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(BSM) model.

Two main methods under the BSM model

1 Regression based method and its variations, e.g., Longstaff-Schwartz’s
least-squares method, etc.

2 Bally et al.’s Malliavin calculus method.

The main idea of this method is to express a conditional expectation as

the ratio of two unconditional expectations.
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Introduction (2)

We discuss the pricing and sensitivity estimation of American options
under a special type of Levy processes - subordinated Levy processes.

A subordinated Levy process (SLP) is also called subordinated
Brownian motion (SBM) or time changed Brwonian motion.

Two typical such processes are normal inverse Gaussian (NIG) process
and variance gamma (VG) process.
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integrable r.v.s F & G , denoted by IBP(F ,G ),

if ∃ a square integrable random weight πF (G ) such that

E
(
φ′(F )G

)
= E (φ(F )πF (G ))

for any φ ∈ C ∞
b (R)= the set of bounded and infinitely differentiable

functions.
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Lemma 1 (Bally et al.): If both IBP(F , 1) and IBP(F ,G ) hold, then

E (G | F = α) =
E [H(F − α)πF (G )]

E [H(F − α)πF (1)]

with the convention that E (G | F = α) = 0 if
E [H(F − α)πF (1)] = 0;

H(x) = 1{x≥0}(x), x ∈ R - the Heaviside function.

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqi.wang@ca.pwc.com) (Wilfrid Laurier University, Waterloo, Ontario, Canada & PricewaterhousePricing and Hedging American Options under Exponential Subordinated Levy Processes byJune 23, 2010 13 / 42



Introduction(12)

Lemma 2 (Bally et al.): If X = x exp(µ + σ∆) with ∆ ∼ N(0, δ),
then
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Lemma 2 (Bally et al.): If X = x exp(µ + σ∆) with ∆ ∼ N(0, δ),
then

E
[
f ′(X )g(X )

]
= E

{
f (X )

[
g(X )

σX
(

∆

δ
+ σ) − g ′(X )

]}

for f , g ∈ C 1.
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Single-asset case (1)

Consider an asset whose price process is given by the following
exponential subordinated Levy process
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Single-asset case (1)

Consider an asset whose price process is given by the following
exponential subordinated Levy process

St = S0 exp (µYt + σWYt
) , t > 0.

where {Yt} is a subordinator process.

Denote Ft = σ(Yr , r ∈ [0, t ]), the σ− field generated by
{Yr , r ∈ [0, t ]}.
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Single-asset case (2)

Proposition 1: Assume that St is given as before. Let 0 < s < t,
g : R → R be a function with polynomial growth.
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where
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Single-asset case (3)

(2) For fixed α > 0, let φ ∈ C 1
b (R) = {φ ∈ C 1(R) and φ bounded}

be such that
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(2) For fixed α > 0, let φ ∈ C 1
b (R) = {φ ∈ C 1(R) and φ bounded}

be such that

supp(φ′) ⊂ Bε(α) = (α − ε, α + ε) with ε > 0.

Let ψ̃ ∈ C 1
b (R) be such that ψ̃ |Bε(α)= 1. Then,
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}
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b (R)

where

π
ψ̃
s [g ](St) =

g(St)∆ψ̃Ws,t

σYs(Yt − Ys)

with ∆ψ̃Ws,t = ψ̃(Ss)∆Ws,t − ψ̃′(Ss)SsσYs(Yt − Ys).
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Single-asset case (4)

(3) The IBP(Ss ,
g(St )∆Ws,t

σYs (Yt−Ys )
) property holds, i.e.,
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2
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Single-asset case (5)

Theorem 1. (Conditional expectation formula without localization)
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Single-asset case (5)

Theorem 1. (Conditional expectation formula without localization)

(1) For any 0 < s < t, α > 0 and Φ,

E [Φ(St)|Ss = α] =
Ts,t [Φ](α)

Ts,t [1](α)
,
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Single-asset case (5)

Theorem 1. (Conditional expectation formula without localization)

(1) For any 0 < s < t, α > 0 and Φ,

E [Φ(St)|Ss = α] =
Ts,t [Φ](α)

Ts,t [1](α)
,

where

Ts,t [f ](α) = E

[
f (St)

H(Ss − α)

σYs(Yt − Ys)Ss
∆Ws,t

]
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Single-asset case (6)

