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Motivation

Asset returns are non normal and have fat tails, Blattberg
& Gonedes (1974), Platen & Rendek (2008).

Volatility changes with time and the changes are
unpredictable, Scott (1987).

Though persistent, volatility has a tendency of reverting to
a long - run average.

Range of research on European option pricing models
under stochastic volatility; Hull & White (1987), Scott
(1987), Wiggins (1987), Heston (1993), etc.

Adolfsson at. el (2009) extend the Heston model to pricing
American Options.

Multifactor models suggest that asset returns are driven by
many unpredictable processes.

The need to consider two or more stochastic volatility
processes.
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The Problem Statement

The risk - neutral dynamics of the driving processes, S, v1

and v2,

dS = (r − q)Sdt +
√

v1SdW̃1 +
√

v2SdW̃2,

dv1 = [κ1θ1 − (κ1 + λ1)v1]dt + ρ13σ1
√

v1dW̃1

+
√

1 − ρ2
13σ1

√
v1dW̃3,

dv2 = [κ2θ2 − (κ2 + λ2)v2]dt + ρ24σ2
√

v2dW̃2

+
√

1 − ρ2
24σ2

√
v2dW̃4. (1.1)

W̃i for i = 1, · · · , 4 are independent Wiener processes.

ρ13 is correlation between W̃1 and W̃3 whilst ρ24 denotes
the correlation between W̃2 and W̃4.

No correlation between W̃1 & W̃2, and W̃3 & W̃4.
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Pricing Partial Differential Equation

We set τ = T − t , S = ex and C(τ, x , v1, · · · , vn) to be the
pricing function. Exploiting the techniques of Jamshidian’s
(1992) yields the pricing PDE

∂C
∂τ

= LC − rC + 1x≥ln b(τ,v1,v2)(qex − rK ), (1.2)

where
L =

„

r − q −
1

2
v1 −

1

2
v2

«

∂

∂x
+ Φ1

∂

∂v1
− β1v1

∂

∂v1
+ Φ2

∂

∂v2

− β2v2
∂

∂v2
+

1

2
v1

∂2

∂x2
+

1

2
v2

∂2

∂x2
+ ρ13σ1v1

∂2

∂x∂v1

+ ρ14σ2v2
∂2

∂x∂v2
+

1

2
σ

2
1v1

∂2

∂v2
1

+
1

2
σ

2
2v2

∂2

∂v2
2

, (1.3)

and
Φ1 = κ1θ1, Φ2 = κ2θ2, β1 = κ1 + λ1 and β2 = κ2 + λ2.
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Transition Probability Density PDE

Eqn (1.3) is solved subject to the initial and boundary
conditions,

C(0, x , v1, v2) = (ex − K )+, −∞ < x < ∞, (1.4)

b(τ, v1, v2) − K = C(τ, b(τ, v1, v2), v1, v2). (1.5)

Smooth pasting condition can also be imposed depending
on the particular problem considered.

After effecting the transformation Sj = exj the transition
density function U(τ, x , v1, v2) for the SDE system (1.1) is a
solution of the backward Kolmogorov PDE,

∂U
∂τ

= LU (1.6)

Equation (1.6) is to be solved subject to the initial condition,

U(0, x , v1, v2; x0, v1,0, v2,0) = δ(x − x0)δ(v1 − v1,0)δ(v2 − v2,0).
(1.7)
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Useful Result from PDE Theory

Duhamel’s principle states that the solution to the one
dimensional inhomogeneous parabolic PDE of the form,

∂U
∂τ

= LU + f (τ, x),

subject to the initial condition,

U(0, x) = φ(x),

can be represented as,

U(τ, x) =

∫ ∞

−∞

φ(y)U(τ, x − y)dy (1.8)

+

∫

τ

0

∫ ∞

−∞

f (ξ, y)U(τ − ξ, x − y)dydξ.

Here, L is a parabolic partial differential operator.
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General Solution of Inhomogeneous PDE

By use of Duhamel’s principle, the solution of the American
call option pricing PDE (1.3) can be represented as,

C(τ, x , v1, v2) = CE(τ, x , v1, v2) + CP(τ, x , v1, v2), (1.9)

where,

CE (τ, x , v1, v2) = e−rτ
∫ ∞

0

∫ ∞

0

∫ ∞

−∞

(eu − K )+

×U(τ ; x , v1, v2; u, w1, w2)dudw1dw2,

CP(τ, x , v1, v2) =

∫ τ

0
e−r(τ−ξ)

∫

∞

0

∫

∞

0

∫

∞

ln b(ξ,w1,w2)

(qeu − rK )

×U(τ − ξ; x , v1, v2; u, w1, w2)dudw1dw2dξ.

