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Outline

Outline

In mathematical finance a popular approach for pricing options under some
Lévy model is to consider underlying that follows a Poisson jump diffusion
process. As it is well known this results in a partial integro-differential
equation (PIDE) that usually does not allow an analytical solution while
numerical solution brings some problems. In this work we elaborate a new
approach on how to transform the PIDE to some class of either so-called
pseudo-parabolic equations or fractional equations. They both are known
in mathematics but are relatively new for mathematical finance. As an
example we discuss several jump-diffusion models which Lévy measure
allows such a transformation.
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Existing approaches to solve PIDE

Existing approaches - cont.

1 Because of the integrals in the equations the methods have proven to
be relatively expensive. Quadrature methods are expensive since the
integrals must be evaluated at every point of the mesh. Though less
so, Fourier methods are also computationally intensive since in order
to avoid wrap around effects they require enlargement of the
computational domain. They are also slow to converge when the
parameters of the jump process are not smooth, and for efficiency
require uniform meshes. And low order of accuracy.

2 Carr and Mayo (2007) proposed a different and more efficient class of
methods which are based on the fact that the integrals often satisfy
differential equations. Completed only for Merton and Kou models.
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Existing approaches to solve PIDE

Existing approaches - cont.

Our approach:
1 Represent a Lévy measure as the Green’s function of some yet

unknown differential operator A. If we manage to find an explicit
form of this operator then the original PIDE reduces to a new type of
equation - so-called pseudo-parabolic equation.

2 Alternatively for some class of Lévy processes, known as
GTSP/KoBoL/SSM models, with the real dumping exponent α we
show how to transform the corresponding PIDE to a fractional PDE.
Fractional PDEs for the Lévy processes with finite variation were
derived by Boyarchenko and Levendorsky (2002) and later by Cartea
(2007) using a characteristic function technique. Here we derive them
in all cases including processes with infinite variation using a different
technique - shift operators. Then to solve them we use a shifted
Grunwald-Letnikov approximation scheme proven to be
unconditionally stable. First and second order of approximation in
space and time are considered.
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Existing approaches to solve PIDE

GTSP/KoBoL/SSM models.

1 Stochastic skew model (SSM) has been proposed by Carr and Wu for pricing currency options. It makes use of a Lévy
model also known as generalized tempered stable processes (GTSP) for the dynamics of stock prices which generalize
the CGMY processes proposed by Carr, Geman, Madan and Yor. A similar model was independently proposed by
Koponen and then Boyarchenko and Levendorsky. The processes are obtained by specifying a more generalized Lévy
measure with two additional parameters. These two parameters provide control on asymmetry of small jumps and
different frequencies for upward and downward jumps. Results of Zhou, Hagan and Schleiniger show that this
generalization allows for more accurate pricing of options.

2 Generalized Tempered Stable Processes (GTSP) have probability densities symmetric in a neighborhood of the origin
and exponentially decaying in the far tails. After this exponential softening, the small jumps keep their initial stable-like
behavior, whereas the large jumps become exponentially tempered. The Lévy measure of GTSP reads

µ(y) = λ−
e
−ν−|y|

|y|
1+α−

1y<0 + λ+
e
−ν+|y|

|y|
1+α+

1y>0, (1)

where ν± > 0, λ± > 0 and α± < 2. The last condition is necessary to provide

∫ 1

−1
y
2
µ(dy) < ∞,

∫

|y|>1
µ(dy) < ∞. (2)
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3 The case λ+ = λ−, α+ = α− corresponds to the CGMY process. The limiting case α+ = α− = 0, λ+ = λ− is
the special case of the Variance Gamma process. As Hagan at al mentioned, six parameters of the model play an
important role in capturing various aspects of the stochastic process. The parameters λ± determine the overall and
relative frequencies of upward and downward jumps. If we are interested only in jumps larger than a given value, these
two parameters tell us how often we should expect such events. ν± control the tail behavior of the Lévy measure, and
they tell us how far the process may jump. They also lead to skewed distributions when they are unequal. In the special
case when they are equal, the Lévy measure is symmetric. Finally, α± are particularly useful for the local behavior of
the process. They determine whether the process has finite or infinite activity, or variation.
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µ(y) = λ−
e
−ν−|y|

|y|
1+α−

1y<0 + λ+
e
−ν+|y|

|y|
1+α+

1y>0, (1)

where ν± > 0, λ± > 0 and α± < 2. The last condition is necessary to provide

∫ 1

−1
y
2
µ(dy) < ∞,

∫

|y|>1
µ(dy) < ∞. (2)

