(s,\,T)x} \mathcal{F}_s(d x) \end{aligned}
$$

イロン イ押ン イヨン イヨン

Swaption: option granting its owner the right but not the obligation to enter into an underlying interest rate swap.

■ Interest rate swap: contract to exchange different interest rate payments, typically a fixed rate payment is exchanged with a floating one.

イロメ イ団メ イモメ イモメー

Swaption: option granting its owner the right but not the obligation to enter into an underlying interest rate swap.

- Interest rate swap: contract to exchange different interest rate payments, typically a fixed rate payment is exchanged with a floating one.
- A: Payer swaption
- **B:** Receiver swaption

イロメ イ団メ イモメ イモメー

Swaption: option granting its owner the right but not the obligation to enter into an underlying interest rate swap.

- Interest rate swap: contract to exchange different interest rate payments, typically a fixed rate payment is exchanged with a floating one.
- A: Payer swaption
- B: Receiver swaption

Jamshidian

- Closed-form expression for European option price on coupon-bearing bond
- $P(r, t, s)$: Price at time t of a pure discount bond maturing at time s , given that $r(t)=r$ and $R_{r,t,s}$ is a normal random variable

$$
\left(\sum a_j P(R_{r,t,T}, T, s_j) - K\right)^+ = \sum a_j \left(P(R_{r,t,T}, T, s_j) - K_j\right)^+
$$

with $K_j = P(r^*, T, s_j)$ and r^* is solution to equation $\sum a_j P(r^*,T,s_j) = K$

Holds for any short rate model as long as zero coupon bond prices are all decreasing (comonotone) functions of interest rate (0×0) and (0×0) and (0×0)

Jamshidian

- Closed-form expression for European option price on coupon-bearing bond
- $P(r, t, s)$: Price at time t of a pure discount bond maturing at time s , given that $r(t)=r$ and $R_{r,t,s}$ is a normal random variable

$$
\left(\sum a_j P(R_{r,t,T}, T, s_j) - K\right)^+ = \sum a_j \left(P(R_{r,t,T}, T, s_j) - K_j\right)^+
$$

with $K_j = P(r^*, T, s_j)$ and r^* is solution to equation $\sum a_j P(r^*,T,s_j) = K$

■ Holds for any short rate model as long as zero coupon bond prices are all decreasing (comonotone) functions of interest rate

Fourier transformation

Theorem Eberlein, Glau, Papapantoleon (2009) If the following conditions are satisfied: (C1) The dampened function $g = e^{-Rx} f(x)$ is a bounded, continuous function in $L^1(\mathbb{R})$. (C2) The moment generating function $M_{X_T}(R)$ of rv X_T exists. (C3) The (extended) Fourier transform \hat{g} belongs to $L^1(\mathbb{R})$, $\Rightarrow E[f(X_T - s)] = \frac{e^{-Rs}}{2\pi}$ 2π Z R $e^{ius}\varphi_{X_T}(-u - iR)\hat{f}(u + iR)du,$ with $\varphi_{X_\mathcal{T}}$ characteristic function of the random variable $X_\mathcal{T}.$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

1 [Introduction](#page-3-0)

- 2 [Pricing of swaption](#page-20-0)
- 3 [Hedging of swaption](#page-29-0)
- 4 [Numerical results](#page-43-0)

イロト イ部 トイモト イモト

Pricing of swaption

Assumptions on volatility structure

 \blacksquare Volatility structure σ : bounded and deterministic. For $0 \leq s$ and $T \leq T^*$:

$$
0\leq \Sigma(s,T)=\int_{s\wedge T}^T\sigma(s,u)du\leq M'
$$

For all $T \in [0, T^*]$ we assume that $\sigma(\cdot, T) \not\equiv 0$ and

 $\sigma(s,T) = \sigma_1(s)\sigma_2(T)$ $0 \leq s \leq T$,

where $\sigma_1:[0,\overline{T}^*]\to\mathbb{R}^+$ and $\sigma_2:[0,\overline{T}^*]\to\mathbb{R}^+$ are continuously differentiable.