(2) For any 0 < s < t, α > 0 and Φ,

∂αE [Φ(St)|Ss = α] =
Rs,t [Φ](α)Ts,t [1](α) − Rs,t [1](α)Ts,t [Φ](α)

(Ts,t [1](α))2 ,
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Single-asset case (6)

(2) For any 0 < s < t, α > 0 and Φ,

∂αE [Φ(St)|Ss = α] =
Rs,t [Φ](α)Ts,t [1](α) − Rs,t [1](α)Ts,t [Φ](α)

(Ts,t [1](α))2 ,

where

Rs,t [f ](α) =

− E

[
f (St)

H(Ss − α)

σYs(Yt − Ys)S2
s

(
∆W 2

s,t

σYs(Yt − Ys)
+ ∆Ws,t −

Yt

σ

)]
.
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Single-asset case (7)

Lemma 3 (Localization)
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Single-asset case (7)

Lemma 3 (Localization)

Let ψ : R →R+ = [0,∞) be a PDF and Ψ be its corresponding CDF.
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Single-asset case (7)

Lemma 3 (Localization)

Let ψ : R →R+ = [0,∞) be a PDF and Ψ be its corresponding CDF.

Then, conditional expressions are also true if Ts,t [f ](α) is replaced by
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Single-asset case (7)

Lemma 3 (Localization)

Let ψ : R →R+ = [0,∞) be a PDF and Ψ be its corresponding CDF.

Then, conditional expressions are also true if Ts,t [f ](α) is replaced by

T
ψ
s,t [f ](α) = E

[
f (St)

(
ψ(Ss − α) +

H(Ss − α) − Ψ(Ss − α)

σYs(Yt − Ys)Ss
∆Ws,t

)]
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Single-asset case (7)

Lemma 3 (Localization)

Let ψ : R →R+ = [0,∞) be a PDF and Ψ be its corresponding CDF.

Then, conditional expressions are also true if Ts,t [f ](α) is replaced by

T
ψ
s,t [f ](α) = E

[
f (St)

(
ψ(Ss − α) +

H(Ss − α) − Ψ(Ss − α)

σYs(Yt − Ys)Ss
∆Ws,t

)]

and Rs,t [f ](α) is replaced by

R
ψ
s,t [f ](α) = −E

{
f (St)

[
ψ(Ss − α)

∆Ws,t

σYs(Yt − Ys)

+
H(Ss − α) − Ψ(Ss − α)

σYs(Yt − Ys)S2
s

(
∆W 2

s,t

σYs(Yt − Ys)
+ ∆Ws,t −

Yt

σ

)]}
,

respectively.
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Single-asset case (8)

Theorem 2: (Conditional expectation formula with localization)
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Single-asset case (8)

Theorem 2: (Conditional expectation formula with localization)

Let ψ : R → [0,∞) be a PDF and Ψ be its corresponding CDF. For
any 0 < s < t, α > 0 and Φ, we have
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Single-asset case (8)

Theorem 2: (Conditional expectation formula with localization)

Let ψ : R → [0,∞) be a PDF and Ψ be its corresponding CDF. For
any 0 < s < t, α > 0 and Φ, we have

E [Φ(St)|Ss = α] =
T

ψ
s,t [Φ](α)

T
ψ
s,t [1](α)

,
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Single-asset case (8)

Theorem 2: (Conditional expectation formula with localization)

Let ψ : R → [0,∞) be a PDF and Ψ be its corresponding CDF. For
any 0 < s < t, α > 0 and Φ, we have

E [Φ(St)|Ss = α] =
T

ψ
s,t [Φ](α)

T
ψ
s,t [1](α)

,

and

∂αE [Φ(St)|Ss = α] =
R

ψ
s,t [Φ](α)T

ψ
s,t [1](α) − R

ψ
s,t [1](α)T

ψ
s,t [Φ](α)

(
T

ψ
s,t [1](α)

)2 ,

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqi.wang@ca.pwc.com) (Wilfrid Laurier University, Waterloo, Ontario, Canada & PricewaterhousePricing and Hedging American Options under Exponential Subordinated Levy Processes byJune 23, 2010 22 / 42



Single-asset case (8)

Theorem 2: (Conditional expectation formula with localization)

Let ψ : R → [0,∞) be a PDF and Ψ be its corresponding CDF. For
any 0 < s < t, α > 0 and Φ, we have

E [Φ(St)|Ss = α] =
T

ψ
s,t [Φ](α)

T
ψ
s,t [1](α)

