On the Convergence of Higher Order Hedging Schemes

Magnus Wiktorsson Mats Brodén

Centre for Mathematical Sciences Mathematical Statistics Lund University magnusw@maths.lth.se

June 23, 2010

[Introduction](#page-0-0)

[Setting](#page-5-0)

[Numerical Experiment](#page-13-0)

[Results](#page-20-0)

[Conclusions](#page-23-0)

Arbitrage Theory in Continuous Time: In a complete market setting every contingent claim can be replicated by continuously trade in the underlying.

In practice: Continuous trading is impossible.

Hedging error R, i.e. the value of the hedge portfolio differ by some amount R from the value of the derivative.

Arbitrage Theory in Continuous Time: In a complete market setting every contingent claim can be replicated by continuously trade in the underlying.

In practice: Continuous trading is impossible.

Hedging error R, i.e. the value of the hedge portfolio differ by some amount R from the value of the derivative.

Arbitrage Theory in Continuous Time: In a complete market setting every contingent claim can be replicated by continuously trade in the underlying.

In practice: Continuous trading is impossible.

⇓

Hedging error \mathcal{R} , i.e. the value of the hedge portfolio differ by some amount R from the value of the derivative.

Risky asset under \mathbb{Q} : $dX(t) = rX(t)dt + \sigma(X(t))X(t)dW(t)$. Bank account: $dB(t) = rB(t)dt$. Derivative prices: $F_i(t, X(t)) = e^{-r(T_i-t)} \mathbb{E}[\Phi_i(X(T_i)) | \mathcal{F}_t], i \in \{1, 2\}.$

Assumptions:

Let $\tilde{\sigma}(y) = \sigma(e^y)$.

A1. (i) There is a positive constant σ_0 such that $\tilde{\sigma}(v) > \sigma_0$ for all $v \in \mathbb{R}$. (ii) The function $\tilde{\sigma}$ is bounded, uniformly Lipschitz continuous in compact subsets of R and uniformly Hölder continuous.

A2. The functions $(\partial^k/\partial y^k)\tilde{\sigma}(y), i\in\{1,2,3,4\},$ are bounded.

A3. $\Phi_1(x) = (x - K_1)^+$, $\Phi_2(x) = (x - K_2)^+$ and $T_2 > T_1$.

Risky asset under \mathbb{Q} : $dX(t) = rX(t)dt + \sigma(X(t))X(t)dW(t)$. Bank account: $dB(t) = rB(t)dt$. Derivative prices: $F_i(t, X(t)) = e^{-r(T_i-t)} \mathbb{E}[\Phi_i(X(T_i)) | \mathcal{F}_t], i \in \{1, 2\}.$

Assumptions:

Let $\tilde{\sigma}(y) = \sigma(e^y)$.

- A1. (i) There is a positive constant σ_0 such that $\tilde{\sigma}(v) > \sigma_0$ for all $v \in \mathbb{R}$. (ii) The function $\tilde{\sigma}$ is bounded, uniformly Lipschitz continuous in compact subsets of $\mathbb R$ and uniformly Hölder continuous.
- A2. The functions $(\partial^k/\partial y^k)\tilde{\sigma}(y)$, $i \in \{1, 2, 3, 4\}$, are bounded.

A3.
$$
\Phi_1(x) = (x - K_1)^+
$$
, $\Phi_2(x) = (x - K_2)^+$ and $T_2 > T_1$.

[Introduction](#page-0-0) [Setting](#page-5-0) [Numerical Experiment](#page-13-0) [Results](#page-20-0) [Conclusions](#page-23-0) [References](#page-24-0) ∆-hedging

Find a self-financing portfolio $\{h^{X}, h^{B}\}$ such that

$$
h^X(t)X(t) + h^B B(t) = F_1(t, X(t))
$$

for all $t \in [0, T_1]$.

Solution: let $h^X(t) = \frac{\partial F_1}{\partial x}(t, X(t)) = F_{1,x}(t, X(t)).$

[Introduction](#page-0-0) [Setting](#page-5-0) [Numerical Experiment](#page-13-0) [Results](#page-20-0) [Conclusions](#page-23-0) [References](#page-24-0) ∆-hedging

Find a self-financing portfolio $\{h^{X}, h^{B}\}$ such that

$$
h^X(t)X(t) + h^B B(t) = F_1(t, X(t))
$$

for all $t \in [0, T_1]$.

