Efficient Price Sensitivity Estimation of Path-Dependent Derivatives by Weak Derivatives

Dr. Carlos Sanz Chacón¹

¹Goethe University Frankfurt Computer Science and Mathematics Numerical Analysis & Goethe Center for Scientific Computing (G-CSC)

6th World Congress ot the Bachelier Finance Society June 2010

Introduction	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary

- 2 WDM: General Discussion
- 3 WDM: Models with Gaussian Transition Laws
- 4 Numerical Results

Discussion WDM: Gaussian Mo	odels Numerical Results	Summary
	Oiscussion WDM: Gaussian Mo 00000000000	Viscussion WDM: Gaussian Models Numerical Results

- 2 WDM: General Discussion
- 3 WDM: Models with Gaussian Transition Laws
- 4 Numerical Results
- 5 Summary

Introduction ○●○○	WDM: General Discussion	WDM: Gaussian Models	Numerical Results 00000	Summary 000
Motivatio	on			

- Development of more and more complicated financial products
 - more complex pricing
 - growing emphasis on risk management issues
 - global computation of risk figures such as VaR and CVaR
- Development of **efficient** methods for the computation of price sensitivities w.r.t. model parameters ("Greeks")
 - <u>Restriction</u>: **computation time**, since, in many cases, these risk figures are not available in **closed formulas**
 - requirement of numerical methods!

Monte Carlo method is often the only applicable method!

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary 000
Motivatio	on			

- Development of more and more complicated financial products
 - more complex pricing
 - growing emphasis on risk management issues
 - ${\scriptstyle \bullet}\,$ global computation of risk figures such as VaR and CVaR
- Development of **efficient** methods for the computation of price sensitivities w.r.t. model parameters ("Greeks")
 - <u>Restriction</u>: **computation time**, since, in many cases, these risk figures are not available in **closed formulas**
 - requirement of numerical methods!

Monte Carlo method is often the only applicable method!

Introduction ○●○○	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary 000
Motivatio	on			

- Development of more and more complicated financial products
 - more complex pricing
 - growing emphasis on risk management issues
 - ${\scriptstyle \bullet}\,$ global computation of risk figures such as VaR and CVaR
- Development of **efficient** methods for the computation of price sensitivities w.r.t. model parameters ("Greeks")
 - <u>Restriction</u>: **computation time**, since, in many cases, these risk figures are not available in **closed formulas**
 - requirement of numerical methods!

Monte Carlo method is often the only applicable method!

Description of the Estimation Problem

Derivative Price: Let J := ξ · E[L(Y)], where ξ denotes a deterministic discount factor, L a payoff and ϑ the parameter of interest. Then

$$rac{d}{dartheta} J(artheta) = \xi(artheta) \cdot rac{d}{dartheta} \mathbb{E}[L] + \mathbb{E}[L] \cdot rac{d}{dartheta} \xi(artheta).$$

- **Complicated case**: Financial derivatives with discontinuous payoff *L*, e.g., *L* := $\mathbb{1}{Y > K}$
- Mathematical problem: Find a (random) vector-valued function g_θ such that

$$\nabla_{\vartheta} \mathbb{E} \big[L \big] = \mathbb{E} \big[g_{\vartheta} \big] \quad \big(\nabla_{\vartheta} := \big(\frac{\partial}{\partial \vartheta_1}, \dots, \frac{\partial}{\partial \vartheta_n} \big) \big),$$

where the function g_{ϑ} is called the stochastic gradient estimator of $\nabla_{\vartheta} \mathbb{E}[L]$.

Dr. Carlos Sanz Chacón

 Introduction
 WDM: General Discussion
 WDM: Gaussian Models
 Numerical Results
 Summary

 0000
 000
 0000000000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00

Description of the Estimation Problem

Derivative Price: Let J := ξ · E[L(Y)], where ξ denotes a deterministic discount factor, L a payoff and ϑ the parameter of interest. Then

$$\frac{d}{d\vartheta} J(\vartheta) = \xi(\vartheta) \cdot \frac{\mathsf{d}}{\mathsf{d}\vartheta} \mathbb{E}[\mathsf{L}] + \mathbb{E}[L] \cdot \frac{d}{d\vartheta} \xi(\vartheta).$$

- Complicated case: Financial derivatives with discontinuous payoff L, e.g., L := 1{Y > K}
- Mathematical problem: Find a (random) vector-valued function g_θ such that

$$abla_{\vartheta} \mathbb{E} \left[L \right] = \mathbb{E} \left[g_{\vartheta} \right] \quad \left(
abla_{\vartheta} := \left(\frac{\partial}{\partial \vartheta_1}, \dots, \frac{\partial}{\partial \vartheta_n} \right) \right),$$

where the function g_{ϑ} is called the stochastic gradient estimator of $\nabla_{\vartheta} \mathbb{E}[L]$.

Dr. Carlos Sanz Chacón

Description of the Estimation Problem

Derivative Price: Let J := ξ · E[L(Y)], where ξ denotes a deterministic discount factor, L a payoff and ϑ the parameter of interest. Then

$$\frac{d}{d\vartheta} J(\vartheta) = \xi(\vartheta) \cdot \frac{\mathsf{d}}{\mathsf{d}\vartheta} \mathbb{E}[\mathsf{L}] + \mathbb{E}[L] \cdot \frac{d}{d\vartheta} \xi(\vartheta).$$

- **Complicated case**: Financial derivatives with discontinuous payoff *L*, e.g., *L* := $\mathbb{1}{Y > K}$
- Mathematical problem: Find a (random) vector-valued function g_{ϑ} such that

$$\nabla_{\vartheta} \mathbb{E} \big[\mathcal{L} \big] = \mathbb{E} \big[g_{\vartheta} \big] \quad \big(\nabla_{\vartheta} := \big(\frac{\partial}{\partial \vartheta_1}, \dots, \frac{\partial}{\partial \vartheta_n} \big) \big),$$

where the function g_{ϑ} is called the stochastic gradient estimator of $\nabla_{\vartheta} \mathbb{E}[L]$.

Standard Market Methods

• Finite Difference (FD)

- $\frac{L(Y(\vartheta + \Delta \vartheta)) L(Y(\vartheta))}{\Delta \vartheta}$ (Forward FD Estimator)
- Market standard (because very simple)
- But biased estimator & large variance for discontinuous payoff *L*!

• Score Function (SF)

- Introduced by Broadie & Glasserman (1996) to overcome disappointing performance of FD estimators
- Estimator:

$$L(Y) \frac{d}{d\vartheta} \log f(Y;\vartheta),$$

where f denotes the density of Y.

