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The model

Let (Ω,G, P ) be a probability space, B = (Bt)t≥0 be a standard Brownian motion,

Θ = (Θt)t≥0 be a continuous Markov chain with two states 0 and 1,

initial distribution [1− π, π] for π ∈ [0, 1],

transition probability matrix [e−λ0t, 1− e−λ0t; 1− e−λ1t, e−λ1t] for t ≥ 0,

and intensity matrix [−λ0, λ0;λ1,−λ1] for some λi ≥ 0, i = 0, 1.

Assume that the asset price S = (St)t≥0 is given by:

St = s exp
(∫ t

0

(
r − σ2

2
− δ0 − (δ1 − δ0) Θu

)
du+ σ Bt

)
where r ≥ 0, σ > 0, 0 < δi < r, i = 0, 1.

The asset with price S pays dividends at the rate δ0 when Θt = 0,

and at the rate δ1 when Θt = 1.
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The model

It is shown that the asset price solves the equation

dSt =
(
r − δ0 − (δ1 − δ0) Θt

)
St dt+ σ St dBt (S0 = s)

and thus admits the representation

dSt =
(
r − δ0 − (δ1 − δ0) Πt

)
St dt+ σ St dBt (S0 = s)

where the filtering estimate Π = (Πt)t≥0 defined by Πt = E[Θt | Ft]

≡ P (Θt = 1 | Ft) solves the equation

dΠt =
(
λ1 (1−Πt)− λ0 Πt

)
dt− δ1 − δ0

σ
Πt(1−Πt) dBt (Π0 = π)

and the process B = (Bt)t≥0 defined by

Bt =
∫ t

0

dSu
σSu

− 1
σ

∫ t

0

(
r − δ0 − (δ1 − δ0) Πu

)
du

is the innovation Brownian motion.
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The optimal stopping problem

The problem is to compute the value

V∗ = sup
τ
E
[
e−rτ (Sτ −K)+

]
where the supremum is taken over τ with respect to Ft = σ(Su | 0 ≤ u ≤ t).

Let us consider the following extended optimal stopping problem

V∗(s, π) = sup
τ
Es,π

[
e−rτ (Sτ −K)+

]
where Ps,π is a measure of (S,Π) started at some (s, π) ∈ (0,∞)× [0, 1].

The optimal stopping time is given by

τ∗ = inf{t ≥ 0 |V∗(St,Πt) ≤ (St −K)+}

so that the continuation region has the form

C∗ = {(s, π) ∈ (0,∞)× [0, 1] |V∗(s, π) > (s−K)+}.
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The optimal stopping boundary

By means of a generalized Itô’s formula, we get:

e−rt (St −K)+ = (s−K)+ +MK
t

+
∫ t

0

e−ru ∆(Su,Πu) I(Su > K) du+
1
2

∫ t

0

e−ru I(Su 6= K) d`Ku (S)

where ∆(s, π) = rK − (δ0 + (δ1 − δ0)π)s and

`Kt (S) = lim
ε↓0

1
2ε

∫ t

0

I(K − ε < Su < K + ε)σ2S2
u du

exists as a limit in probability. Here, the process MK = (MK
t )t≥0 defined by:

MK
t =

∫ t

0

e−ru I(Su > K)σSu dBu

is a continuous (uniformly integrable) martingale under Ps,π.
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The optimal stopping boundary

Applying Doob’s optional sampling theorem, we get:

Es,π
[
e−rτ (Sτ −K)+

]
= (s−K)+

+ Es,π

[ ∫ τ

0

e−ru ∆(Su,Πu) I(Su > K) du+
1
2

∫ τ

0

e−ru I(Su 6= K) d`Ku (S)
]

for any τ and all (s, π) ∈ (0,∞)× [0, 1].

It is seen that it is never optimal to stop when

∆(St,Πt) ≡ rK − (δ0 + (δ1 − δ0)Πt)St ≤ 0 and St > K

and thus, all the points (s, π) such that

K < s ≤ b(π) with b(π) = rK/(δ0 + (δ1 − δ0)π)

belong to C∗ clearly containing the rectangle {(s, π) ∈ (0,K]× [0, 1]}.
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The optimal stopping boundary

For some (s, π) ∈ C∗ and τ∗ = τ∗(s, π), we have:

V∗(s, π)− (s−K)+

= Es,π

[∫ τ∗

0

e−ru ∆(Su,Πu) I(Su > K) du+
1
2

∫ τ∗

0

e−ru I(Su 6= K) d`Ku (S)
]
> 0.