,

and

∂αE [Φ(St)|Ss = α] =
R

ψ
s,t [Φ](α)T

ψ
s,t [1](α) − R

ψ
s,t [1](α)T

ψ
s,t [Φ](α)

(
T

ψ
s,t [1](α)

)2 ,

where T
ψ
s,t [Φ](α) and R

ψ
s,t [Φ](α) are given in the above.
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Multi-asset case (1)

Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes
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Multi-asset case (1)

Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

Si ;t = Si ;0 exp

(
µiYt +

d

∑
l=1

cilWl ;Yt

)
, i = 1, · · · , d ,
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Multi-asset case (1)

Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

Si ;t = Si ;0 exp

(
µiYt +

d

∑
l=1

cilWl ;Yt

)
, i = 1, · · · , d ,

where C = (cij )d×d is a matrix such that σ = (σij )d×d = CC ′ is the
covariance matrix (e.g., C can be taken as the Cholesky
decomposition of σ).,
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Multi-asset case (1)

Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

Si ;t = Si ;0 exp

(
µiYt +

d

∑
l=1

cilWl ;Yt

)
, i = 1, · · · , d ,

where C = (cij )d×d is a matrix such that σ = (σij )d×d = CC ′ is the
covariance matrix (e.g., C can be taken as the Cholesky
decomposition of σ).,

{Yt} is a subordinator process. For simplicity, assume that C is lower
triangular, i.e., cij = 0 for i < j .
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Multi-asset case (1)

Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

Si ;t = Si ;0 exp

(
µiYt +

d

∑
l=1

cilWl ;Yt

)
, i = 1, · · · , d ,

where C = (cij )d×d is a matrix such that σ = (σij )d×d = CC ′ is the
covariance matrix (e.g., C can be taken as the Cholesky
decomposition of σ).,

{Yt} is a subordinator process. For simplicity, assume that C is lower
triangular, i.e., cij = 0 for i < j .

Thus,

Si ;t = Si ;0 exp

(
µiYt +

i

∑
l=1

cilWl ;Yt

)
, i = 1, · · · , d ,
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Multi-asset case (2)

Denote Ft = σ(Yr , r ∈ [0, t ]).
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Multi-asset case (2)

Denote Ft = σ(Yr , r ∈ [0, t ]).

Let 0 < s < t, α > 0 and Φ ∈ εb(R
d) - the set of measurable

functions with polynomial growth.
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Multi-asset case (2)

Denote Ft = σ(Yr , r ∈ [0, t ]).

Let 0 < s < t, α > 0 and Φ ∈ εb(R
d) - the set of measurable

functions with polynomial growth.

To express the conditional expectation E [Φ(St)|Ss = α], we try to
use the results in one-dimensional case.
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Multi-asset case (2)

Denote Ft = σ(Yr , r ∈ [0, t ]).

Let 0 < s < t, α > 0 and Φ ∈ εb(R
d) - the set of measurable

functions with polynomial growth.

To express the conditional expectation E [Φ(St)|Ss = α], we try to
use the results in one-dimensional case.

To this purpose, we consider an auxiliary process S̃t with independent
coordinates conditional on Ft .
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Multi-asset case (2)

Denote Ft = σ(Yr , r ∈ [0, t ]).

Let 0 < s < t, α > 0 and Φ ∈ εb(R
d) - the set of measurable

functions with polynomial growth.

To express the conditional expectation E [Φ(St)|Ss = α], we try to
use the results in one-dimensional case.

To this purpose, we consider an auxiliary process S̃t with independent
coordinates conditional on Ft .

Let pt = (p1;t , · · · , pd;t) be a fixed C 1 function (to be determined
later) and let

S̃i ;t = Si ;0 exp (µiYt + pit + ciiWi ;Yt
) , i = 1, · · · , d ,
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Multi-asset case (3)

Lemma 4 (Relationship between {St} & {S̃t})
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Multi-asset case (3)

Lemma 4 (Relationship between {St} & {S̃t})

Denote C̃ = (c̃ij ), c̃ij =
cij

cjj
, i , j = 1, · · · , d .
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Multi-asset case (3)

Lemma 4 (Relationship between {St} & {S̃t})

Denote C̃ = (c̃ij ), c̃ij =
cij

cjj
, i , j = 1, · · · , d .