• Benchmark for discontinuous payoff *L*, but the variance is still too large!

Standard Market Methods

• Finite Difference (FD)

- $\frac{L(Y(\vartheta + \Delta \vartheta)) L(Y(\vartheta))}{\Delta \vartheta}$ (Forward FD Estimator)
- Market standard (because very simple)
- But biased estimator & large variance for discontinuous payoff L!

• Score Function (SF)

- Introduced by Broadie & Glasserman (1996) to overcome disappointing performance of FD estimators
- Estimator:

$$L(Y) \frac{d}{d \vartheta} \log f(Y; \vartheta),$$

where f denotes the density of Y.

• Benchmark for discontinuous payoff *L*, but the variance is still too large!

Introduction	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary
	•00			

- 2 WDM: General Discussion
- 3 WDM: Models with Gaussian Transition Laws
- 4 Numerical Results

Introduction 0000	WDM: General Discussion ○●○	WDM: Gaussian Models	Numerical Results	Summary 000
Weak Der	rivative Represen	tation		

• The WDM assumes the following representation:

$$\mathbb{E}_{\vartheta}[L(X)] = \int L(x) \, \mu_{\vartheta}(dx) \Rightarrow \frac{d}{d\vartheta} \, \mathbb{E}_{\vartheta}[L(X)] = \int L(x) \mu_{\vartheta}^{'}(dx).$$

- Main Idea: Replace $\mu_{\vartheta}^{(k)}$ by one of the representations of its weak derivative.
- One possibility: Hahn-Jordan decomposition

$$\int L(x)\,\mu_{\vartheta}^{(k)}(dx) = c_{\vartheta}^{(k)}\bigg(\int L(x)\,\mu_{\vartheta}^{(k,+)}(dx) - \int L(x)\,\mu_{\vartheta}^{(k,-)}(dx)\bigg).$$

• Corresponding WD estimator:
$$\begin{split} \mathbf{g}_{\vartheta}^{(\mathbf{k})}(\mathbf{X}^{(\mathbf{k},+)},\mathbf{X}^{(\mathbf{k},-)}) &= \mathbf{c}_{\vartheta}^{(\mathbf{k})}\big(\mathbf{L}(\mathbf{X}^{(\mathbf{k},+)}) - \mathbf{L}(\mathbf{X}^{(\mathbf{k},-)})\big), \text{ where } \\ X^{(k,+)} &\sim \mu_{\vartheta}^{(k,+)} \text{ and } X^{(k,-)} \sim \mu_{\vartheta}^{(k,-)} \text{ are independent r.v.} \end{split}$$

Introduction 0000	WDM: General Discussion ○●○	WDM: Gaussian Models	Numerical Results	Summary 000
Weak Der	rivative Represen	tation		

• The WDM assumes the following representation:

$$\mathbb{E}_{\vartheta}[L(X)] = \int L(x) \, \mu_{\vartheta}(dx) \Rightarrow \frac{d^{\mathsf{k}}}{d\vartheta^{\mathsf{k}}} \, \mathbb{E}_{\vartheta}[L(X)] = \int L(x) \mu_{\vartheta}^{(\mathsf{k})}(dx).$$

- Main Idea: Replace $\mu_{\vartheta}^{(k)}$ by one of the representations of its weak derivative.
- One possibility: Hahn-Jordan decomposition

$$\int L(x)\,\mu_{\vartheta}^{(k)}(dx) = c_{\vartheta}^{(k)}\bigg(\int L(x)\,\mu_{\vartheta}^{(k,+)}(dx) - \int L(x)\,\mu_{\vartheta}^{(k,-)}(dx)\bigg).$$

• Corresponding WD estimator: $\begin{aligned} \mathbf{g}_{\vartheta}^{(\mathbf{k})}(\mathbf{X}^{(\mathbf{k},+)},\mathbf{X}^{(\mathbf{k},-)}) &= \mathbf{c}_{\vartheta}^{(\mathbf{k})}(\mathbf{L}(\mathbf{X}^{(\mathbf{k},+)}) - \mathbf{L}(\mathbf{X}^{(\mathbf{k},-)})), \text{ where } \\ X^{(k,+)} &\sim \mu_{\vartheta}^{(k,+)} \text{ and } X^{(k,-)} \sim \mu_{\vartheta}^{(k,-)} \text{ are independent r.v.} \end{aligned}$

- A stronger condition for weak differentiability is **absolute continuity**.
- This condition guarantees the existence of a density f_{ϑ} .
- The weak derivative of kth-order has the representation

$$\frac{\partial^k f_{\vartheta}}{\partial \vartheta^k} = c_{\vartheta}^{(k)} \big(f_{\vartheta}^{(k,1)} - f_{\vartheta}^{(k,2)} \big),$$

where $f_{\vartheta}^{(k,1)}$ and $f_{\vartheta}^{(k,2)}$ are probability densities.

Introduction	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary
		••••		

- 2 WDM: General Discussion
- 3 WDM: Models with Gaussian Transition Laws
- 4 Numerical Results

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results 00000	Summary 000
Model Se	tup			

System composed of a collection of independent normal r.v. {X_i; i = 1,..., n} with joint p.d.f.

$$\phi_{\vartheta}(x) := \prod_{i=1}^{n} \phi_{i,\vartheta}(x_i), \quad \text{where} \quad \phi_{i,\vartheta}(x_i) := \frac{e^{-\frac{1}{2} \left(\frac{x_i - \mu_i(\vartheta)}{\nu_i(\vartheta)}\right)^2}}{\sqrt{2\pi}\nu_i(\vartheta)}.$$

• Notice that this collection might describe a discrete Markov process $\{\widetilde{X}_i\}_{i=1}^n$ with deterministic initial value $\widetilde{X}_0 = \widetilde{x}_0$ and transition p.d.f.

$$\phi_{i,\vartheta}(\tilde{x}_i;\tilde{x}_{i-1}) := \frac{e^{-\frac{1}{2}\left(\frac{\tilde{x}_i - \tilde{x}_{i-1} - \tilde{\mu}_i(\vartheta)}{\tilde{\nu}_i(\vartheta)}\right)^2}}{\sqrt{2\pi}\,\tilde{\nu}_i(\vartheta)} \quad \text{given} \quad \widetilde{X}_{i-1} = \tilde{x}_{i-1}.$$

Introduction 0000	WDM: General Discussio	n WDM: Gaussian Models	Numerical Results 00000	Summary 000
Model Se	tup (cont'd)			

• Notation:

$$\begin{aligned} X_{Y_i} &:= (X_1, \dots, X_{i-1}, Y_i, X_{i+1}, \dots, X_n), \\ X_{Y_{ij}} &:= (X_1, \dots, X_{i-1}, Y_i, X_{i+1}, \dots, X_{j-1}, Y_j, X_{j+1}, \dots, X_n) \quad (i \neq j), \end{aligned}$$

where Y_i and Y_j are independent r.v. with p.d.f. $f_{i,\vartheta}$ and $f_{j,\vartheta}$, respectively.