Hence, taking K < b(π) < s′ < s, we get:

V∗(s′, π)− (s′ −K)+

≥ Es′,π
[∫ τ∗

0

e−ru ∆(Su,Πu) I(Su > K) du+
1
2

∫ τ∗

0

e−ru I(Su 6= K) d`Ku (S)
]

≥ Es,π
[∫ τ∗

0

e−ru ∆(Su,Πu) I(Su > K) du+
1
2

∫ τ∗

0

e−ru I(Su 6= K) d`Ku (S)
]

and taking into account 0 < δi < r, we see that (s′, π) ∈ C∗.
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The optimal stopping boundary

These arguments together with concavity of s 7→ V∗(s, π) show that

there exists a function b∗(π) such that K < b(π) ≤ b∗(π) for all π ∈ [0, 1], and

C∗ = {(s, π) ∈ (0,∞)× [0, 1] | s < b∗(π)}

so that the corresponding stopping region is the closure of the set:

D∗ = {(s, π) ∈ (0,∞)× [0, 1] | s > b∗(π)}.

Lemma 1. The optimal exercise time has the structure:

τ∗ = inf{t ≥ 0 |St ≥ b∗(Πt)}

where the function b∗(π) satisfies the properties:

b∗(π) : [0, 1]→ (K,∞) is decreasing/increasing if δ0 < δ1/δ0 > δ1

K < b(π) ≤ b∗(π) with b(π) = rK/(δ0 + (δ1 − δ0)π).
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The optimal stopping boundary

For any (s, π) ∈ C∗, we take π′ such that π′ < π if δ0 < δ1 (or π < π′ if δ0 > δ1)

whenever s > K. Then, since τ∗ = τ∗(s, π) does not depend on π′, we have:

V∗(s, π′)− (s−K)+

≥ Es,π′
[∫ τ∗

0

e−ru ∆(Su,Πu) I(Su > K) du+
1
2

∫ τ∗

0

e−ru I(Su 6= K) d`Ku (S)
]

≥ Es,π
[∫ τ∗

0

e−ru ∆(Su,Πu) I(Su > K) du+
1
2

∫ τ∗

0

e−ru I(Su 6= K) d`Ku (S)
]

= V∗(s, π)− (s−K)+ > 0

and thus conclude that (s, π′) ∈ C∗, so that the boundary b∗(π) is decreasing

(increasing) on [0, 1] whenever δ0 < δ1 (δ0 > δ1).
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The free-boundary problem I

The infinitesimal operator L(S,Π) has the structure:

L(S,Π) = (r − δ0 − (δ1 − δ0)π) s ∂s +
1
2
σ2s2 ∂ss − (δ1 − δ0) s π(1− π) ∂sπ

+
(
λ1 (1− π)− λ0 π

)
∂π +

1
2

(
δ1 − δ0
σ

)2

π2(1− π)2 ∂ππ

for all (s, π) ∈ (0,∞)× [0, 1].

It follows from the general optimal stopping theory that the unknown value

function V∗(s, π) and the boundary b∗(π) satisfy the free-boundary problem:

(L(S,Π)V − rV )(s, π) = 0 for (s, π) ∈ C

V (s, π)
∣∣
s=b(π)− = b(π)−K (instantaneous stopping)

V (s, π) = (s−K)+ for (s, π) ∈ D

V (s, π) > (s−K)+ for (s, π) ∈ C.
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The case of full information

Let us now recall the problem with full information

W∗(s, π) = sup
τ ′
Es,π

[
e−rτ

′
(Sτ ′ −K)+

]
where the supremum is taken τ ′ with respect to Gt = σ(Su,Θu | 0 ≤ u ≤ t).

τ ′∗ = inf{t ≥ 0 |St ≥ a∗(Θt)}.

The functions W∗(s, i) and the boundaries a∗(i), i = 0, 1, solve:

(r − δi) sWs(s, i) + λiW (s, 1− i) +
1
2
σ2 s2Wss(s, i) = (r + λi)W (s, i)

W (s, i)
∣∣
s=a(i)− = a(i)−K (instantaneous stopping)

Ws(s, i)
∣∣
s=a(i)− = 1 (smooth fit)

W (s, i) = (s−K)+ for s > a(i)

W (s, i) > (s−K)+ for s < a(i).
Pavel Gapeev (London School of Economics)Pricing of perpetual American options in a model with partial information23 June 2010 13 / 29