If Ĉ = C̃−1 exists, then any t ≥ 0,

St = Ft(S̃t) and S̃t = Gt(St) = F−1
t (St)
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Multi-asset case (3)

Lemma 4 (Relationship between {St} & {S̃t})

Denote C̃ = (c̃ij ), c̃ij =
cij

cjj
, i , j = 1, · · · , d .

If Ĉ = C̃−1 exists, then any t ≥ 0,

St = Ft(S̃t) and S̃t = Gt(St) = F−1
t (St)

where Ft ,Gt : R
d
+ → R

d
+ are given by

lnFt(y ) = −C̃pt + C̃ ln y + (I − C̃ )(lnS0 + µYt),
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Multi-asset case (3)

Lemma 4 (Relationship between {St} & {S̃t})

Denote C̃ = (c̃ij ), c̃ij =
cij

cjj
, i , j = 1, · · · , d .

If Ĉ = C̃−1 exists, then any t ≥ 0,

St = Ft(S̃t) and S̃t = Gt(St) = F−1
t (St)

where Ft ,Gt : R
d
+ → R

d
+ are given by

lnFt(y ) = −C̃pt + C̃ ln y + (I − C̃ )(lnS0 + µYt),

and
lnGt(z) = pt + σ̂ ln z + (I − σ̂)(lnS0 + µYt)

respectively,
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Multi-asset case (3)

Lemma 4 (Relationship between {St} & {S̃t})

Denote C̃ = (c̃ij ), c̃ij =
cij

cjj
, i , j = 1, · · · , d .

If Ĉ = C̃−1 exists, then any t ≥ 0,

St = Ft(S̃t) and S̃t = Gt(St) = F−1
t (St)

where Ft ,Gt : R
d
+ → R

d
+ are given by

lnFt(y ) = −C̃pt + C̃ ln y + (I − C̃ )(lnS0 + µYt),

and
lnGt(z) = pt + σ̂ ln z + (I − σ̂)(lnS0 + µYt)

respectively,

with y = (y1, · · · , yd ), z = (z1, · · · , zd ) ∈ R
d
+ = {u ∈ R

d ,
ui > 0, i = 1, · · · , d},
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Multi-asset case (3)

Lemma 4 (Relationship between {St} & {S̃t})

Denote C̃ = (c̃ij ), c̃ij =
cij

cjj
, i , j = 1, · · · , d .

If Ĉ = C̃−1 exists, then any t ≥ 0,

St = Ft(S̃t) and S̃t = Gt(St) = F−1
t (St)

where Ft ,Gt : R
d
+ → R

d
+ are given by

lnFt(y ) = −C̃pt + C̃ ln y + (I − C̃ )(lnS0 + µYt),

and
lnGt(z) = pt + σ̂ ln z + (I − σ̂)(lnS0 + µYt)

respectively,

with y = (y1, · · · , yd ), z = (z1, · · · , zd ) ∈ R
d
+ = {u ∈ R

d ,
ui > 0, i = 1, · · · , d},

and lnu = (ln u1, · · · , ln ud ) if yi > 0 for i = 1, · · · , d .
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Multi-asset case (4)

Lemma 4 ⇒
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Multi-asset case (4)

Lemma 4 ⇒

Si ;t = Fi ;t(S̃t) = Si ;0e
µiYt

d

∏
l=1




S̃l ;t

Sl ;0
e

−


µl+

d

∑
l=1

c̃ilpl ;t


Yt




c̃il

, i =

1, · · · , d ,
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Multi-asset case (4)

Lemma 4 ⇒

Si ;t = Fi ;t(S̃t) = Si ;0e
µiYt

d

∏
l=1




S̃l ;t

Sl ;0
e

−


µl+

d

∑
l=1

c̃ilpl ;t


Yt




c̃il

, i =

1, · · · , d ,

S̃i ;t = Gi ;t(St) = Si ;0e
pi ;t

d

∏
l=1

(
Sl ;t

Sl ;0
e−µlYt

)ĉil

, i = 1, · · · , d .
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Multi-asset case (4)

Theorem 3: (Conditional expectation formula without localization)
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Multi-asset case (4)

Theorem 3: (Conditional expectation formula without localization)

(1) For any 0 < s < t, α ∈ R
d
+ and Φ ∈ εb(R

d ), we have

E [Φ(St)|Ss = α] =
Ts,t [Φ](α)

Ts,t [1](α)
,
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Multi-asset case (4)

Theorem 3: (Conditional expectation formula without localization)