- Both r.v. are independent of all X_l $(l \neq i, j)$.
- The joint p.d.f. of the set of independent r.v. $\{X_1, \ldots, Y_i, \ldots, X_n\}$ and $\{X_1, \ldots, Y_i, \ldots, Y_j, \ldots, X_n\}$ is given by

$$\prod_{l=1}^{i-1} \phi_{l,\vartheta}(x_l) f_{i,\vartheta}(y_i) \prod_{l=i+1}^{n} \phi_{l,\vartheta}(x_l) \quad \text{and} \quad \prod_{\substack{l=1\\l\neq i,i}}^{n} \phi_{l,\vartheta}(x_l) f_{i,\vartheta}(y_i) f_{j,\vartheta}(y_j),$$

respectively.

Dr. Carlos Sanz Chacón

WDM: General Discussion

WDM: Gaussian Models

Numerical Results

Summary 000

Used Random Variables

•
$$X = (X_1, ..., X_n), \quad X_i \sim N(\mu_i, \nu_i)$$

• $W^{\pm} = (W_1^{\pm}, ..., W_n^{\pm}), \quad W_i^{\pm} \sim WB(2, \pm \nu_i \sqrt{2}, \mu_i)$
(WB = Weibull Distribution)
• $M = (M_1, ..., M_n), \quad M_i \sim DM(\mu_i, \nu_i)$
(DM = Double-Maxwell Distribution)
• $G^{\pm} = (G_1^{\pm}, ..., G_n^{\pm}), \quad G_i^{\pm} \sim G(\mu_i, \pm \nu_i),$ with density
 $f(x; \mu, \nu) := \begin{cases} \frac{1}{2\nu} \left(\frac{x-\mu}{\nu}\right)^3 \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\nu}\right)^2\right), & x \ge \mu\\ 0, & x < \mu \end{cases}$
• $B = (B_1, ..., B_n), \quad B_i \sim B(\mu_i, \nu_i)$ with density
 $f(x; \mu, \nu) := \frac{1}{3\nu\sqrt{2\pi}} \left(\frac{x-\mu}{\nu}\right)^4 \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\nu}\right)^2\right), \quad \forall x \in \mathbb{R}$

Introduction WDM: General Discussion WDM: Gaussian Models Numerical Results 9 0000 000 0000 00000 00000 00000

General WD estimator

Applying the WDM to $\frac{d}{d\vartheta} \xi(\vartheta) \mathbb{E}_{\vartheta}[L(X)]$ leads to the following unbiased sensitivity estimator $g_{\vartheta}^{(1)}$:

WD estimator for the 1st derivative

$$g_{\vartheta}^{(1)}(x^{(1)}) = L(X) \frac{d}{d\vartheta} \xi(\vartheta) + \xi(\vartheta) \sum_{i=1}^{n} \left(a_{i,\vartheta}^{(1)} \Delta L_{i}^{0} + b_{i,\vartheta}^{(1)} \Delta L_{i}^{1} \right)$$

$$\begin{aligned} x^{(1)} &:= (W^{\pm}, M, X), \\ \Delta L^0_i &:= L(X_{W_i^+}) - L(X_{W_i^-}) \qquad \Delta L^1_i &:= L(X_{M_i}) - L(X) \\ a^{(1)}_{i,\vartheta} &:= \frac{1}{\nu_i \sqrt{2\pi}} \frac{d\mu_i}{d\vartheta}, \qquad b^{(1)}_{i,\vartheta} &:= \frac{1}{\nu_i} \frac{d\nu_i}{d\vartheta} \end{aligned}$$

WDM: General Discussion

WDM: Gaussian Models

Numerical Results

Summary 000

General WD estimator (cont'd)

Applying the WDM to $\frac{d^2}{d\vartheta^2}\xi(\vartheta)\mathbb{E}_{\vartheta}[L(X)]$ leads to the following unbiased sensitivity estimator $g_{\vartheta}^{(2)}$:

WD estimator for the 2^{nd} derivative

$$\begin{split} r_{\vartheta}^{(2)}(x^{(2)}) &= L(X) \frac{d^2}{d\vartheta^2} \xi(\vartheta) + \xi(\vartheta) \sum_{i=1}^n \Big\{ a_{i,\vartheta}^{(2)} \Delta L_i^0 + b_{i,\vartheta}^{(2)} \Delta L_i^1 \\ &+ c_{i,\vartheta}^{(2)} \big(2 \Delta L_i^2 - 3 \Delta L_i^0 \big) + d_{i,\vartheta}^{(2)} \Delta L_i^1 + e_{i,\vartheta}^{(2)} \Delta L_i^3 \end{split}$$

$$+\sum_{j=1, j\neq i}^{n} a_{i,\vartheta}^{(k-1)} a_{j,\vartheta}^{(k-1)} \Delta L_{ij}^{0} + b_{i,\vartheta}^{(k-1)} b_{j,\vartheta}^{(k-1)} \Delta L_{ij}^{1} \bigg\}$$
$$+ 2 \frac{d^{k-1}}{d\vartheta^{k-1}} \xi(\vartheta) \sum_{i=1}^{n} a_{i,\vartheta}^{(k-1)} \Delta L_{i}^{0} + b_{i,\vartheta}^{(k-1)} \Delta L_{i}^{1}$$

Dr. Carlos Sanz Chacón

General WD estimator (cont'd)

Applying the WDM to $\frac{d^2}{d\vartheta^2}\xi(\vartheta)\mathbb{E}_{\vartheta}[L(X)]$ leads to the following unbiased sensitivity estimator $g_{\vartheta}^{(2)}$:

WD estimator for the 2nd derivative

$$\begin{split} g^{(2)}_{\vartheta}(x^{(2)}) &= L(X) \frac{d^2}{d\vartheta^2} \xi(\vartheta) + \xi(\vartheta) \sum_{i=1}^n \Big\{ a^{(2)}_{i,\vartheta} \Delta L^0_i + b^{(2)}_{i,\vartheta} \Delta L^1_i \\ &+ c^{(2)}_{i,\vartheta} \big(2 \Delta L^2_i - 3 \Delta L^0_i \big) + d^{(2)}_{i,\vartheta} \Delta L^1_i + e^{(2)}_{i,\vartheta} \Delta L^3_i \Big\} \end{split}$$