The case of full information

The general solution of the free-boundary problem is given by:

W (s, i) = C1(i) sβ1 + C2(i) sβ2 for s < a(0)

W (s, 1) = C3(1) sγ1 +
λ1s

δ1 + λ1
− λ1K

r + λ1
for a(0) < s < a(1)

where the constants Cj(i) and the boundaries a(i), i = 0, 1, j = 1, 2, satisfy:

C1(0) aβ1(0) + C2(0) aβ2(0) = a(0)−K

C1(1) aβ1(0) + C2(1) aβ2(0) = C3(1) aγ1(0) +
λ1s

δ1 + λ1
− λ1K

r + λ1

C1(0)β1 a
β1(0) + C2(0)β2 a

β2(0) = a(0)

C1(1)β1 a
β1(0) + C2(1)β2 a

β2(0) = C3(1) γ1a
γ1(0) +

λ1

δ1 + λ1

C1(1)β1(β1 − 1) aβ1(0) + C2(1)β2(β2 − 1) aβ2(0) = C3(1) γ1(γ1 − 1) aγ1(0).
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The case of full information

The particular solution of the system is given by:

W∗(s, i) =

W (s, i; a∗(i)), if 0 < s < a∗(i)

s−K, if s ≥ a∗(i)

where

W (s, 0; a∗(0)) =
2∑
j=1

(β3−j − 1)a∗(0)− β3−jK

β3−j − βj

( s

a∗(0)

)βj

for s < a∗(0) and

W (s, 1; a∗(0)) =
2∑
j=1

β3−jW (a∗(0), 1; a∗(1))−Ws(a∗(0), 1; a∗(1))a∗(0)
β3−j − βj

( s

a∗(0)

)βj

W (s, 1; a∗(1)) =
(
δ1a∗(1)
δ1 + λ1

− rK

r + λ1

)( s

a∗(1)

)γ1
+

λ1s

δ1 + λ1
− λ1K

r + λ1

for a∗(0) < s < a∗(1).
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The case of full information

Here, a∗(0) is determined from:
2∑
j=1

(−1)j βj(βj − 1)[β3−jW (a∗(0), 1; a∗(1))−Ws(a∗(0), 1; a∗(1))a∗(0)]

= (β1 − β2)
γ1rK

r + λ1

and a∗(1) is explicitly given by:

a∗(1) =
γ1K

γ1 − 1
r

r + λ1

δ1 + λ1

δ1

where the numbers β2 < β1 are the two largest roots of:(
r+ λ0 − β(r− δ0)− 1

2
β(β − 1)σ2

)(
r+ λ1 − β(r− δ1)− 1

2
β(β − 1)σ2

)
= λ0λ1

and γ2 < 0 < 1 < γ1 are explicitly given by:

γi =
1
2
− r − δ1

σ2
− (−1)i

√(
1
2
− r − δ1

σ2

)2

+
2(r + λ1)

σ2
.
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The change of variables

Let us define the process Y = (Yt)t≥0 by:

Yt =
S−ηt Πt

1−Πt

with η = (δ1 − δ0)/σ2. Then, we have:

dSt =
(
r − δ0 − (δ1 − δ0)

Sηt Yt
1 + Sηt Yt

)
St dt+ σ St dBt (S0 = s)

dYt =
(
λ1 − λ0S

η
t Yt

1 + Sηt Yt
− η

2
(2r − δ0 − δ1 − σ2)

)
Yt dt

(
Y0 = y ≡ s−ηπ

1− π

)
for any (s, π) ∈ (0,∞)× (0, 1). The value function is given by:

U∗(s, y) = sup
τ
Es,y

[
e−rτ (Sτ −K)+

]
and the optimal stopping time has the form:

τ∗ = inf{t ≥ 0 |St ≥ g∗(Yt)}.
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The free-boundary problem II

The infinitesimal operator L(S,Y ) has the structure:

L(S,Y ) =
(
r − δ0 − (δ1 − δ0)

sηy

1 + sηy

)
s ∂s +

1
2
σ2 s2 ∂ss

+
(
λ1 − λ0s

ηy

1 + sηy
− η

2
(2r − δ0 − δ1 − σ2)

)
y ∂y

for all (s, y) ∈ (0,∞)2. The function U∗(s, y) and the boundary g∗(y) solves:

(L(S,Y )U − rU)(s, y) = 0 for 0 < s < g(y)

U(s, y)
∣∣
s=g(y)− = g(y)−K (instantaneous stopping)

U(s, y) = (s−K)+ for s > g(y)