(1) For any 0 < s < t, α ∈ R
d
+ and Φ ∈ εb(R

d ), we have

E [Φ(St)|Ss = α] =
Ts,t [Φ](α)

Ts,t [1](α)
,

where

Ts,t [f ](α) = E

[
f (St)

d

∏
l=1

H(S̃l ;s − α̃l )

cllYs(Yt − Ys)S̃l ;s

∆Ws,t;l

]
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Multi-asset case (4)

Theorem 3: (Conditional expectation formula without localization)

(1) For any 0 < s < t, α ∈ R
d
+ and Φ ∈ εb(R

d ), we have

E [Φ(St)|Ss = α] =
Ts,t [Φ](α)

Ts,t [1](α)
,

where

Ts,t [f ](α) = E

[
f (St)

d

∏
l=1

H(S̃l ;s − α̃l )

cllYs(Yt − Ys)S̃l ;s

∆Ws,t;l

]

with S̃s = Gs(Ss), α̃ = Gs(α), and H(x) the same as before,
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Multi-asset case (4)

Theorem 3: (Conditional expectation formula without localization)

(1) For any 0 < s < t, α ∈ R
d
+ and Φ ∈ εb(R

d ), we have

E [Φ(St)|Ss = α] =
Ts,t [Φ](α)

Ts,t [1](α)
,

where

Ts,t [f ](α) = E

[
f (St)

d

∏
l=1

H(S̃l ;s − α̃l )

cllYs(Yt − Ys)S̃l ;s

∆Ws,t;l

]

with S̃s = Gs(Ss), α̃ = Gs(α), and H(x) the same as before,

and ∆Ws,t;l = YtWl ;Ys
− YsWl ;Yt

+ cllYs(Yt − Ys).
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Multi-asset case (5)

(2) For any 0 < s < t, α ∈ R
d
+, Φ ∈ εb(R

d), and i = 1, · · · , d , we
have

∂αi
E [Φ(St)|Ss = α]

=
d

∑
l=1

ĉil

α̃l

αi

Rs,t;l [Φ](α)Ts,t [1](α) − Rs,t;l [1](α)Ts,t [Φ](α)

(Ts,t [1](α))2 ,
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Multi-asset case (5)

(2) For any 0 < s < t, α ∈ R
d
+, Φ ∈ εb(R

d), and i = 1, · · · , d , we
have

∂αi
E [Φ(St)|Ss = α]

=
d

∑
l=1

ĉil

α̃l

αi

Rs,t;l [Φ](α)Ts,t [1](α) − Rs,t;l [1](α)Ts,t [Φ](α)

(Ts,t [1](α))2 ,

where Ts,t [f ](α) is given above and

Rs,t;l [f ](α) = −E

{
f (St)

H(S̃l ;s − α̃l )

cllYs(Yt − Ys)S̃l ;s

[
(∆Ws,t;l )

2

cllYs(Yt − Ys)

+∆Ws,t;l −
Yt

cll

] d

∏
j=1,j 6=l

H(S̃j ;s − α̃j )

cjjYs(Yt − Ys)S̃j ;s

∆Ws,t;j

}
.
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Multi-asset case (6)

Lemma 5 (Localization)
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Multi-asset case (6)

Lemma 5 (Localization)

Let ψ(x) =
d

∏
i=1

ψi (xi ), where x = (x1, · · · , xd ) ∈ R
d , each

ψi : R →R+ = [0,∞) is a PDF with its corresponding CDF Ψi .
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Multi-asset case (6)

Lemma 5 (Localization)

Let ψ(x) =
d

∏
i=1

ψi (xi ), where x = (x1, · · · , xd ) ∈ R
d , each

ψi : R →R+ = [0,∞) is a PDF with its corresponding CDF Ψi .

Then the localizations of Ts,t [f ](α) and Rs,t;l [f ](α) defined above,
have the following forms
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Multi-asset case (6)

Lemma 5 (Localization)

Let ψ(x) =
d

∏
i=1

ψi (xi ), where x = (x1, · · · , xd ) ∈ R
d , each

ψi : R →R+ = [0,∞) is a PDF with its corresponding CDF Ψi .