WDM: General Discussion

WDM: Gaussian Models

Numerical Results

Summary 000

General WD estimator (cont'd)

WD estimator for the 2^{nd} derivative (cont'd)

$$\begin{split} x^{(2)} &:= (W^{\pm}, M, X, G^{\pm}, B), \\ \Delta L_i^2 &:= L(X_{G_i^+}) - L(X_{G_i^-}), \qquad \Delta L_i^3 := 2 L(X) + 3 L(X_{B_i}) - 5 L(X_{M_i}), \\ \Delta L_{ij}^0 &:= L(X_{W_{ij}^+}) - L(X_{W_{ij}^-}), \qquad \Delta L_{ij}^1 := L(X_{M_{ij}}) - L(X), \\ a^{(2)}_{i,\vartheta} &:= \frac{1}{\nu_i \sqrt{2\pi}} \frac{d^2 \mu_i}{d\vartheta^2}, \qquad b^{(2)}_{i,\vartheta} := \left(\frac{1}{\nu_i} \frac{d\mu_i}{d\vartheta}\right)^2 \\ c^{(2)}_{i,\vartheta} &:= \sqrt{\frac{2}{\pi}} \frac{1}{\nu_i^2} \frac{d\mu_i}{d\vartheta} \frac{d\nu_i}{d\vartheta}, \qquad d^{(2)}_{i,\vartheta} := \frac{1}{\nu_i} \frac{d^2 \nu_i}{d\vartheta^2}, \\ e^{(2)}_{i,\vartheta} &:= \left(\frac{1}{\nu_i} \frac{d\nu_i}{d\vartheta}\right)^2. \end{split}$$

Numerical Results

Summary 000

General WD estimator (cont'd)

- $n_a:=\max\{i \in \{1,...,n\}:a_{i,\vartheta}^{(1)} \neq 0\}, n_b:=\max\{i \in \{1,...,n\}:b_{i,\vartheta}^{(1)} \neq 0\}$
- We make the following observations:

$$a_{i,artheta}^{(1)}=0 \Rightarrow a_{i,artheta}^{(2)}, b_{i,artheta}^{(2)}, c_{i,artheta}^{(2)}=0 \quad ext{and} \quad b_{i,artheta}^{(1)}=0 \Rightarrow c_{i,artheta}^{(2)}, d_{i,artheta}^{(2)}, e_{i,artheta}^{(2)}=0.$$

Reformulated WD estimators

$$g_{\vartheta}^{(1)}(x^{(1)}) = L(X) \frac{d}{d\vartheta} \xi(\vartheta) + \xi(\vartheta) \left(\sum_{i=1}^{n_a} a_{i,\vartheta}^{(1)} \Delta L_i^0 + \sum_{i=1}^{n_b} b_{i,\vartheta}^{(1)} \Delta L_i^1 \right)$$

$$g_{\vartheta}^{(2)}(x^{(2)}) = L(X) \frac{d^2}{d\vartheta^2} \xi(\vartheta) + \xi(\vartheta) \left[\sum_{i=1}^{n_a} \left(a_{i,\vartheta}^{(2)} \Delta L_i^0 + b_{i,\vartheta}^{(2)} \Delta L_i^1 \right) + \sum_{i=1}^{n_b} \left(d_{i,\vartheta}^{(2)} \Delta L_i^1 + e_{i,\vartheta}^{(2)} \Delta L_i^3 \right) + \sum_{i=1}^{n_a \wedge n_b} c_{i,\vartheta}^{(2)} \left(2 \Delta L_i^2 - 3 \Delta L_i^0 \right) \right]$$

Dr. Carlos Sanz Chacón

WDM: General Discussion

WDM: Gaussian Models

Numerical Results

Summary 000

General WD estimator (cont'd)

Remark

- If n_a, n_b ≪ n, then the extra computational cost for the WD estimator is small compared to the SF estimator.
- The magnitude of n_a and n_b depend only on the concrete model and its model parameter ϑ .
- Fortunately, important price sensitivities of models used to price equity and FX derivatives have $n_a, n_b = 1$, e.g., Delta, Gamma and Theta. The BS and CEV models, considered here, are such models that have this advantageous property.

WDM: General Discussion

WDM: Gaussian Models

Numerical Results

Summary 000

WD estimator in the BS model

WD estimator for Greeks

$$\begin{split} g_{\vartheta}^{(1)}(x^{(1)}) &= (-1)^{q(\vartheta)} \ e^{-rT} \left[\sum_{i=1}^{n_a} \left(a_{i,\vartheta}^{(1)} \, \Delta L_i^0 + \sum_{i=1}^{n_b} b_{i,\vartheta}^{(1)} \, \Delta L_i^1 \right) - \frac{d \ rT}{d\vartheta} \ L(X) \right], \\ g_{\vartheta}^{(2)}(x^{(2)}) &= (-1)^{q(\vartheta)} \ e^{-rT} \left[\sum_{i=1}^{n_a} \left(a_{i,\vartheta}^{(2)} \, \Delta L_i^0 + b_{i,\vartheta}^{(2)} \, \Delta L_i^1 \right) \right], \end{split}$$

$$\begin{split} q(\vartheta) &:= \mathbb{1}\{\vartheta = T\}, \\ a_{1,S_0}^{(1)} &= \frac{1}{\nu S_0 \sqrt{2\pi}}, \qquad b_{1,S_0}^{(1)} = 0, \qquad a_{i\geq 2,S_0}^{(1)} = 0, \qquad b_{i\geq 2,S_0}^{(1)} = 0, \\ a_{1,S_0}^{(2)} &= -\frac{1}{\nu S_0^2 \sqrt{2\pi}}, \qquad b_{1,S_0}^{(2)} = \frac{1}{\nu^2 S_0^2}, \qquad a_{i\geq 2,S_0}^{(2)} = 0, \qquad b_{i\geq 2,S_0}^{(2)} = 0, \\ a_{i,\sigma}^{(1)} &= -\sqrt{\frac{\Delta t}{2\pi}}, \qquad b_{i,\sigma}^{(1)} = \frac{1}{\sigma}, \qquad a_{i,r}^{(1)} = \frac{1}{\sigma} \sqrt{\frac{\Delta t}{2\pi}}, \qquad b_{i,r}^{(1)} = 0, \\ a_{1,T}^{(1)} &= \frac{r - \sigma^2/2}{\nu \sqrt{2\pi}}, \qquad b_{1,T}^{(1)} = \frac{1}{2\Delta t}, \qquad a_{i\geq 2,T}^{(1)} = 0, \qquad b_{i\geq 2,T}^{(1)} = 0. \end{split}$$

