
American Option Pricing in a

Markov Chain Market Model

Robert J. Elliott

School of Mathematical Sciences,

University of Adelaide, Australia.

6th World Congress

Bachelier Finance Society

22-26 June 2010

University of Toronto, Canada

1



Abstract

This work represents joint research with John

van der Hoek from University of South Aus-

tralia, School of Mathematics and Statistics.

This paper is a sequel to our previous paper

“A New Paradigm in Asset Pricing” in which

we construct a model for asset pricing in a

world where the randomness is modeled by a

Markov chain. In this paper we develop a the-

ory of optimal stopping and related variational

inequalities for American options in this model.

A version of Saigal’s Lemma is established and

numerical results obtained.
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Overview

1. Introduction and Stock Price Processes.

2. European Options.

3. American Claims.

4. Existence and Uniqueness.

5. Numerical Solution of the Variational In-

equality.
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1. Stochastic Discounting Function

Processes

We will assume that we have a probability space

(Ω,F , P ) on which there is defined a stochastic

discounting function process {πt | t ≥ 0} with

the property that for any asset price process

{At|t ≥ 0}

πtAt = E[πsAs|Ft]

where E is expectation with respect to P and

Ft represents information up to time t. Here

s ≥ t and there are no cash-flows from A over

the time interval (t, s].

We will abbreviate Stochastic Discounting Func-

tion to SDF.
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Structure of the SDF

We consider a simple dynamic model of an eco-

nomic world where, rather than using Brow-

nian motions and related diffusions, the un-

certainty is modelled by a finite state Markov

chain X = {Xt, t ≥ 0}.

The chain is defined on a probability space

(Ω,F , P ). Here initially P will denote the his-

torical probability.

As in Elliott, Aggoun and Moore (1995/2008), the finite
state space of the chain X can be identified with the set
of unit vectors {e1, e2, . . . , eN}, where

ei = (0, . . . ,0,1, . . . ,0)′ ∈ RN .

The semimartingale representation of the chain X is
then

Xt = X0 +

∫ t

0
AuXudu + Mt ∈ RN .

Here for each u ≥ 0, Au is an irreducible rate matrix.
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As in van der Hoek and Elliott (2008a) we

suppose the SDF process π = {πt, t ≥ 0} has

the form

πt = exp
[
−

∫ t

0
X ′

u−Cu−dXu −
∫ t

0
D′

uXudu

]
.

Here, for each u ≥ 0, Cu is an N × N matrix

and Du a vector in RN .

Of necessity π = {πt, t ≥ 0} should be a po-

tential process. This places some additional

restrictions on C and D.

6



Necessary Properties

The process {πt} must satisfy three conditions:

1. be strictly positive, to prevent arbitrage
opportunities.

2. be a super-martingale: this means for s ≥ t
that

E [πs|Ft] ≤ πt .

This is because

E [πs|Ft] = πtP (t, s)

and P (t, s) is the value at t of one dollar at
time s.

3. for any t ≥ 0,

E [πs|Ft] → 0

as s → ∞, as a dollar at infinity is worth zero
now.

In probability theory such a process is called a
potential.
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Write

Λt,T =
πT

πt
and Zt,T = Λt,T ·XT

Then it can be shown that

Ẑt,T = E[Λt,TXT |Ft]

= E[Λt,TXT |Xt]

= Ψ(t, T )Xt

where Ψ is a matrix function which is the so-

lution of

∂Ψ(t, T )

∂T
= ΓTΨ(t, T )

Ψ(t, t) = IN .
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Here Γu is an N ×N matrix with

Γij
u = A

ij
u exp(Cjj

u − C
ji
u ) if i 6= j

Γjj
u = A

jj
u −D

j
u if i = j.

In this model a zero coupon bond has the price

P (t, T ) = E[Λt,T |Ft]

= E[〈Zt,T ,1〉|Ft]

= 〈 Ẑt,T ,1〉
= 〈Ψ(t, T )Xt,1〉 .

Now Ẑt,T = Xt +
∫∞
t ΓuΨt,uXtdu so P (t, T ) =

1+
∫ T
t 〈ΓuΨt,uXt,1〉du. This price should be ≤ 1

which implies (componentwise) that

Γ∗u1 ≡ Γ′u1 ≤ 0.

This is the case if the components of Du are

large enough.
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Stock Price Processes

Suppose a stock has a random dividend rate

process D = {Ds, s ≥ 0}. Suppose

Ds = 〈δs, Xs〉
where δs ∈ RN , so the dividend rate depends

on the state of the world.