Then the localizations of Ts,t [f ](α) and Rs,t;l [f ](α) defined above,
have the following forms

Ts,t [f ](α) = T
ψ
s,t [f ](α)

= E

[
f (St)

d

∏
i=1

(
ψi (Si ;s − αi ) +

H(S̃is − α̃i ) − Ψi (S̃is − α̃i )

ciiYs(Yt − Ys)S̃is

∆Ws,t;i

)]
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Multi-asset case (7)

and

Rs,t;l [f ](α) = R
ψ
s,t;l [f ](α) = −E

{
f (St)

[
ψl (S̃l ;s − α̃l )

∆Ws,t;l

cllYs(Yt − Ys)S̃l ;s

+
H(S̃l ;s − α̃l ) − Ψl (S̃l ;s − α̃l )

cllYs(Yt − Ys)(S̃l ;s)2

(
∆W 2

s,t;l

cllYs(Yt − Ys)
+ ∆Ws,t;l −

Yt

cll

)]

×
d

∏
q=1,q 6=l

(
ψq(S̃q;s − α̃q) +

H(S̃q;s − α̃q) − Ψq(S̃q;s − α̃q)

cssYs(Yt − Ys)S̃q;s

∆Ws,t;q

)}
,

respectively.
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Multi-asset case (8)

Theorem 4: (Conditional expectation formula with localization)
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Multi-asset case (8)

Theorem 4: (Conditional expectation formula with localization)

For any 0 < s < t, α ∈ R
d
+, Φ ∈ εb(R

d ), and ψ ∈ Ld (the set of
d − dim . localization functions in product forms),
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Multi-asset case (8)

Theorem 4: (Conditional expectation formula with localization)

For any 0 < s < t, α ∈ R
d
+, Φ ∈ εb(R

d ), and ψ ∈ Ld (the set of
d − dim . localization functions in product forms),

we have

E [Φ(St)|Ss = α] =
T

ψ
s,t [Φ](α)

T
ψ
s,t [1](α)

,
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Multi-asset case (8)

Theorem 4: (Conditional expectation formula with localization)

For any 0 < s < t, α ∈ R
d
+, Φ ∈ εb(R

d ), and ψ ∈ Ld (the set of
d − dim . localization functions in product forms),

we have

E [Φ(St)|Ss = α] =
T

ψ
s,t [Φ](α)

T
ψ
s,t [1](α)

,

and for each i = 1, · · · , d ,

∂αi
E [Φ(St)|Ss = α]

=
d

∑
l=1

ĉil
α̃l

αi

R
ψ
s,t;l [Φ](α)T

ψ
s,t [1](α) − R

ψ
s,t;l [1](α)T

ψ
s,t [Φ](α)

(
T

ψ
s,t [1](α)

)2
,

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqi.wang@ca.pwc.com) (Wilfrid Laurier University, Waterloo, Ontario, Canada & PricewaterhousePricing and Hedging American Options under Exponential Subordinated Levy Processes byJune 23, 2010 31 / 42



Multi-asset case (8)

Theorem 4: (Conditional expectation formula with localization)

For any 0 < s < t, α ∈ R
d
+, Φ ∈ εb(R

d ), and ψ ∈ Ld (the set of
d − dim . localization functions in product forms),

we have

E [Φ(St)|Ss = α] =
T

ψ
s,t [Φ](α)

T
ψ
s,t [1](α)

,

and for each i = 1, · · · , d ,

∂αi
E [Φ(St)|Ss = α]

=
d

∑
l=1

ĉil
α̃l

αi

R
ψ
s,t;l [Φ](α)T

ψ
s,t [1](α) − R

ψ
s,t;l [1](α)T

ψ
s,t [Φ](α)

(
T

ψ
s,t [1](α)

)2
,

where T
ψ
s,t [f ](α) and R

ψ
s,t;l [f ](α) are defined earlier.
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Algorithms (1)

The American option with payoff Φ and maturity T is usually
approximated by a Bermudan option with price V (0,S0) and delta
∆(0,S0), where S0 is the initial underlying asset price.
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Algorithms (1)

The American option with payoff Φ and maturity T is usually
approximated by a Bermudan option with price V (0,S0) and delta
∆(0,S0), where S0 is the initial underlying asset price.

To find V (0,S0) and ∆(0,S0), we can use the formulas for the
conditional expectations discussed in the previous sections.
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Algorithms (1)

The American option with payoff Φ and maturity T is usually
approximated by a Bermudan option with price V (0,S0) and delta
∆(0,S0), where S0 is the initial underlying asset price.

To find V (0,S0) and ∆(0,S0), we can use the formulas for the
conditional expectations discussed in the previous sections.