3 The case λ+ = λ−, α+ = α− corresponds to the CGMY process. The limiting case α+ = α− = 0, λ+ = λ− is
the special case of the Variance Gamma process. As Hagan at al mentioned, six parameters of the model play an
important role in capturing various aspects of the stochastic process. The parameters λ± determine the overall and
relative frequencies of upward and downward jumps. If we are interested only in jumps larger than a given value, these
two parameters tell us how often we should expect such events. ν± control the tail behavior of the Lévy measure, and
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Pseudo-parabolic PDE

Original model - SSM
Using this model of jumps Carr and Wu (2004) derived the following PIDE which governs an arbitrage-free value of a European
call option at time t

rdC (S, VR ,VL, t) =
∂

∂t
C (S, VR , VL, t) + (rd − rf )S

∂

∂S
C (S, VR , VL, t) (3)

+ κ(1 − VR )
∂

∂VR

C (S, VR , VL, t) + κ(1 − VL)
∂

∂VL

C (S, VR , VL, t)

+
σ2S2(VR + VL)

2

∂2

∂S2
C (S, VR , VL, t) + σρ

R
σV SVR

∂2

∂S∂VR

C (S,VR ,VL, t)

+ σρ
L
σV SVL

∂2

∂S∂VL

C (S, VR ,VL, t) +
σ2
V VR

2

∂2

∂V 2
R

C (S,VR ,VL, t) +
σ2
V VL

2

∂2

∂V 2
L

C (S,VR ,VL, t)

+
√

VR

∫ ∞

0

[

C (Se
y
,VR ,VL, t) − C (S,VR , VL, t) −

∂

∂S
C (S, VR , VL, t)S(e

y
− 1)

]

λ
e−νR |y|

|y|1+α
dy

+
√

VL

∫ 0

−∞

[

C (Se
y
, VR , VL, t) − C (S, VR , VL, t) −

∂

∂S
C (S,VR ,VL, t)S(e

y
− 1)

]

λ
e−νL|y|

|y|1+α
dy,

on the domain S > 0, VR > 0, VL > 0 and t ∈ [0, T ], where S, VR , VL are state variables (spot price and stochastic
variances). For the following we make some critical assumptions.

1 This PIDE could be generalized with allowance for GTSP processes, which means we substitute α in Eq. (3) with
αR , αL , and λ with λR , λL correspondingly.

2 The obtained PIDE could be solved by using a splitting technique similar to that proposed in Itkin, Carr (2006).
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Pseudo-parabolic PDE

Original model - PIDE

As a result we consider just that steps of splitting which deals with the remaining integral term. The corresponding equation
reads

1

∂

∂t
C (S, VR , VL, t) = −

√
VR

∫ ∞

0
C (Se

y
,VR ,VL, t)λR

e
−νR |y|

|y|
1+αR

dy (4)

for positive jumps and

2

∂

∂t
C (S,VR ,VL, t) = −

√
VL

∫
0

−∞
C (Se

y
, VR ,VL, t)λL

e
−νL|y|

|y|
1+αL

dy (5)

for negative jumps.
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3 Now an important note is that in accordance with the definition of these integrals we can rewrite the kernel as

∂

∂t
C (x, t) = −

√
VR

∫ ∞

0
C (x + y, t)λR

e
−νR |y|

|y|
1+αR

1y>0dy (6)

∂

∂t
C (S, t) = −

√
VL

∫ 0

−∞
C (x + y, t)λL

e
−νL|y|

|y|
1+αL

1y<0dy

This two equations are still PIDE or evolutionary integral equations. We want to apply our new method to transform
them to a certain pseudo parabolic equations at α ∈ I.
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Pseudo-parabolic PDE

Transformation - α ∈ I

To achieve our goal we have to solve the following problem. We need to find a differential operator A+
y which Green’s function

is the kernel of the integral in the Eq. (6), i.e.

A
+
y



λ
e
−ν|y|

|y|
1+α

1y>0



 = δ(y) (7)

We prove the following proposition.

Proposition

Assume that in the Eq. (7) α ∈ I, and α < 0. Then the solution of the Eq. (7) with respect to A+
y is

A
+
y =

1

λp!

(

ν +
∂

∂y

)p+1

≡
1

λp!





p+1∑

i=0

C
p+1
i ν

p+1−i ∂
i

∂y
i



 , p ≡ −(1 + α) ≥ 0,

where C
p+1
i

are the binomial coefficients.

A.Itkin Bachelier Congress, Toronto June 22-26, 2010 9 / 41



Pseudo-parabolic PDE

Transformation - α ∈ I - cont.

For the second equation in the Eq. (6) it is possible to elaborate an analogous approach. Again assuming z = x + y we rewrite
it in the form

∂

∂t
C (x, t) = −

√
VL

∫ x

−∞
C (z, t)λR

e
−νR |z−x|

|z − x|
1+αR

1z−x<0dz (8)

Now we need to find a differential operator A−
y which Green’s function is the kernel of the integral in the Eq. (8), i.e.