Using the SDF the present value of future div-

idend payments gives the stock price as

St =
1

πt
E

[ ∫ ∞
t

πsDsds|Ft

]

=
1

πt
E

[ ∫ ∞
t

πs〈δs, Xs〉ds|Xt

]

= 〈σt, Xt〉, say.
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Note that πtSt+
∫ t
0 πsDsds is a martingale. How-

ever,

St =
∫ ∞
t

E[Λt,s〈δs, Xs〉|Xt]ds

=
∫ ∞
t
〈δs, Ẑt,s〉ds

=
∫ ∞
t
〈δs,Ψ(t, s)Xt〉ds

=
∫ ∞
t
〈Ψ(t, s)∗δs, Xt〉ds

=
〈 ∫ ∞

t
Ψ(t, s)∗δsds, Xt

〉
ds

so

σt =
∫ ∞
t

Ψ(t, s)∗δsds.

σ satisfies the system of ODEs:

dσt

dt
= −Γ∗tσt − δt

with σt → 0 as t →∞.
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2. European Options

Let us first consider a European claim with

payoff at expiry T , of the form CT = G(ST ).

We wish to determine the value of this at time

t ≤ T. Write

gi
T = G(〈σT , ei〉), 1 ≤ i ≤ N,

gT = (g1
T , . . . , gN

T )′ ∈ RN .

Then CT = 〈gT , XT 〉 so

Ct = E[Λt,TCT |Ft]

= 〈gT , Ẑt,T 〉
= 〈gT ,Ψ(t, T )Xt〉
= 〈Ψ(t, T )∗gT , Xt〉
= 〈ct, Xt〉

where ct = Ψ(t, T )∗gT .
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Thus c is then the solution of a Black-Scholes-

Morton type equation

dct

dt
+ Γ∗t ct = 0

with

CT = gT .

Remark:

It is open question whether Ct = u(t, St) for

some function u holds for any dividend struc-

ture defining S.
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3. American Claims

Consider an American type claim on the asset
S = {St, t ≥ 0} where t ∈ [0, T ], and if the claim
is exercised at time t the payoff is

Gt = G(t, St)

Recall St = 〈σt, Xt〉. Write gi
t = G(t, 〈σt, ei〉),

1 ≤ i ≤ N and gt = (g1
t , . . . , gN

t )′ ∈ RN . Then

Gt = G(t, St) = 〈gt, Xt〉.

The value of the American option at time t is
determined by the optimal time τ at which to
exercise the option where τ is a stopping time
with values in [t, T ].

That is, we wish to determine

sup
t≤τ≤T

1

πt
E[πτGτ |Ft],

or equivalently, supt≤τ≤T E[Λt,τ〈gτ , Xτ〉|Xt] where
the supremum is taken over all stopping times
with values in [t, T ].
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Theorem 3.1

Suppose there is a solution a = {at, t ≥ 0} of
the following linear complementarity problem:
at ∈ RN is a deterministic function of t ∈ [0, T ]
such that:

3.1 i)
dat

dt
+ Γ∗tat ≤ 0 (componentwise),

3.1 ii) at ≥ gt, (that is, ai
t ≥ gi

t, i = 1, . . . , N),

3.1 iii) aT = gT and

3.1 iv)
(
− dai

t

dt
− (Γ∗tat)i

)
(ai

t− gi
t) = 0, 1 ≤ i ≤

N.

Then 〈at, Xt〉 = supt≤τ≤T E
[πτ

πt
〈gτ , Xτ〉|Ft

]
, where

the supremum is over all stopping times with
values in [t, T ].
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Remark:

The basic lemma that is used to establish this

is:

Lemma 3.2

Suppose a = {at, 0 ≤ t ≤ T} is a solution

of the linear complementarity problem (i), (ii),

(iii), (iv) of Theorem 3.1. Write

At = 〈at, Xt〉.
Then {πtAt, . t ≥ 0} is a supermartingale.
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We have an alternative formulation with vari-

ational inequalities.

Write

K(t) ={x ∈ RN |xi ≥ gi
t for 1 ≤ i ≤ N}

K ={v : [0,∞) → RN which are once

continuously differentiable with

vt ∈ K(t) for all t ∈ [0, T ]}.