To this end, we equally subdivide the interval [0,T ] into m(> 1)
subintervals: 0 = t0 < t1 < · · · < tm = T , tj = jh with step size
h = T/m.
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Algorithms (2)

Then, V (0,S0) is approximated by V0(S0), where Vj (Sjh) is defined
recursively as follows:
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Algorithms (2)

Then, V (0,S0) is approximated by V0(S0), where Vj (Sjh) is defined
recursively as follows:

Vm(ST ) = Φ(ST ),

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqi.wang@ca.pwc.com) (Wilfrid Laurier University, Waterloo, Ontario, Canada & PricewaterhousePricing and Hedging American Options under Exponential Subordinated Levy Processes byJune 23, 2010 33 / 42



Algorithms (2)

Then, V (0,S0) is approximated by V0(S0), where Vj (Sjh) is defined
recursively as follows:

Vm(ST ) = Φ(ST ),

Vj(Sjh) = max{Φ(Sjh), e
−hrE

[
Vj+1(S(j+1)h)|Sjh

]
},

j = m − 1, · · · , 1, 0;
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Algorithms (2)

Then, V (0,S0) is approximated by V0(S0), where Vj (Sjh) is defined
recursively as follows:

Vm(ST ) = Φ(ST ),

Vj(Sjh) = max{Φ(Sjh), e
−hrE

[
Vj+1(S(j+1)h)|Sjh

]
},

j = m − 1, · · · , 1, 0;

and ∆(0,S0) is approximated by

∆(S0) = E [∆(Sh)] ,
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Algorithms (2)

Then, V (0,S0) is approximated by V0(S0), where Vj (Sjh) is defined
recursively as follows:

Vm(ST ) = Φ(ST ),

Vj(Sjh) = max{Φ(Sjh), e
−hrE

[
Vj+1(S(j+1)h)|Sjh

]
},

j = m − 1, · · · , 1, 0;

and ∆(0,S0) is approximated by

∆(S0) = E [∆(Sh)] ,

with

∆(Sh) =

{
∂αΦ(α)|α=Sh

, if V1(Sh) < Φ(Sh)
e−hr ∂αE [V2(S2h)|Sh = α] |α=Sh

, if V1(Sh) > Φ(Sh)
.
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Algorithms (3)

Formulas for the conditional expectation E
[
Vj+1(S(j+1)h)|Sjh

]
and

the derivative ∂αE [V2(S2h)|Sh = α] are given earlier.
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Algorithms (3)

Formulas for the conditional expectation E
[
Vj+1(S(j+1)h)|Sjh

]
and

the derivative ∂αE [V2(S2h)|Sh = α] are given earlier.

Both E
[
Vj+1(S(j+1)h)|Sjh

]
and ∂αE [V2(S2h)|Sh = α] can be

approximated by Monte Carlo or quasi-Monte Carlo simulation
methods.
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Algorithms (3)

Formulas for the conditional expectation E
[
Vj+1(S(j+1)h)|Sjh

]
and

the derivative ∂αE [V2(S2h)|Sh = α] are given earlier.

Both E
[
Vj+1(S(j+1)h)|Sjh

]
and ∂αE [V2(S2h)|Sh = α] can be

approximated by Monte Carlo or quasi-Monte Carlo simulation
methods.

Thus, we need the samples of the asset prices, which are given by
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Algorithms (3)

Formulas for the conditional expectation E
[
Vj+1(S(j+1)h)|Sjh

]
and

the derivative ∂αE [V2(S2h)|Sh = α] are given earlier.

Both E
[
Vj+1(S(j+1)h)|Sjh

]
and ∂αE [V2(S2h)|Sh = α] can be

approximated by Monte Carlo or quasi-Monte Carlo simulation
methods.

Thus, we need the samples of the asset prices, which are given by

Si ;t = Si ;0 exp

(
µiYt +

d

∑
l=1

cilWl ;Yt

)
, i = 1, · · · , d .
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Algorithms (4)

The algorithm is given in the following steps:
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Algorithms (4)

The algorithm is given in the following steps:

10: Generating samples of {Yt}: Y k
tj
, j = 1, · · · ,m︸ ︷︷ ︸

time

; k = 1, · · · ,N︸ ︷︷ ︸
sample

.
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Algorithms (4)

The algorithm is given in the following steps:

10: Generating samples of {Yt}: Y k
tj
, j = 1, · · · ,m︸ ︷︷ ︸

time

; k = 1, · · · ,N︸ ︷︷ ︸
sample

.