The 1st part of (1.9) is the European Option component
and the 2nd is the Early Exercise premium.
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Explicit Form of the Transition Density Function

A Fourier transform is applied to the log S variable followed
by Laplace transforms to the v variables of the PDE (1.6)
and solving the resulting system of PDE by the method of
characteristics.

Once the system of PDEs is solved, we use the tabulated
results in Abramowitz and Stegun (1964) to find the inverse
Laplace transform of the resulting solution.

Application of the inverse Fourier transform to the resulting
solution yields the transition density function as,

U(τ, log S, v1, v2) =
1

2π

Z

∞

−∞

e−iη ln S

(

eiηS0−iη(r−q)
2
Y

j=1

"

exp

8

<

:

0

@

Θj − Ωj

σ2
j

1

A

“

vj − vj,0 + Φj τ
”

9

=

;

× exp

8

<

:

−

0

@

2Ωj

σ2
j (e

Ωj τ − 1)

1

A

“

vj,0e
Ωj τ + vj

”

9

=

;

2Ωj e
Ωj τ

σ2
j (e

Ωj τ − 1)

0

@

vj,0e
Ωj τ

vj

1

A

Φj
σ2

j

−
1
2

× I 2Φj
σ2

j

−1

0

@

4Ωj

σ2
j (e

Ωj τ − 1)
(vj vj,0e

Ωj τ )
1
2

1

A

#)

dη. (1.10)
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The American Call Option Price

By letting V (τ, S, v1, v2) ≡ C(τ, log S, v1, v2) and approximating
the early exercise boundary with the expression,

ln b(τ, v1, v2) ≈ b0(τ) + b1(τ)v1 + b2(τ)v2, (1.11)

the value of the American call option can be expressed as,

V (τ, S, v1, v2) ≈ VE (τ, S, v1, v2) + V A
P (τ, S, v1, v2), (1.12)

The component on the RHS can be represented as,
VE (τ, S, v1, v2) = e−qτ SP1(τ, S, v1, v2; K ) − e−rτ KP2(τ, S, v1, v2; K ), (1.13)

where,

Pj (τ, S, v1, v2; K ) =
1

2
+

1

π

Z

∞

0
Re

 

gj (τ, S, v1, v2; η)e−iη ln K

iη

!

dη, (1.14)

for j = 1, 2.
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The Early Exercise Premium Component

The early exercise premium is given as
V A

P (τ, S, v1, v2) =

Z

τ

0
[qe−q(τ−ξ)SP̄A

1 (τ − ξ, S, v1, v2 ; b0(ξ), b1(ξ), b2(ξ))

− re−r (τ−ξ)KP̄A
2 (τ − ξ, S, v1, v2 ; b0(ξ), b1(ξ), b2(ξ))]dξ, (1.15)

with,
P̄A

j (τ − ξ,S, v1, v2; b0(ξ), b1(ξ), b2(ξ)) =
1

2
(1.16)

+
1

π

Z

∞

0
Re

 

ḡj (τ − ξ, S, v1, v2; η, b1(ξ), b2(ξ))e−iηb0(ξ)

iη

!

dη,

for j = 1, 2.
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Iterative Equations

Given equation (1.11), the value – matching condition can
be expressed as,

eb0(τ )+b1(τ )v1+b2(τ )v2 − K = V (τ, eb0(τ )+b1(τ )v1+b2(τ )v2 , v1, v2).
(1.17)

The implicit time functions are found by solving the system,

b0(τ) = ln[V (τ, eb0(τ )+b1(τ )v1+b2(τ )v2 , v1, v2) + K ] − b1(τ)v1 − b2(τ)v2,

b1(τ) =
1
v1

(

ln[V (τ, eb0(τ )+b1(τ )v1+b2(τ )v2 , v1, v2) + K ] − b0(τ) − b2(τ)v2

)

b2(τ) =
1
v2

(

ln[V (τ, eb0(τ )+b1(τ )v1+b2(τ )v2 , v1, v2) + K ] − b0(τ) − b1(τ)v1

)

(1.18)
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Numerical Implementation

In implementing equations (1.12) and the system (1.18),
we treat the American option as a Bermudan option.