 \blacksquare inf_{s∈[0,T*]} $\sigma_1(s) \geq \sigma_1 > 0$

- Payer swaption can be seen as a put option with strike price 1 on a coupon-bearing bond.
- **Payer swaption's payoff at** T_0 **:**

$$
(1-\sum_{j=1}^n c_j B(T_0, T_j))^+,
$$

- $T_1 < T_2 < \ldots < T_n$: payment dates of the swap with $T_1 > T_0$
- $\delta_j := \mathcal{T}_j \mathcal{T}_{j-1}$: length of the accrual periods $[\mathcal{T}_{j-1}, \mathcal{T}_j]$ \blacksquare κ : fixed interest rate of the swap
- coupons $c_i = \kappa \delta_i$ for $i = 1, \ldots, n 1$ and $c_n = 1 + \kappa \delta_n$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Pricing of swaption

■ Start from

$$
\mathsf{PS}_t = B_t E[\frac{1}{B_{\mathcal{T}_0}}(1-\sum_{j=1}^n c_j B(\mathcal{T}_0, \mathcal{T}_j))^+ | \mathcal{F}_t] \qquad t \in [0, \mathcal{T}_0]
$$

with expectation under risk-neutral measure \mathbb{P}^*

Change to forward measure $\mathbb{P}_{\mathcal{T}_0}$ eliminating instantaneous interest rate B_{T_0} under expectation

$$
\mathsf{PS}_t = B(t, \, T_0) E^{\mathbb{P}\tau_0} [(1 - \sum_{j=1}^n c_j B(\,T_0, \,T_j))^+ \mid \mathcal{F}_t] \quad t \in [0, \, T_0]
$$

イロメ イ団メ イモメ イモメー

Define:

■
$$
g(s, t, x) = \widetilde{D}_s^t e^{\widetilde{\Sigma}_s^t x}
$$
 $\forall 0 \le s \le t \le T^*$
\n■ $\widetilde{D}_s^t = \frac{B(0, t)}{B(0, s)} \exp \left(\int_0^s [\theta_u(\Sigma(u, s)) - \theta_u(\Sigma(u, t))] du \right)$
\n■ $\widetilde{\Sigma}_s^t = \int_s^t \sigma_2(u) du$ and $X_s = \int_0^s \sigma_1(u) dL_u$
\n⇒ $g(s, t, X_s) = B(s, t)$ $\forall 0 \le s \le t \le T^*$

Pricing of swaption

and price payer swaption

$$
\mathsf{PS}_t = B(t,\, \mathcal{T}_0) E^{\mathbb{P}_{\mathcal{T}_0}}[(1-\sum_{j=1}^n c_j g(\, \mathcal{T}_j,\, \mathcal{T}_0, X_{\mathcal{T}_0}))_+\mid \mathcal{F}_t]
$$

by volatility structure assumptions functions $x\mapsto g(\,T_0,\,T_j,x)$ are [n](#page-25-0)on-decreasing functions for $j = 1, \ldots, B$, $\{B\}$ QQ

Define:

■
$$
g(s, t, x) = \widetilde{D}_s^t e^{\widetilde{\Sigma}_s^t x}
$$
 $\forall 0 \le s \le t \le T^*$
\n■ $\widetilde{D}_s^t = \frac{B(0, t)}{B(0, s)} \exp \left(\int_0^s [\theta_u(\Sigma(u, s)) - \theta_u(\Sigma(u, t))] du \right)$
\n■ $\widetilde{\Sigma}_s^t = \int_s^t \sigma_2(u) du$ and $X_s = \int_0^s \sigma_1(u) dL_u$
\n⇒ $g(s, t, X_s) = B(s, t)$ $\forall 0 \le s \le t \le T^*$