Solution: let $h^X(t) = \frac{\partial F_1}{\partial x}(t, X(t)) = F_{1,x}(t, X(t)).$

[Introduction](#page-0-0) [Setting](#page-5-0) [Numerical Experiment](#page-13-0) [Results](#page-20-0) [Conclusions](#page-23-0) [References](#page-24-0)

Γ-Hedging

Introduce one more derivative: F_2 with Φ_2 and $T_2 > T_1$. Form a hedge-portfolio $\{h^{X}, h^{F_2}, h^{B}\}$ and match the first and second derivatives w.r.t. *X*:

$$
F_1(t, X(t)) = h^X(t)X(t) + h^{F_2}(t)F_2(t, X(t)) + h^B(t)B(t),
$$

\n
$$
\Delta^{F_1}(t, X(t)) = h^X(t) + h^{F_2}(t)\Delta^{F_2}(t, X(t)),
$$

\n
$$
\Gamma^{F_1}(t, X(t))) = h^{F_2}(t)\Gamma^{F_2}(t, X(t)).
$$

This yields the portfolio

$$
h^{X}(t) = \Delta^{F_1}(t, X(t)) - \frac{\Gamma^{F_1}(t, X(t))}{\Gamma^{F_2}(t, X(t))} \Delta^{F_2}(t, X(t)),
$$

\n
$$
h^{F_2}(t) = \frac{\Gamma^{F_1}(t, X(t))}{\Gamma^{F_2}(t, X(t))},
$$

\n
$$
h^{B}(t) = \frac{F_1(t, X(t)) - h^{X}(t)X(t) - h^{F_2}(t)F_2(t, X(t))}{B(t)}
$$

[Introduction](#page-0-0) [Setting](#page-5-0) [Numerical Experiment](#page-13-0) [Results](#page-20-0) [Conclusions](#page-23-0) [References](#page-24-0)

Γ-Hedging

Introduce one more derivative: F_2 with Φ_2 and $T_2 > T_1$. Form a hedge-portfolio $\{h^{X}, h^{F_2}, h^{B}\}$ and match the first and second derivatives w.r.t. *X*:

$$
F_1(t, X(t)) = h^X(t)X(t) + h^{F_2}(t)F_2(t, X(t)) + h^B(t)B(t),
$$

\n
$$
\Delta^{F_1}(t, X(t)) = h^X(t) + h^{F_2}(t)\Delta^{F_2}(t, X(t)),
$$

\n
$$
\Gamma^{F_1}(t, X(t))) = h^{F_2}(t)\Gamma^{F_2}(t, X(t)).
$$

This yields the portfolio

$$
h^{X}(t) = \Delta^{F_1}(t, X(t)) - \frac{\Gamma^{F_1}(t, X(t))}{\Gamma^{F_2}(t, X(t))} \Delta^{F_2}(t, X(t)),
$$

\n
$$
h^{F_2}(t) = \frac{\Gamma^{F_1}(t, X(t))}{\Gamma^{F_2}(t, X(t))},
$$

\n
$$
h^{B}(t) = \frac{F_1(t, X(t)) - h^{X}(t)X(t) - h^{F_2}(t)F_2(t, X(t))}{B(t)}
$$

.

Discrete Time Hedging

Since the portfolio processes in both the Δ -hedging and the Γ-hedging case are continuous processes the hedge portfolio must be rebalanced at every time instant in order for the hedging error to equal zero.

 \blacksquare In practice this is not possible.

Re-balance at an equidistant time grid, i.e. $t_i = i/n$.

 \blacksquare Let $\mathcal{R}(n)$ denote the hedging error using an equidistant time grid with *n* re-balancing points. What properties of $\mathcal{R}(n)$ do we get?

Since the portfolio processes in both the Δ -hedging and the Γ-hedging case are continuous processes the hedge portfolio must be rebalanced at every time instant in order for the hedging error to equal zero.

- In practice this is not possible.
- Re-balance at an equidistant time grid, i.e. $t_i = i/n$.
- Let $\mathcal{R}(n)$ denote the hedging error using an equidistant time grid with *n* re-balancing points. What properties of $\mathcal{R}(n)$ do we get?

Numerical experiment: ∆-hedging

Model: Black and Scholes. Parameters: $s_0 = 100, K_1 = 100, K_2 = 120,$ $T_1 = 0.5$, $T_2 = 1.5$, $r = 0.03$ and $\sigma = 0.2$.

Figure: \triangle -hedging. Blue line: *n* = 10,

Numerical experiment: ∆-hedging

Model: Black and Scholes. Parameters: $s_0 = 100, K_1 = 100, K_2 = 120,$ $T_1 = 0.5$, $T_2 = 1.5$, $r = 0.03$ and $\sigma = 0.2$.

Figure: Δ -hedging. Blue line: $n = 10$, green line: $n = 20$.

Numerical experiment: Γ-hedging

Figure: Γ-hedging. Blue line: *n* = 10,

Numerical experiment: Γ-hedging

Figure: Γ-hedging. Blue line: $n = 10$, green line: $n = 20$.

Numerical experiment: order of convergence

Numerical experiment: order of convergence

Assume that: $\mathbb{E}[\mathcal{R}^2(n)]=Cn^{\alpha}$ then $log_{10}(\mathbb{E}[\mathcal{R}^2(n)]) = log_{10}(C) + \alpha log_{10}(n).$

∆-Hedging

- **Equidistant time grid, i.e.** $t_i = i/n$
	- European options (Zhang, 1999): Order of convergence 1/ √ *n*, i.e. $\lim_{n\to\infty} nE[\mathcal{R}^2(n)] = C.$
	- Digital options (Gobet and Temam, 2001): Order of convergence $1/n^{1/4}$.
- **Nonuniform time grid**
	- Digital options (Geiss, 2002): Order of convergence 1/ √ *n*.