WDM: General Discussion

WDM: Gaussian Models

Numerical Results

Summary 000

WD estimator in the CEV model

WD estimator for Greeks

$$g_{\vartheta}^{(1)}(x^{(1)}) = (-1)^{q(\vartheta)} e^{-rT} \left[\sum_{i=1}^{n_a} \left(a_{i,\vartheta}^{(1)} \Delta L_i^0 + \sum_{i=1}^{n_b} b_{i,\vartheta}^{(1)} \Delta L_i^1 \right) - \frac{d rT}{d\vartheta} L(X) \right],$$

$$g_{\vartheta}^{(2)}(x^{(2)}) = (-1)^{q(\vartheta)} e^{-rT} \left[\sum_{i=1}^{n_a} \left(a_{i,\vartheta}^{(2)} \Delta L_i^0 + b_{i,\vartheta}^{(2)} \Delta L_i^1 \right) \right]$$

$$+\sum_{i=1}^{n_b} \left(d_{i,\vartheta}^{(2)} \Delta L_i^1 + e_{i,\vartheta}^{(2)} \Delta L_i^3 \right) + \sum_{i=1}^{n_a \wedge n_b} c_{i,\vartheta}^{(2)} \left(2 \Delta L_i^2 - 3 \Delta L_i^0 \right) \bigg]$$

$$\begin{aligned} a_{1,5_0}^{(2)} &= \frac{1}{\nu S_0^2 \sqrt{2\pi}}, \qquad b_{1,5_0}^{(2)} = 0, \qquad a_{i\geq 2,S_0}^{(2)} = 0, \qquad b_{i\geq 2,S_0}^{(2)} = 0, \\ a_{1,S_0}^{(2)} &= -\frac{1}{\nu S_0^2 \sqrt{2\pi}}, \qquad b_{1,S_0}^{(2)} = \frac{1}{\nu^2 S_0^2}, \qquad a_{i\geq 2,S_0}^{(2)} = 0, \qquad b_{i\geq 2,S_0}^{(2)} = 0, \\ a_{i,\sigma}^{(1)} &= -\sqrt{\frac{\Delta t}{2\pi}}, \qquad b_{i,\sigma}^{(1)} = \frac{1}{\sigma}, \qquad a_{i,r}^{(1)} = \frac{1}{\sigma} \sqrt{\frac{\Delta t}{2\pi}}, \qquad b_{i,r}^{(1)} = 0, \\ a_{i,\sigma}^{(1)} &= r^{-\sigma^2/2}, \qquad b_{i,\sigma}^{(1)} = 1, \qquad a_{i,r}^{(1)} = 0, \qquad b_{i,r}^{(1)} = 0, \end{aligned}$$

$$a_{1,T}^{(1)} = \frac{r - \sigma^2/2}{\nu \sqrt{2\pi}}, \qquad b_{1,T}^{(1)} = \frac{1}{2\Delta t}, \qquad a_{i\geq 2,T}^{(1)} = 0, \qquad b_{i\geq 2,T}^{(1)} = 0.$$

Dr. Carlos Sanz Chacón

0000 000 000000000 00 000 000	Introduction	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary
				• 0 000	

- 2 WDM: General Discussion
- 3 WDM: Models with Gaussian Transition Laws
- 4 Numerical Results

5 Summary

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models 0000000000	Numerical Results	Summary 000
Efficiency	Measure			

- Standard error (stderr): Precision of the mean estimate.
- Variance reduction factor $VRF = (\frac{stderr_{BM}}{stderr})^2$. Benchmark (BM) is SFM.
- Computational cost: Measured by the number of updates of the asset prices S_j 's, j = i, ..., n and $i = 1, ..., n^*$, $n^* \in \{n_a, n_b\}$.
 - The following ratio indicates a deterioration of performance:

$$\frac{\# \mathsf{Calculation}\; S_{j}{}^{\mathsf{s}}{}_{\mathsf{s}_{\mathsf{original}}} + \# \mathsf{WDVariables} \times \# \mathsf{Calculation}\; S_{j}{}^{\mathsf{s}}{}_{\mathsf{s}_{\mathsf{additional}}}}{\# \mathsf{Calculation}\; S_{j}{}^{\mathsf{s}}{}_{\mathsf{s}_{\mathsf{original}}}}$$

- #WDVariables denotes how many of the $Y \in \{W^{\pm}, M, G^{\pm}, B\}$ are involved in the WD estimator.
- Better efficiency measure for an estimator: *Divide the VRF by this ratio*.

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary 000

AON Call: $L(S_T) = S_T 1 \{ S_T > K \}$

	FD	WD^{U}	WD	-		FD	WD^{U}	WD
Δ:K=80	5.E-02	18	18	-	Δ:K=95	8.E-02	23	23
Δ:K=90	2.E-02	21	21		Δ :K=100	3.E-02	27	26
Δ :K=100	1.E-02	94	94		Δ :K=102	2.E-02	51	44
Δ :K=110	9.E-03	42	42		Δ :K=106	2.E-02	247	125
Δ :K=120	9.E-03	13	13		Δ :K=110	2.E-02	18	17
Δ :K=150	1.E-02	7	7		Δ :K=120	3.E-02	8	8
Г:K=80	2.E-04	14	4	-	Г:К=95	2.E-03	12	6
Г:K=90	7.E-05	11	3		Γ:K=100	1.E-03	12	4
Γ:K=100	4.E-05	27	2		Γ:K=102	8.E-04	16	3
Γ:K=110	3.E-05	14	2		Γ:K=106	6.E-04	33	3
Γ:K=120	3.E-05	7	2		Γ:K=110	6.E-04	9	3
Γ:K=150	8.E-05	6	3	_	Г:K=120	2.E-03	9	6