Pricing of swaption

and price payer swaption

$$
\mathsf{PS}_t = B(t, \mathcal{T}_0) E^{\mathbb{P}_{\mathcal{T}_0}}[(1 - \sum_{j=1}^n c_j g(\mathcal{T}_j, \mathcal{T}_0, X_{\mathcal{T}_0}))_+ \mid \mathcal{F}_t]
$$

by volatility structure assumptions functions $x\mapsto g(\,T_0,\,T_j,x)$ are [n](#page-26-0)on-decreasing functions for $j = 1, \ldots, p$, and $\sum_{i=1}^n$ QQ

$$
\begin{aligned} {\sf PS}_t&=B(t,\,T_0) {\cal E}^{{\mathbb{P}}_{\tau_0}}[(1-\sum_{j=1}^n c_j g(\,T_j,\,T_0,X_{T_0}))_+ \mid {\cal F}_t] \\ &=B(t,\,T_0)\sum_{j=1}^n c_j {\cal E}^{{\mathbb{P}}_{\tau_0}}[(b_j-g(\,T_0,\,T_j,X_{T_0}))^+ \vert {\cal F}_t] \end{aligned}
$$

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 21/42

イロト イ部 トイをトイをト

$$
\begin{aligned} {\sf PS}_t & = B(t,\,T_0) E^{\mathbb{P}\tau_0}[(1-\sum_{j=1}^n c_j g(\,T_j,\,T_0,X_{T_0}))_+ \mid \mathcal{F}_t] \\ & = B(t,\,T_0) {\sum_{j=1}^n c_j} E^{\mathbb{P}\tau_0}[(\,b_j - B(\,T_0,\,T_j))^+ | \mathcal{F}_t] \end{aligned}
$$

Pricing of swaption

weighted sum of put options with different strikes on bonds with different maturities with b_i such that Tj T_j $e^{\widetilde{\Sigma}^{T_j}_{T_0}}$ $T_0^{\frac{1}{J_0}z^*}=g(\,T_0,\,T_j,z^*)=b_j\qquad \, \, \text{ and }\qquad \,$ z ∗ is the solution to the equation $\sum_{j=1}^n c_j g(T_0, T_j, z^*) = 1$

イロト イ押 トイヨト イヨト

Pricing of swaption

 PS_t

$$
B(t, T_0)\sum_{j=1}^n c_j \frac{e^{-RX_t}}{2\pi} \int_{\mathbb{R}} e^{iuX_t} \varphi_{X_{T_0}-X_t}^{\mathbb{P}_{T_0}}(u+iR)\hat{v}^j(-u-iR)du
$$

with

$$
\varphi_{X_{T_0}-X_t}^{\mathbb{P}_{T_0}}(z) = \exp \int_t^{T_0} [\theta_s(\Sigma(s, T_0) + iz\sigma_1(s)) - \theta_s(\Sigma(s, T_0))]ds
$$

and where

$$
\hat{v}^j(-u-iR) = \frac{b_j e^{(-iu+R)z^*} \widetilde{\Sigma}^T_{T_0}}{(-iu+R)(-iu+ \widetilde{\Sigma}^T_{T_0} + R)}
$$

[Introduction](#page-3-0)

[Pricing of swaption](#page-20-0)

3 [Hedging of swaption](#page-29-0) [Delta-hedging](#page-30-0) **[Mean variance hedging strategy](#page-34-0)**

4 [Numerical results](#page-43-0)

イロン イ母ン イヨン イヨン

Integrability assumptions ■ Volatility structure assumptions $|\sigma_1| < \overline{\sigma}_1$ for a certain $\overline{\sigma}_1 \in \mathbb{R}$ $|u| \cdot |\varphi_{X_{\tau}}^{\mathbb{P}_{\mathcal{T}_0}}$ $\mathbb{E}_{X_{\mathcal{T}_0}-X_t}^{\mathbb{P}^{t_0}}(u+iR)$ | is integrable