U(s, y) > (s−K)+ for s < g(y)

U(s, y)
∣∣
s=0+

= 0 (natural boundary), Us(s, y)
∣∣
s=g(y)− = 1 (smooth fit)

Uy(s, y)
∣∣
s=g(y)− exists.
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The verification assertion

Lemma 2. The value function takes the form:

U∗(s, y) =

U(s, y; g∗(y)), if 0 < s < g∗(y)

s−K, if s ≥ g∗(y)

and K < g(y) ≤ g∗(y) holds for the boundary g∗(y) with:

g−1(s) = (δ0s− rK)s−η/(rK − δ1s).

for each rK/(δ0 ∨ δ1) < s < rK/(δ0 ∧ δ1) with η = (δ0 − δ1)/σ2 and y > 0.

Proof. Applying the change-of-variable to the solution e−rtU(s, y), we obtain:

e−rt U(St, Yt) = U(s, y)+
∫ t

0

e−ru (L(S,Y )U−rU)(Su, Yu) I(Su 6= g∗(Yu)) du+Mt

with the continuous local martingale M = (Mt)t≥0 defined by:

Mt =
∫ t

0

e−ru Us(Su, Yu) I(Su 6= g∗(Yu))σ Su dBu.
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The verification assertion

It follows that the inequalities:

(L(S,Y )U − rU)(s, y) ≤ 0 for (s, y) ∈ (0,∞)2

U(s, y) ≥ (s−K)+ or g(y) ≤ g∗(y) for (s, y) ∈ (0,∞)2

hold, and thus

e−rτ (Sτ −K)+ ≤ e−rτ U(Sτ , Yτ ) ≤ U(s, y) +Mτ

for all stopping times τ of (S, Y ) started at (s, y) ∈ (0,∞)2.

Then, for an arbitrary localizing sequence (τn)n∈N, we have:

Es,y
[
e−r(τ∧τn) (Sτ∧τn

−K)+
]
≤ Es,y

[
e−r(τ∧τn) U(Sτ∧τn

, Yτ∧τn
)
]

≤ U(s, y) + Es,y
[
Mτ∧τn

]
= U(s, y).
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The verification assertion

Hence, by means of Fatou lemma, we obtain:

Es,y
[
e−rτ (Sτ −K)+

]
≤ Es,y

[
e−rτ U(Sτ , Yτ )

]
≤ U(s, y)

for any stopping times τ and all (s, y) ∈ (0,∞)2.

Since U(s, y) and g∗(y) solves the free-boundary problem, we have:

e−r(τ∗∧τn) (Sτ∗∧τn −K)+ = e−r(τ∗∧τn) U(Sτ∗∧τn , Yτ∗∧τn) = U(s, y) +Mτ∗∧τn

for any localizing sequence of stopping times (τn)n∈N.

Therefore, applying the Lebesgue dominated convergence, we get:

Es,y
[
e−rτ∗ (Sτ∗ −K)+

]
= Es,y

[
e−rτ∗ U(Sτ∗ , Yτ∗)

]
= U(s, y)

for all (s, y) ∈ (0,∞)2, that proves the desired assertion. �
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The main result

Theorem. The value function takes the form:

V∗(s, π) =

U∗(s, s
−ηπ/(1− π)), if 0 < s < g∗(s−ηπ/(1− π))

s−K, if s ≥ g∗(s−ηπ/(1− π))

and the optimal exercise boundary b∗(π) is the inverse to:

b−1
∗ (s) = sηg−1

∗ (s)/(1 + sηg−1
∗ (s))

for each rK/(δ0 ∨ δ1) < s < rK/(δ0 ∧ δ1) with η = (δ0 − δ1)/σ2.

Moreover, both the value function V∗(s, π) and the boundary b∗(π) are

decreasing (increasing) and continuous in π ∈ [0, 1], whenever δ0 < δ1 (δ0 > δ1).
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Some estimates

Remark 1. It can be checked that the function:

Ŵ (s, π) = W (s, 0; a∗(0)) (1− π) +W (s, 1; a∗(0))π

solves the partial differential equation above for 0 < s < â(π), where

W∗(â(π), 0; a∗(0)) (1− π) +W∗(â(π)), 1; a∗(0))π = â(π)−K

for all π ∈ [0, 1]. It follows that the function:

Ŵ (s, π) =

W (s, π; â(π)), if 0 < s < â(π)

s−K, if s ≥ â(π)

is a lower estimate for the value function V∗(s, π), so that

W∗(s, 1− i) ≤ Ŵ (s, π) ≤ V∗(s, π) ≤W∗(s, i) whenever δ1−i > δi, i = 0, 1.
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Some estimates

Suppose that a function Û(s, y) and the boundary ĝ(y) solve:

(L(S,Y )U−rU)(s, y) =
(
λ1 − λ0s

ηy

1 + sηy
−η

2
(2r−δ0−δ1−σ2)

)
y Uy(s, y) for s < g(y)

and the general solution takes the form:

U(s, y) = C1(y) sα1 F
(

1 + ϕ0 + ϕ1, 1 + ϕ0 − ϕ1; 1 + ϕ0; sηy
)

+ C2(y) sα2 F
(

1− ϕ0 + ϕ1, 1− ϕ0 − ϕ1; 1− ϕ0; sηy
)

where

αi =
1
2
− r − δ0

σ2
− (−1)iϕ0η, ϕi =

1
η

√
δ2
i

σ4
+ δi

(
1− 2r

σ4

)
+
(
r

σ2
+

1
2

)2

.

and F (a, b; c;x) is a Gauss’ hypergeometric function.
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Some estimates

Applying the boundary conditions, we get that C2(y) = 0, so that:

C1(y) gα1(y)F (1 + ϕ0 + ϕ1, 1 + ϕ0 − ϕ1; 1 + ϕ0; gη(y)y) = g(y)−K

ηC1(y) gα1+η(y)y
(1 + ϕ0)2 − ϕ2

1

1 + ϕ0
F (2 + ϕ0 + ϕ1, 2 + ϕ0 − ϕ1; 2 + ϕ0; gη(y)y)

+ α1 C1(y) gα1(y)F (1 + ϕ0 + ϕ1, 1 + ϕ0 − ϕ1; 1 + ϕ0; gη(y)y) = g(y)

and thus, the solution is given by:

U(s, y; ĝ(y)) = (ĝ(y)−K)
sα1F (1 + ϕ0 + ϕ1, 1 + ϕ0 − ϕ1; 1 + ϕ0; sηy)

ĝα1(y)F (ρ+ ϕ0 + ϕ1, ρ+ ϕ0 − ϕ1; 1 + ϕ0; ĝη(y)y)

for all 0 < s < ĝ(y) and each y > 0 fixed, where ĝ(y) is uniquely determined by:

(1 + ϕ0)2 − ϕ2
1

1 + ϕ0

F (2 + ϕ0 + ϕ1, 2 + ϕ0 − ϕ1; 2 + ϕ0; gη(y)y)
F (1 + ϕ0 + ϕ1, 1 + ϕ0 − ϕ1; 1 + ϕ0; gη(y)y)

=
α1K + (1− α1)g(y)
(g(y)−K)ηgη(y)y

.
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Some estimates

Corollary. Following the arguments of Lemma 2, it is shown that the function:

Û(s, y) =

U(s, y; ĝ(y)), if 0 < s < ĝ(y)

s−K, if s ≥ ĝ(y)

with U(s, y; ĝ(y)) defined above coincides with the value function:

Û(s, y) = sup
τ
Es,y

[
e−rτ (Sτ −K)+∫ τ

0

e−rt
(
λ1 − λ0S

η
t Yt

1 + Sηt Yt
− η

2
(2r − δ0 − δ1 − σ2)

)
Yt Ûy(St, Yt) I(St < ĝ(Yt)) dt

]
and ĝ(y) provides the hitting boundary for:

τ̂ = inf{t ≥ 0 |St ≥ ĝ(Yt)}

which is an optimal stopping time in the problem above.
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Some estimates

Remark 2. Assume that λ0 = λ1 = 0 meaning that:

Θt ≡ θ, P (θ = 1) = π, and P (θ = 0) = 1− π, for π ∈ [0, 1].

Then, Û(s, y) ≡ U∗(s, y) and ĝ(y) ≡ g∗(y) holds, whenever δ0 + δ1 = 2r − σ2.

Remark 3. Under the assumptions above, we have:

(∂yU∗)(s, y)
∣∣
s=g∗(y)− = 0

for all y > 0, and thus

(∂πV∗)(s, π)
∣∣
s=b∗(π)− = 0

with b∗(π) = g∗(s−ηπ/(1− π)) for all π ∈ (0, 1). At the same time, we have:

Ŵs(s, π)
∣∣
s=â(π)− < 1

for all π ∈ (0, 1).
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Thank you!
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