Table: VRF: BS Model

Table: VRF: CEV Model

Dr. Carlos Sanz Chacón

Efficient Price Sensitivity Estimation of PD Derivatives by WD 23/39

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results ○○●○○	Summary 000

AON Call: $L(S_T) = S_T \mathbb{1}\{S_T > K\}$

	FD	WD^{U}	WD			FD	WD^{U}	WD
Δ:K=80	3.E-02	6	6		Δ:K=95	4.E-02	6	6
Δ:K=90	1.E-02	7	7		Δ :K=100	2.E-02	7	7
Δ :K=100	5.E-03	31	31		Δ :K=102	1.E-02	13	11
Δ :K=110	5.E-03	14	14		Δ :K=106	1.E-02	62	31
Δ:K=120	5.E-03	4	4		Δ :K=110	1.E-02	5	4
Δ :K=150	5.E-03	2	2		Δ :K=120	2.E-02	2	2
Г:К=80	1.E-04	4	1		Г:К=95	1.E-03	2	1
Г:K=90	4.E-05	3	1		Γ:K=100	5.E-04	2	1
Γ:K=100	2.E-05	7	0.5		Γ:K=102	4.E-04	2	0.5
Γ:K=110	2.E-05	4	0.5		Γ:K=106	3.E-04	5	0.5
Γ:K=120	2.E-05	2	0.5		Γ:K=110	3.E-04	1	0.5
Γ:K=150	4.E-05	2	1	_	Г:К=120	1.E-03	1	1

Table: VRF/Ratio: BS Model

Table: VRF/Ratio: CEV Model

Dr. Carlos Sanz Chacón

Efficient Price Sensitivity Estimation of PD Derivatives by WD 23/39

Introd 0000	uction WD	M: Genera	al Discussion	W	/DM: Gau 0000000	ssian Models	Numerica ○○○●○	al Results	Sumr 000	nary
Sin	igle Barrie	er A(ON cal	I: <i>L</i> (<i>S</i>) =	$S_T 1$ {mi	$in_{i=1,.}$,250 S	$_{i} > k$	$\left\{ \right\}$
		FD	WD^{U}	WD			FD	WD^{U}	WD	_
	Г:K=80	3	125	55	-	Г:K=90	102	261	118	-
	Г:K=85	2	65	29		Γ:K=95	19	49	22	
	Г:K=90	0.8	32	15		Γ:K=97	9	23	11	
	Г:K=95	0.3	13	6		Γ:K=98	6	14	7	
	Γ:K=100	0.1	7	2		Γ:K=100	2	7	2	
	Г:K=102	0.2	5	3		Γ:K=101	4	6	4	_
	κ:K=80	0.6	183	85		κ:K=90	0.9	347	167	-
	<i>κ</i> :K=85	0.4	112	51		κ :K=95	0.3	106	50	
	<i>κ</i> :K=90	0.3	77	35		κ:K=97	0.3	75	35	
	κ:K=95	0.2	56	25		κ:K=98	0.2	61	30	

 κ:K=102
 0.1
 36
 17

 Table: VRF: BS Model

43

19

0.8

Table: VRF: CEV Model

0.5

0.05

48

35

22 19

Dr. Carlos Sanz Chacón

κ:K=100

Efficient Price Sensitivity Estimation of PD Derivatives by WD 24/39

κ:K=100

κ:K=101

	• <i>K</i> }
Single Barrier AON call: $L(S) = S_T 1 \{ \min_{i=1,\dots,250} S_i > $	J
FD WD ^U WD FD WD ^U W	/D
Γ:K=80 2 31 14 Γ:K=90 51 52	24
Г:К=85 1 16 7 Г:К=95 9 10	4
Г:К=90 0.4 8 4 Г:К=97 5 5	2
Γ:K=95 0.2 3 2 Γ:K=98 3 3	1
$\Gamma:K=100$ 0.05 2 0.5 $\Gamma:K=100$ 1 1 0).4
Г:К=102 0.05 1 1 Г:К=101 2 1	1

0.2

0.1

0.1

0.1

Table: VR	-/Ratio:	BS Mo	del	Table: VR
κ:K=102	0.05	0.1	0.05	κ :K=101
κ :K=100	0.4	0.1	0.05	κ :K=100

0.5

0.3

0.2

0.1

0.3

0.2

0.2

0.1

Table: VRF/Ratio: CEV Model

0.5

0.2

0.2

0.1

0.3

0.03

3

0.8

0.6

0.5

0.4

0.3

1

0.4

0.3

0.2

0.2

0.2

Dr. Carlos Sanz Chacón

κ:K=80

κ:K=85

κ:K=90

κ:K=95

Efficient Price Sensitivity Estimation of PD Derivatives by WD 24/39

κ:K=90

 κ :K=95

κ:K=97

κ:K=98

Introd 0000	uction WI oc	OM: Genera ○	I Discussion	W	DM: Gau	ssian Models	Numerica ○○○○●	I Results	Summa 000
Fix	ed Look	back (call:						
$L(S) = (\max_{i=1,,250} S_i - K) 1 \{\max_{i=1,,250} S_i > K\}$									
					_				
		FD	WD^{U}	WD			FD	WD^{U}	WD
	Г:К=110	97	605	98		Г:К=100	1778	1340	212
	Γ:K=120	52	450	73		Γ:K=105	368	793	130
	Γ:K=130	31	341	56		Γ:K=110	141	505	83
	Γ:K=150	15	225	38		Г:K=115	67	334	57
	κ:K=110	473	824	137		κ:K=100	1812	1918	307
	<i>κ</i> :K=120	211	566	96		κ :K=105	787	996	169
	<i>κ</i> :K=130	102	425	71		κ :K=110	255	592	101
	κ:K=150	34	275	50		<i>κ</i> :K=115	88	395	67

Table: VRF: BS Model

Table: VRF: CEV Model

Introdi 0000	uction WDM: 000	General D	iscussion	WDN 0000	1: Gau	ssian Models	Numerical ○○○○●	Results	Summa 000
Fix	ed Lookba	ick ca	all:						
L(S	5) = (max)	i=1,	_{,250} S _i	– K)	1{	[max _{i=1,}	_{,250} S _i	> K	
		FD	WD^{U}	WD			FD	WD^{U}	WD
-	Г:К=110	49	151	25		Γ:K=100	889	268	42
	Γ:K=120	26	113	18		Γ:K=105	184	159	26
	Γ:K=130	16	85	14		Γ:K=110	71	101	17
	Γ:K=150	8	56	10		Γ:K=115	34	67	11
-	κ:K=110	236	7	1		κ:K=100	906	15	2
	κ :K=120	106	4	0.8		κ :K=105	394	8	1
	κ:K=130	51	3	0.6		κ :K=110	128	5	0.8
	κ:K=150	17	2	0.4		κ:K=115	44	3	0.5
-	Table: VRE	/Ratio:	BS Mo	dol		Table: V/RF	Ratio		ndel

Table: VRF/Ratio: BS Model Table: VRF/Ratio: CEV Model

Introduction	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary
				•••

- 2 WDM: General Discussion
- 3 WDM: Models with Gaussian Transition Laws
- 4 Numerical Results

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary 0●0
Summary				

- Derivation of an unbiased WD sensitivity estimator in a Gaussian model framework
 - Valid for a large class of single-factor pricing models and path-dependent payoffs in use.
- From this general estimator we derived a WD estimator for all Greeks in the BS and CEV framework, respectively.
- Results of our simulation study
 - Coupled WD estimator had uniformly lower variance than the FD and SF estimator.
 - If the computational cost is taken into account, however, then only the Greeks with $n_a, n_b \ll n$, i.e., Δ , Γ and Θ , are more efficient than the standard methods. For κ and Θ this is not true any more.