イロト イ団 トイ ミト イモト

Delta-hedging of PS

Theorem

The optimal amount, denoted by Δ_t^j , to invest in the zero coupon bond with maturity T_i to delta-hedge a short position in the forward payer swaption is given by:

$$
\Delta_t^j = \frac{B(t, T_0)}{B(t, T_j)\widetilde{\Sigma}_t^{T_j}} \sum_{k=1}^n c_k (\widetilde{\Sigma}_t^{T_0} H^k(t, X_t) + \frac{\partial}{\partial X_t} H^k(t, X_t)),
$$

with for $\ell = 0, 1$

$$
\frac{\partial^{\ell} H^{k}(t, X_{t})}{\partial X_{t}^{\ell}} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{(-R+iu)X_{t}} \varphi_{X_{T_{0}}-X_{t}}^{\mathbb{P}_{T_{0}}}(u+iR)\hat{v}^{k}(-u-iR)(-R+iu)^{\ell}du.
$$

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A}$

 $B(t, T_0)$: bond used as cash account, depends also on X $B(t, T_i)$: bond in which to invest, with $T_i \neq T₀$

solving system of equations for Δ_t^j and Δ_t^0 to obtain discrete hedging strategy:

$$
\begin{cases}\n\frac{\partial V_t}{\partial X_t} = -\frac{\partial PS_t}{\partial X_t} + \Delta_t^j \frac{\partial B(t, T_j)}{\partial X_t} + \Delta_t^0 \frac{\partial B(t, T_0)}{\partial X_t} = 0 \\
(\Delta_t^j - \Delta_{t-1}^j) B(t, T_j) + (\Delta_t^0 - \Delta_{t-1}^0) B(t, T_0) = 0\n\end{cases}
$$

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$

 $B(t, T_0)$: bond used as cash account, depends also on X $B(t, T_i)$: bond in which to invest, with $T_i \neq T₀$ solving system of equations for Δ_t^j and Δ_t^0 to obtain discrete hedging strategy:

$$
\begin{cases}\n\frac{\partial V_t}{\partial X_t} = -\frac{\partial PS_t}{\partial X_t} + \Delta_t^j \frac{\partial B(t, T_j)}{\partial X_t} + \Delta_t^0 \frac{\partial B(t, T_0)}{\partial X_t} = 0 \\
(\Delta_t^j - \Delta_{t-1}^j) B(t, T_j) + (\Delta_t^0 - \Delta_{t-1}^0) B(t, T_0) = 0\n\end{cases}
$$

イロメ イ部メ イモメ イモメー

Quadratic hedge in terms of discounted assets \overline{S} **MVH** strategy is self-financing \implies optimal amount of discounted assets is sensible amount to invest in non-discounted assets

Minimizing the mean squared hedging error defined as

 $E[(H - (v + (\xi \cdot \tilde{S})_{T}))^{2}]$

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \begin{array}{ccc} \square & \rightarrow & \end{array} \right\} \end{array} \right. \end{array} \right.$

■ Unrealistic to hedge with risk-free interest rate product \implies choose bond $B(\cdot, T_0)$ as numéraire

MVH strategy for payer swaption under forward measure $\mathbb{P}_{\mathcal{T}_0}$ using numéraire $B(\cdot,T_0)$

イロメ イ部メ イモメ イモメー

- Unrealistic to hedge with risk-free interest rate product \implies choose bond $B(\cdot, T_0)$ as numéraire
- **MVH** strategy for payer swaption under forward measure $\mathbb{P}_{\mathcal{T}_0}$ using numéraire $B(\cdot,T_0)$

イロメ イ団メ イモメ イモメー

MVH strategy

Self-financing strategy minimizing

$$
E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0}-\widetilde{V}_{\tau_0})^2]=E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0}-\widetilde{V}_0+\int_0^{\tau_0}\xi^j_u d\widetilde{B}(u,\tau_j)))^2]
$$

with $\mathsf{PS}_{\mathcal{T}_0} =$ $\mathsf{PS}_{\mathcal{T}_0}$ $B(T_0, T_0)$: (discounted) price of PS at time $\, T_{0} \,$ $V =$ V $B(\cdot,\,T_0)$: (discounted) portfolio value process