The time interval is partitioned into M – equally spaced
subintervals of length h = T/M.

It has been shown in Kim (1990) that the early exercise
boundary at maturity is,

b(0, v1, v2) = max
(

r
q

K , K
)

. (1.19)

By comparing coefficients, we can readily deduce that,

b0(0) = max
(

K ,
r
q

K
)

, b1(0) = 0, and, b2(0) = 0.

(1.20)
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Numerical Implementation cont...

The discretized version of the pricing function is,

V (hm, S, v1, v2) = VE (hm, S, v1, v2) + V A
P (hm, S, v1, v2).

(1.21)

At each time we determine the three unknown boundary
terms, bm

0 = b0(hm), bm
1 = b1(hm) and bm

2 = b2(hm).

We solve iteratively,

bm
0,k = ln[V (hm, ebm

0,k +bm
1,k−1v1+bm

2,k−1v2 , v1, v2) + K ] − bm
1,k−1v1 − bm

2,k−1v2,

bm
1,k =

1
v1

(

ln[V (hm, ebm
0,k +bm

1,k v1+bm
2,k−1v2 , v1, v2) + K ] − bm

0,k − bm
2,k−1v2

)

,

bm
2,k =

1
v2

(

ln[V (hm, ebm
0,k +bm

1,k v1+bm
2,k v2 , v1, v2) + K ] − bm

0,k − bm
1,k v1

)

.

(1.22)

We continuously repeat the iterative process until a
tolerance level is reached.
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Numerical Results

Parameter Value v1 – Parameter Value v2 – Parameter Value

K 100 θ1 6% θ2 8%
r 3% κ1 3 κ2 4
q 5% σ1 10% σ2 11%
T 0.5 ρ12 ±0.5 ρ13 ±0.5
M 200 λ1 0 λ2 0

vmax
1 20% vmax

2 20%

Table: Parameters used for the American call option. The v1 column
contains are parameters for the first variance process whilst the v2

column contains parameters for the second variance process.
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Early Exercise Boundary Surface
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Figure: Early Exercise Surface of the American Call option when
v2 = 0.67%, ρ13 = 0.5 and ρ24 = 0.5. All other parameters are as
presented in Table 1.1.
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Effects of Stochastic Volatility on the Early
Exercise Boundary
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Comparing Early Exercise Boundaries of the American Call Option
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Figure: Exploring the effects of stochastic volatility on the early
exercise boundary of the American call option for varying correlation
coefficients when σGBM = 0.3742, v1 = 6% and v2 = 8%. All other
parameters are provided in Table 1.1.
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Early Exercise Boundary Comparisons
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Figure: Comparing early exercise boundaries from the MOL and
Numerical integration approach when the two instantaneous
variances are fixed. Here, v1 = 0.67%, v2 = 13.33%, ρ13 = 0.5 and
ρ24 = 0.5 with all other parameters as given in Table 1.1.
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Price Comparisons
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Figure: Option prices from the Geometric Brownian motion minus
option prices from the Stochastic volatility model for varying
correlation coefficients. Here, σGBM = 0.3742, v1 = 6% and v2 = 8%
with all other parameters provided in Table 1.1.
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Price Comparisons

S Numerical Integration MOL GBM

60 0.2036 0.2029 0.1850
80 2.4088 2.400 2.4154
100 9.8082 9.7918 9.9452
120 23.1069 23.0920 23.3006
140 40.4756 40.4686 40.5922
160 60 60 60
180 80 80 80
200 100 100 100

Table: American call option price comparisons when v1 = 0.67%,
v2 = 13.33%, ρ13 = 0.5, ρ24 = 0.5. We have taken GBM volatility to
be σGBM = 0.3741657 and this is found by using the formula
σGBM =

√
θ1 + θ2.
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Summary

We have derived the integral representation of an
American call option when the underlying asset is driven
by two stochastic variance processes.

An explicit form of the transition density function has been
provided.

We approximated the three dimensional early – exercise
boundary by a multivariate log – linear function.

Numerical results and comparisons with alternative
methods have been presented.
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Possible Extensions

Incorporating more than two stochastic volatility processes.

Generalizing to Multiple assets under Multiple stochastic
volatility.

Performing empirical studies on multifactor models.
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