Note that if a = {at, 0 ≤ t ≤ T} is a solution

of the linear complementarity problem 3.1(i),

3.1(ii), 3.1(iii), 3.1(iv) then a ∈ K.
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Definition 3.3

A deterministic function

a = {at ∈ RN , 0 ≤ t ≤ T}
is a solution of the (related) variational in-

equality if:

i) a ∈ K

ii) −
〈

dat

dt
, vt−at

〉
−〈Γ∗tat, vt−at〉 ≥ 0 ∀v ∈ K

iii) aT = gT ∈ RN .
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Theorem 3.4

The function a is a solution of the linear com-

plementarity problem of Theorem 3.1 if and

only if a is a solution of the variational inequal-

ity of Definition 3.3.

Remark:

It seems easier to relate the linear complemen-

tarity problem to the optimal stopping prob-

lem, but existence, uniqueness, continuous de-

pendency results are easier to derive via the

variational inequality formulation.

We now cite a list of results.

19



4. Existence and Uniqueness

There is a unique solution to the variational

inequality.

Any solution of the variational equality de-

pends continuously on the input data (Γ, g).

From now on we will assume that u → (Γu, gu)

has sufficient smoothness.

To establish existence we use use the penalty

approach.

That is, for ε > 0 we consider the system of

ordinary differential equations:

− daε
t

dt
− Γ∗taε

t =
1

ε
(gt − aε

t)
+,

aε
T = gε

T .
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For each ε > 0, there is a unique solution.

The family of solutions {aε | ε > 0} is equi-

continuous. This is established by adapting

arguments from Bensoussan and Lions (1982).

The Ascoli-Arzela theorem give the conver-

gence of a subsequence of these solutions.

It is then shown that this limit is a solution of

the variational inequality. Along the way the

boundedness for the first derivative of Γ and

the second derivative of g is assumed.
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5. Numerical Solution of the Variational

Inequality

We discuss the variational inequality:

i) a ∈ K,

ii) −
〈

dat

dt
, vt−at

〉
−〈Γ∗tat, vt−at〉 ≥ 0 ∀v ∈ K,

iii) aT = gT ∈ RN .

Write ∆t = T/N

an = an∆t n = 0,1, . . . , N − 1

aN = gT .

The values of an will be defined by backward

recursion starting with aN = gT .
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Suppose an+1 is determined. an will be deter-

mined by requiring

−
〈

an+1 − an

∆t
, v − an

〉
− 〈Γ∗n∆ta

n, v − an〉 ≥ 0

and

an ≥ gn∆t, for all v ≥ gn∆t.

That is,

−〈Γ∗n∆ta
n, v−an〉+ a

∆t
〈an, v−an〉 ≥ 1

∆t
〈an+1, v−an〉 .

We can show this variational inequality has a

solution an for ∆t sufficiently small.

23



This problem is of the form:

Find x ∈ RN , x ≥ g (componentwise) with

〈Ax, y − x〉 ≥ 〈b, y − x〉
for all y ≥ g (componentwise).

In our case

A = Γ∗n∆t −
1

∆t
IN ,

b =
an+1

∆t
, and x, y, b, g ∈ RN .

This problem has a unique solution (see Kinder-

lehrer and Stampacchia, for example).
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The problem can be formulated as a linear

complementarity problem, (LCP). Write

M =
1

∆t
IN − Γ∗n∆t

q = − an+1

∆t
−Mgn∆t

x = an − gn∆t.

Assume there is a solution x of this linear com-

plementarity problem

w = Mx + q ≥ 0

x ≥ 0

〈w, x〉 = 0.

then an = x + gn∆t.

There is an extensive literature on such prob-

lems. C.W. Cryer (1983) provides an extensive

discussion.
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The matrix M has positive diagonal elements

and Mij ≤ 0 if i 6= j. These conditions allow

the so called Saigal algorithm to provide a so-

lution in N steps for just this situation (see van

der Hoek (1998) where a direct proof was pro-

vided for the case of triangular M which easily

generalizes to this situation as well).
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This is the Saigal algorithm:

Step 1: Write I = {i : qi < 0}

Step 2: If I = φ, Stop, and set x = 0, w = q

Step 3: Choose i ∈ I.

Step 3.1: If Mii ≤ 0 Stop. No solution exists.

Step 3.2: Otherwise, pivot on Mii.

Rename the transformed system w = Mx + q.

Drop column i from M and go to Step 1.

Remark:

As M has only N columns this procedure stops

after at most N steps. In our case Mii > 0 so

Step 3.1 does not occur.
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