 \blacksquare Value of self-financing portfolio V:

$$
V_t = \xi_t^0 B(t, T_0) + \xi_t^j B(t, T_j)
$$

= $V_0 + (\xi^0 \cdot B(\cdot, T_0))_t + (\xi^j \cdot B(\cdot, T_j))_t$

イロト イ部 トイモト イモトー

MVH strategy

Self-financing strategy minimizing

$$
E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0}-\widetilde{V}_{\tau_0})^2]=E^{\mathbb{P}_{\tau_0}}[(\mathsf{PS}_{\tau_0}-\widetilde{V}_0+\int_0^{\tau_0}\xi^j_u d\widetilde{B}(u,\tau_j)))^2]
$$

with $\mathsf{PS}_{\mathcal{T}_0} =$ $\mathsf{PS}_{\mathcal{T}_0}$ $B(T_0, T_0)$: (discounted) price of PS at time $\, T_{0} \,$ $V =$ V $B(\cdot,\,T_0)$: (discounted) portfolio value process

 \blacksquare Value of self-financing portfolio V:

$$
V_t = \xi_t^0 B(t, T_0) + \xi_t^j B(t, T_j)
$$

= $V_0 + (\xi^0 \cdot B(\cdot, T_0))_t + (\xi^j \cdot B(\cdot, T_j))_t$

イロト イ部 トイをトイをトーを

Determination

- 譶 Hubalek, Kallsen and Krawczyk (2006). Variance-optimal hedging for processes with stationary independent increments. Annals of Applied Probability, 16:853-885 adapted to present setting
- GKW decomposition of special type of claims:

$$
H(z) = \widetilde{B}(T_0, T_j)^z \quad \text{for a } z \in \mathbb{C}
$$

Express $\mathsf{PS}_{\mathcal{T}_0}$ as $f(\widetilde{B}(\mathcal{T}_0,\mathcal{T}_j))$ with $f:(0,\infty)\to\mathbb{R}$ and

$$
f(s)=\int s^z\Pi(dz)
$$

for some finite complex measure Π on a strip ${z \in \mathbb{C} : R' \leq Re(z) \leq R}$

\n- \n
$$
(H_t(z))_{t \in [0, T_0]} := E^{\mathbb{P}_{T_0}}[\widetilde{B}(T_0, T_j)^z | \mathcal{F}_t]
$$
\n
\n- \n Optimal number of risky assets related to claim\n $H_{T_0}(z)$ \n for every\n $t \in [0, T_0]$:\n
\n

$$
\xi_t^j(z) = \frac{d\langle H(z), \widetilde{B}(\cdot, T_j)\rangle_t^{\mathbb{P}\tau_0}}{d\langle \widetilde{B}(\cdot, T_j), \widetilde{B}(\cdot, T_j)\rangle_t^{\mathbb{P}\tau_0}} \implies \xi_t^j = \int \xi_t^j(z) \Pi(dz)
$$

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 31/42

Þ

イロト イ部 トイモト イモト

Determination

Lemma

$$
\mathsf{PS}_{T_0} = \sum_{k=1}^n c_k \frac{1}{2\pi} \int_{\mathbb{R}} e^{(iu-R)X_{T_0}} \hat{v}^k(-u - iR) du
$$

can be expressed as

$$
\mathsf{PS}_{T_0} = \int_{\mathbb{R}} \widetilde{B}(T_0, T_j)^{\frac{\widetilde{b}-R}{\widetilde{\Sigma}_{T_0}^T}} \Pi(du),
$$

with

$$
\Pi(du) = \sum_{k=1}^{n} \frac{c_k}{2\pi} (f_{T_0}^j)^{\frac{i u - R}{\tilde{\Sigma}_{T_0}^j}} \hat{v}^k(-u - iR) du,
$$

$$
f_{T_0}^j = \frac{B(0, T_0)}{B(0, T_j)} \exp(\int_0^{T_0} [\theta_s(\Sigma(s, T_j)) - \theta_s(\Sigma(s, T_0))] ds).
$$