WD estimator does not depend on the particular payoff but only on the underlying pricing model.

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary 0●0
Summary				

- Derivation of an unbiased WD sensitivity estimator in a Gaussian model framework
 - Valid for a large class of single-factor pricing models and path-dependent payoffs in use.
- From this general estimator we derived a WD estimator for all Greeks in the BS and CEV framework, respectively.
- Results of our simulation study
 - Coupled WD estimator had uniformly lower variance than the FD and SF estimator.
 - If the computational cost is taken into account, however, then only the Greeks with $n_a, n_b \ll n$, i.e., Δ , Γ and Θ , are more efficient than the standard methods. For κ and Θ this is not true any more.

WD estimator does not depend on the particular payoff but only on the underlying pricing model.

Dr. Carlos Sanz Chacón

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary 0●0
Summary				

- Derivation of an unbiased WD sensitivity estimator in a Gaussian model framework
 - Valid for a large class of single-factor pricing models and path-dependent payoffs in use.
- From this general estimator we derived a WD estimator for all Greeks in the BS and CEV framework, respectively.
- Results of our simulation study
 - Coupled WD estimator had uniformly lower variance than the FD and SF estimator.
 - If the computational cost is taken into account, however, then only the Greeks with $n_a, n_b \ll n$, i.e., Δ , Γ and Θ , are more efficient than the standard methods. For κ and Θ this is not true any more.

WD estimator does not depend on the particular payoff but only on the underlying pricing model.

Introduction 0000	WDM: General Discussion	WDM: Gaussian Models	Numerical Results	Summary 0●0
Summary				

- Derivation of an unbiased WD sensitivity estimator in a Gaussian model framework
 - Valid for a large class of single-factor pricing models and path-dependent payoffs in use.
- From this general estimator we derived a WD estimator for all Greeks in the BS and CEV framework, respectively.
- Results of our simulation study
 - Coupled WD estimator had uniformly lower variance than the FD and SF estimator.
 - If the computational cost is taken into account, however, then only the Greeks with $n_a, n_b \ll n$, i.e., Δ , Γ and Θ , are more efficient than the standard methods. For κ and Θ this is not true any more.

WD estimator does not depend on the particular payoff but only on the underlying pricing model.

Authors of Related Literature

• Price Sensitivity:

- Broadie, Glasserman (Pioneers in Estimation of Price Sensitivities)
- Heidergott (Pricing of American Plain-Vanilla Call by Stochastic Optimization)
- WDM:
 - Pflug (Introduction of WDM)
 - Heidergott, Vazquez (Measure-Valued Differentiation)
 - Billingsley (Convergence of Probability Measures)

• Overview:

• Fu (Summary of WDM and other approaches)

Analysis of Computational Cost

Computational Cost

000

 In order to analyse the computational effort of the evaluation of L consider a stochastically recursive sequence (SRS)

WDM

$$S_l = h(S_{l-1}, X_l)$$
 $l = 1, ..., n,$ (1)

Concrete Models

representing the underlying risk factor such as the asset price, where $S_0 = s_0$ is a deterministic start value, h is a measurable state-transition mapping and X_l denotes a random input variable distributed according to the Normal distribution.

• We point out that the nominal path S(X) is generated from X, i.e.,

$$(X_1,\ldots,X_n)\mapsto (S_1,\ldots,S_n).$$

• It it obvious that all the S_l's are calculated and hence n calculations are needed.

- Note that the nominal path S(X) and the perturbed path S(X_{Y_i}), i = 1,..., n^{*}, are equal up to state S_{i-1} and differ from state S_i onwards, i.e., n i + 1 states will change.
- This fact can be written as follows:

$$\begin{pmatrix} Y_1 & X_2 & \dots & X_{n^*} & \dots & X_n \\ X_1 & Y_2 & \dots & X_{n^*} & \dots & X_n \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ X_1 & X_2 & \dots & Y_{n^*} & \dots & X_n \end{pmatrix} \mapsto \begin{pmatrix} S_1^{Y_1} & S_2^{Y_1} & \dots & S_{n^*}^{Y_1} & \dots & S_n^{Y_1} \\ S_1 & S_2^{Y_2} & \dots & S_{n^*}^{Y_2} & \dots & S_n^{Y_2} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ S_1 & S_2 & \dots & S_{n^*}^{Y_{n^*}} & \dots & S_n^{Y_{n^*}} \end{pmatrix}$$

- How many of the S_j's, j = i,..., n, need to be explicitly updated for the evaluation of the payoff L?
- If we assume that all the S_j 's need to be updated, then the answer is

$$\frac{1}{2}n^*(2n-n^*+1).$$

Computational Cost 00●0	WDM 000	
Reduction Factors		

	Table BS		Table CEV	
	FD	WD ^U	FD	WD ^U
Δ	2	3	2	4
Г	2	4	2	7

Table: Reduction factors of VRF's for European AON call

	Table BS		Table CEV	
	FD	WD ^U	FD	WD ^U
Г	2	4	2	5
κ	2	378	2	126

Table: Reduction factors of VRF's for European single barrier AON call

Concrete Models

WDM

Reduction Factors (cont'd)

	Table BS		Table CEV	
	FD	WD ^U	FD	WD ^U
Г	2	4	2	5
κ	2	378	2	126

Table: Reduction factors of VRF's for European fixed Lookback call

WDM

Weakly Differentiability

Definition (Weakly Differentiability)