20: Generating samples of {Wi ;Yt
} :

Wi ;Yt
, i = 1, · · · , d︸ ︷︷ ︸

dimension

; j = 1, · · · ,m︸ ︷︷ ︸
time

; k = 1, · · · ,N︸ ︷︷ ︸
sample

.

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqi.wang@ca.pwc.com) (Wilfrid Laurier University, Waterloo, Ontario, Canada & PricewaterhousePricing and Hedging American Options under Exponential Subordinated Levy Processes byJune 23, 2010 35 / 42



Algorithms (4)

The algorithm is given in the following steps:

10: Generating samples of {Yt}: Y k
tj
, j = 1, · · · ,m︸ ︷︷ ︸

time

; k = 1, · · · ,N︸ ︷︷ ︸
sample

.

20: Generating samples of {Wi ;Yt
} :

Wi ;Yt
, i = 1, · · · , d︸ ︷︷ ︸

dimension

; j = 1, · · · ,m︸ ︷︷ ︸
time

; k = 1, · · · ,N︸ ︷︷ ︸
sample

.

30: Computation of {Si ;t} :

Sk
i ;tj

= Si ;0 exp

(
µiY

k
tj

+
i

∑
l=1

cilWl ;Y k
tj

)
.
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Algorithms (5)

40: Computation of {S̃i ;t}:

S̃k
i ;tj

= Si ;0 exp

(
µiY

k
tj

+ pi ;tj + ciiWi ;Y k
tj

)
.
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Algorithms (5)

40: Computation of {S̃i ;t}:

S̃k
i ;tj

= Si ;0 exp

(
µiY

k
tj

+ pi ;tj + ciiWi ;Y k
tj

)
.

50: Computation of {∆Wi ,j ,k} :

∆Wi ,j ,k = ∆W k
tj ,tj+1;i = Y k

tj+1
Wi ;Y k

tj

− Y k
tj
WiY k

tj+1
+ ciiY

k
tj
(Y k

tj+1
− Y k

tj
).
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Algorithms (6)

60: Computation of {Vj (Stj )}: use formulas given earlier, where for
j = m − 1, · · · , 1, 0,
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Algorithms (6)

60: Computation of {Vj (Stj )}: use formulas given earlier, where for
j = m − 1, · · · , 1, 0,

E
[
Vj+1(Stj+1

)|Stj = α
]
|α=Sk

tj

=
Ttj ,tj+1

[Vj+1](α)

Ttj ,tj+1
[1](α)
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Algorithms (6)

60: Computation of {Vj (Stj )}: use formulas given earlier, where for
j = m − 1, · · · , 1, 0,

E
[
Vj+1(Stj+1

)|Stj = α
]
|α=Sk

tj

=
Ttj ,tj+1

[Vj+1](α)

Ttj ,tj+1
[1](α)

=

E

[
Vj+1(Stj+1

)
d

∏
l=1

H(S̃l ;tj
−α̃l )

σllYtj
(Ytj+1

−Ytj
)S̃l ;tj

∆WYtj
,Ytj+1

;l

]

E

[
d

∏
l=1

H(S̃l ;tj
−α̃l )

σllYtj
(Ytj+1

−Ytj
)S̃l ;tj

∆WYtj
,Ytj+1

;l

]
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Algorithms (6)

60: Computation of {Vj (Stj )}: use formulas given earlier, where for
j = m − 1, · · · , 1, 0,

E
[
Vj+1(Stj+1

)|Stj = α
]
|α=Sk

tj

=
Ttj ,tj+1

[Vj+1](α)

Ttj ,tj+1
[1](α)

=

E

[
Vj+1(Stj+1

)
d

∏
l=1

H(S̃l ;tj
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Algorithms (8)

80: Computation of option delta values
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Question

When estimating an expectation, E (X ), of a r.v. or r. vector,
variance or std error or root-mean-square error can be used to
measure the ”error”.
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What can be used when estimating the ratio of two expectations
E (X )
E (Y )

?
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Other type of Levy processes?

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqi.wang@ca.pwc.com) (Wilfrid Laurier University, Waterloo, Ontario, Canada & PricewaterhousePricing and Hedging American Options under Exponential Subordinated Levy Processes byJune 23, 2010 42 / 42