Determination

Theorem

If additionally 3 $M' \leq M$ and if R is chosen in $]0, \frac{M}{2\pi}$ $\frac{M}{2\overline{\sigma}_1}$ \Rightarrow GKW-decomposition of the PS exists. Optimal number ξ_t^j $\frac{J}{t}$ to invest in $B(\cdot,\,T_j)$ is according to the MVH strategy given by

$$
\int_{\mathbb{R}}e^{\int_t^{T_0}\kappa_s^{\tilde{\chi}^j}(\frac{\dot{u}-R}{\tilde{\Sigma}_{T_0}^{\tilde{T}_j}})ds}\widetilde{B}(t-,\,T_j)^{\frac{\dot{u}-R}{\tilde{\Sigma}_{T_0}^{\tilde{T}_j}}-1\,\kappa_t^{\tilde{\chi}^j}(\frac{\dot{u}-R}{\tilde{\Sigma}_{T_0}^{\tilde{T}_j}}+1)-\kappa_t^{\tilde{\chi}^j}(\frac{\dot{u}-R}{\tilde{\Sigma}_{T_0}^{\tilde{T}_j}}) }\Pi(du),
$$

with $\Pi(du)$ as in previous lemma and with for $w^c=1-w$

 $\kappa^{\widetilde{\chi}j}_s(w){=} \theta_s(w \Sigma(s, {\mathcal T}_j)+w^c \Sigma(s, {\mathcal T}_0)) -w \theta_s(\Sigma(s, {\mathcal T}_j))-w^c \theta_s(\Sigma(s, {\mathcal T}_0)),$

K ロ メ イ ヨ メ ミ メ ス ヨ メ ニ ヨ

1 [Introduction](#page-3-0)

- 2 [Pricing of swaption](#page-20-0)
- 3 [Hedging of swaption](#page-29-0)
- 4 [Numerical results](#page-43-0)

イロト イ部 トイモト イモト

Numerical results

- Receiver swaption
- Normal Inverse Gaussian
- Vasiček volatility structure

$$
\sigma(\mathsf{s},\mathcal{T})=\hat{\sigma}\mathsf{e}^{-\mathsf{a}(\mathcal{T}-\mathsf{s})}
$$

- **Maturity in 10 years**
- \blacksquare Tenor=10 years
- \blacksquare Two payments/year

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 36/42

∍

イロト イ部 トイをトイをト

$a = 0.02$	$a = 0.06$	
$\delta = 0.1$	30.01 (2.64)	20.92 (1.80)
$\delta = 0.06$	17.68 (1.53)	12.32 (1.07)

Characteristic function of the NIG model

$$
\phi(z) = \exp(-\delta(\sqrt{\alpha^2 - (\beta + iz)^2} - \sqrt{\alpha^2 - \beta^2})),
$$

Vasiček volatility model

$$
\sigma(s,\,T)=e^{-a(T-s)}
$$

イロト イ部 トイモト イモト

Full risk: 3.29 (0.41)

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 38/42

イロト イ部 トイをトイをト

Full risk: 3.29 (0.41)

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 38/42

イロト イ部 トイモト イモト

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 39/42

Ξ

イロト イ部 トイモト イモト

Þ

イロメ イ部メ イモメ イモメ

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 41/42

目

イロメ イ部メ イ君メ イ君メー

Thank you for your attention This study was supported by a grant of Research Foundation-Flanders

Nele Vandaele — Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework 42/42

イロメ イ部メ イ君メ イ君メー