Let $\vartheta, \vartheta + \Delta \vartheta \in V$. If μ_{ϑ} is a family of elements of $\mathcal{P}(\mathbb{R}^n)$, we say that μ_{ϑ} is weakly differentiable if there exists a finite signed measure $\mu_{\vartheta}^{'}: \mathfrak{B}(\mathbb{R}^n) \mapsto \mathbb{R}$ such that for all $L \in C_b(\mathbb{R}^n)$

$$\lim_{\Delta\vartheta\mapsto 0}\frac{1}{\Delta\vartheta}\left(\int L(x)\mu_{\vartheta+\Delta\vartheta}(dx)-\int L(x)\mu_{\vartheta}(dx)\right)=\int L(x)\mu_{\vartheta}^{'}(dx).$$

Note that the above identity is for all L ∈ C_b(ℝⁿ) equivalent to

$$\frac{d}{d\vartheta}\int L(x)\mu_{\vartheta}(dx)=\int L(x)\mu'_{\vartheta}(dx).$$

Representation of Weak Derivative

Definition (Representation of Weak Derivative)

Let $\mu_{\vartheta}, \vartheta \in V$, be a family of elements of $\mathcal{P}(\mathbb{R}^n)$. We call a triple $(c_{\vartheta}^{(k)}, \mu_{\vartheta}^{(k,1)}, \mu_{\vartheta}^{(k,2)})$ consisting of a constant and two probability measures a *representation of the weak derivative* of k^{th} -order of μ_{ϑ} if μ_{ϑ} is k-times weakly differentiable at each ϑ and for all $L \in C_b(\mathbb{R}^n)$ it holds that

$$\int L(x)\,\mu_{\vartheta}^{(k)}(dx)=c_{\vartheta}^{(k)}\bigg(\int L(x)\,\mu_{\vartheta}^{(k,1)}(dx)-\int L(x)\,\mu_{\vartheta}^{(k,2)}(dx)\bigg).$$

Remark to Discontinuous Payoffs

Remark

Assume that the sequence $\{\mu_{\Delta\vartheta}^{(k)} := \frac{\mu_{\vartheta+\Delta\vartheta}^{(k)} - \mu_{\vartheta}^{(k)}}{\Delta\vartheta} : \Delta\vartheta \in V \setminus \{0\}\}$ converges weakly to $\mu_{\vartheta}^{(k)}$. If for $L \in \mathcal{L}^1(\mu_{\Delta\vartheta}^{(k)} : \Delta\vartheta \in V \setminus \{0\})$ we denote by D_L the set of points at which L is discontinuous, then for each bounded L, such that $\mu_{\vartheta}^{(k)}(D_L) = 0$, the identity for the representation of weak derivatives is still true. For a proof of this result when the sequence $\{\mu_{\Delta\vartheta}^{(k)}\}_{\Delta\vartheta} \subset \mathcal{P}(\mathbb{R}^n)$ see, e.g., Billingsley (1999). The extension to the case $\{\mu_{\Delta\vartheta}^{(k)}\}_{\Delta\vartheta} \subset \mathcal{M}(\mathbb{R}^n)$ is straightforward to prove.

Computational Cost	WDM	Concrete Models
0000	000	●000
BS Model		

• The asset price S_T is described in the BS model by

$$S_T = S_t e^{(r-\sigma^2/2)(T-t)+\sigma\sqrt{T-t}Z} \quad (0 \le t < T),$$

where $Z \sim N(0, 1)$, S_t is the current asset price, r and σ are constant.

- Divide the horizon [0, T] into n equal time intervals each of length Δt: 0 = t₀ < t₁ < · · · < t_n = T.
- S_{t_i} at times t_i with known initial asset price S_0 are generated by

$$S_{t_i}=S_{t_{i-1}}e^{\tilde{\mu}+\tilde{\nu}\,Z_i}\quad (i=1,\ldots,n),$$

where Z_1, \ldots, Z_n is a sequence of independent, standard normal variables, $\tilde{\mu} := (r - \sigma^2/2) \Delta t$ and $\tilde{\nu} := \sigma \sqrt{\Delta t}$.

• Dynamics of asset price movements:

$$dS_t = rS_t dt + \sigma S_t^{\gamma} dW_t, \qquad (2)$$

where W is a standard Brownian motion.

- The elasticity parameter γ was originally negative but was extended to include positive values.
- Euler approximation of (2)

$$S_{t_i} = S_{t_{i-1}} + \tilde{\mu}_i + \tilde{\nu}_i Z_i \quad (i = 1, \dots, n),$$
 (3)

where $\tilde{\mu}_i := r S_{t_{i-1}} \Delta t$ and $\tilde{\nu}_i := \sigma S_{t_{i-1}}^{\gamma} \sqrt{\Delta t}$.

Computational Cost	WDM	Concrete Models
0000	000	○○●○
Sensitivities		

• Risk-neutral pricing formula:

$$V(0,S_0)=e^{-rT}\mathbb{E}[L(S)].$$

- Assumption (A0) is satisfied with ξ given by e^{-rT} in both models.
- The first (k = 1) and second derivative (k = 2) of the price w.r.t. the parameter θ is as follows:

$$\frac{d^{k}V}{d\vartheta^{k}} = -\frac{d^{k}rT}{d\vartheta^{k}}V + e^{-rT}\frac{d^{k}}{d\vartheta^{k}}\mathbb{E}[L]
+ \mathbb{1}\{k = 2\}\left\{\left(\frac{d^{k-1}rT}{d\vartheta^{k-1}}\right)^{2}V - 2e^{-rT}\frac{d^{k-1}rT}{d\vartheta^{k-1}}\frac{d^{k-1}}{d\vartheta^{k-1}}\mathbb{E}[L]\right\}
(4)$$

• In (4)
$$\frac{d^2 rT}{d\vartheta^2} \equiv 0$$
 and $\frac{d rT}{d\vartheta}$ is only non-zero for $\vartheta \in \{r, T\}$.

The Greeks

Definition (The Greeks)

<u>DELTA</u>: The delta (Δ) is defined as the rate of change of the option price with respect to the initial asset price, i.e., $\Delta := \partial V / \partial S_0.$

<u>GAMMA</u>: The gamma (Γ) is the rate of change in the delta with respect to the initial asset price, i.e., $\Gamma := \partial^2 V / \partial S_0^2$.

<u>VEGA</u>: The vega (κ) is the rate of change of the option price with respect to the volatility of the underlying asset, i.e., $\kappa := \partial V / \partial \sigma$. <u>RHO</u>: The rho (ρ) is defined as the rate of change of the option price with respect to the interest rate, i.e., $\rho := \partial V / \partial r$.

<u>THETA</u>: The theta (Θ) is the negative of the rate of change of the option price with respect to the passage of time, i.e., $\Theta := -\partial V / \partial T$.