Γ-Hedging

For the standard Black-Scholes model Gobet and Makhlouf (2009) gives non-sharp lower bounds for convergence rates for both equidistant and non-equidistant grids.

Γ-hedging of an European option on an equidistant time grid (Brodén and Wiktorsson, 2009): Order of convergence 1/*n* 3/4 .

Recall that the assumptions A1-A3 are:

Let $\tilde{\sigma}(y) = \sigma(e^y)$.

- A1. (i) There is a positive constant σ_0 such that $\tilde{\sigma}(y) \ge \sigma_0$ for all $y \in \mathbb{R}$. (ii) The function $\tilde{\sigma}$ is bounded, uniformly Lipschitz continuous in compact subsets of $\mathbb R$ and uniformly Hölder continuous.
- A2. The functions $(\partial^k/\partial y^k)\tilde{\sigma}(y)$, $i \in \{1, 2, 3, 4\}$, are bounded.
- A3. $\Phi_1(x) = (x K_1)^+$, $\Phi_2(x) = (x K_2)^+$ and $T_2 > T_1$.

Results

Γ-hedging of an European option on an equidistant time grid (Brodén and Wiktorsson, 2009): Order of convergence 1/*n* 3/4 .

Theorem

If A1-A3 hold, then

$$
\mathbb{E}[\mathcal{R}_{\Gamma}^{2}(n)] = n^{-3/2} T_{1}^{3/2} C_{\frac{3}{2}} \lim_{t \uparrow T_{1}} g(t) + o\left(n^{-3/2}\right)
$$

= $n^{-3/2} T_{1}^{3/2} C_{\frac{3}{2}} e^{-2rT_{1}} \frac{K_{1}^{3} \sigma^{3}(K_{1})}{4\sqrt{\pi}} P_{X(T_{1})|X(0)=x_{0}}(K_{1}) + o\left(n^{-3/2}\right)$,

where

$$
g(t) = (T_1 - t)^{3/2} \mathbb{E}\left[e^{-2rt} F_{1,\text{xxx}}^2(t, X_t) X_t^6 \sigma^6(X_t) | X(0) = x_0\right], C_{3/2} \approx 0.62881,
$$

and $P_{X(T_1)|X(0)=x_0}(K_1)$ *is X :s transition density.*

 $T_1 = 0.5, s_0 = 100, r = 0.03, \sigma = 0.3$ and $N_{MC} = 10^5$. Dash-dotted line: estimate from the Theorem, MC estimate with: squares: $K_2 = 80$, triangles: $K_2 = 100$ and circles: $K_2 = 120$.

Conclusions

- \blacksquare We have shown that when Γ -hedging a European option on an equidistant time grid the order of convergence is 1/*n* 3/4 .
- An explicit expression for the leading term of the second moment of the hedging error is derived.
- The expression serves as a good approximation of the real second moment of the hedging error also for $n < \infty$.

Further research

- Investigate higher order terms in the expansion of the hedging mean squared error in order to find an optimal choice of hedge instrument in a collection of possible hedge instruments.
- \blacksquare Hedging schemes using an arbitrary number of hedge instruments.
- **More complicated market models.**

- Brodén, M. and Wiktorsson, M. (2009). On the convergence of higher order hedging schemes. Preprint 2009:15, Centre for Mathematical Sciences, Lund University. [Article.](http://www.maths.lth.se/matstat/staff/matsb/DeltaGammaHedge.pdf)
- Downes, A.N. (2009). Bounds for the transition density of time-homogeneous diffusion processes. *Statistics & Probability Letters*, 79(6):835–841, 2009.
- Geiss, S. (2002). Quantitative approximation of certain stochastic integrals, *Stochastics and Stochastics Reports*, **73**(3–4), 241–270.
- Gobet, E. and Temam, E. (2001). Discrete time heding errors for options with irregular payoffs, *Finance and Stochastics*, **5**(3), 357–367.
- Gobet, E. and Makhlouf, A. The tracking error rate of the delta-gamma hedging strategy. Preprint, 2009.
- Zhang, R. (1999). *Couverture approchee des options Europeennes*. PhD thesis, Ecole Nationale des Ponts et Chaussees.

Thanks for the attention!

Questions ??

Supplementary

$$
C_a = \sum_{k=1}^{\infty} \int_0^1 \int_0^x \int_0^w \frac{1}{(k-v)^a} \, \mathrm{d}v \, \mathrm{d}w \, \mathrm{d}x = \int_0^{\infty} \frac{e^t - 1 - t - \frac{t^2}{2}}{\Gamma(a)t^{a+1}(e^t - 1)} \, \mathrm{d}t \, .
$$

which is well defined for $0 < a < 2$.