A
−
y



λ
e
−ν|y|

|y|
1+α

1y<0



 = δ(y) (9)

We prove the following proposition.

Proposition

Assume that in the Eq. (9) α ∈ I, and α < 0. Then the solution of the Eq. (9) with respect to A−
y is

A
−
y =

1

λp!

(

ν −
∂

∂y

)p+1

≡
1

λp!





p+1∑

i=0

(−1)
i
C
p+1
i

ν
p+1−i ∂

i

∂y
i



 , p ≡ −(1 + α),
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Pseudo-parabolic PDE

Transformation - α ∈ I - cont.

To proceed we need to prove two other statements.

Proposition

Let us denote the kernels as

g
+
(z − x) ≡ λR

e
−νR |z−x|

|z − x|
1+αR

1z−x>0. (10)

Then
A

−
x g

+
(z − x) = δ(z − x). (11)

Proposition

Let us denote the kernels as

g
−

(z − x) ≡ λL

e
−νL|z−x|

|z − x|
1+αL

1z−x<0. (12)

Then
A

+
x g

−
(z − x) = δ(z − x). (13)
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Pseudo-parabolic PDE

Transformation - α ∈ I - cont.

1 We now apply the operator A−
x to both parts of the Eq. (6) to obtain

A
−
x

∂

∂t
C (x, t) = −

√
VRA

−
x

∫ ∞

x
C (z, t)g

+
(z − x)dz =

√
VR

{∫ ∞

x
C (z, t)A

−
x g

+
(z − x)dz + R

}

(14)

=
√

VR

{∫ ∞

x
C (z, t)δ(z − x)dz + R

}

=
1

2

√
VRC (x, t) +

√
VRR

Here

R =

p
∑

i=0

ai

(
∂
p−i

∂x
p−i

V (x)

)(
∂
i

∂x
i
g(z − x)

)
∣
∣
∣
z−x=0

, (15)

and ai are some constant coefficients. As from the definition in the Eq. (10) g(z − x) ∝ (z − x)p , the only term in the
Eq. (15) which does not vanish is that at i = p. Thus

R = V (x)

(
∂
p

∂x
p g(z − x)

)
∣
∣
∣
z−x=0

= V (x)p!1(0) = 0; (16)

2 With allowance for this expression from the Eq. (14) we obtain the following pseudo parabolic equation for C (x, t)

A
−
x

∂

∂t
C (x, t) = −

1

2

√
VRC (x, t) (17)
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Pseudo-parabolic PDE

Transformation - α ∈ I - cont.
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A
−
x

∂

∂t
C (x, t) = −

1
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√
VRC (x, t) (17)

3 Applying the operator A+
x to both parts of the second equation in the Eq. (8) and doing in the same way as in the

previous paragraph we obtain the following pseudo parabolic equation for C (x, t)

A
+
x

∂

∂t
C (x, t) = −

1

2

√
VLC (x, t) (18)
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Solution of PPE

Solution of PPE

Exact solution:

Assume that the inverse operator A−1 exists we can represent, for instance, the Eq. (17) in the form

∂

∂t
C (x, t) = −BC (x, t), B ≡

1

2

√
VR (A

−
x )

−1
, (19)

This equation can be formally solved analytically to give

C (x, t) = e
B(T−t)

C (x,T ), (20)

where T is the time to maturity and C (x,T ) is payoff. Switching to a new variable τ = T − t to go backward in time we
rewrite the Eq. (20) as

C (x, τ) = e
Bτ

C (x, 0), (21)

Numerical solution:
1 Suppose that the whole time space is uniformly divided into N steps, so the time step θ = T/N is known. Assuming

that the solution at time step k, 0 ≤ k < N is known and we go backward in time, we could rewrite the Eq. (20) in the
form

C
k+1

(x) = e
Bθ

C
k
(x), (22)

where Ck (x) ≡ C (x, kθ). To get representation of the rhs of the Eq. (22) with given order of approximation in θ, we
can substitute the whole exponential operator with its Padé approximation of the corresponding order m.

2 First, consider the case m = 1. A symmetric Padé approximation of the order (1, 1) for the exponential operator is

e
Bθ

=
1 + Bθ/2

1 − Bθ/2
(23)
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Solution of PPE

Numerical solution - cont.

1 Substituting this into the Eq. (22) and affecting both parts of the equation by the operator 1 − Bθ/2 gives

(

1 −
1

2
Bθ

)

C
k+1

(x) =

(

1 +
1

2
Bθ

)

C
k
(x). (24)

This is a discrete equation which approximates the original solution given in the Eq. (22) with the second order in θ.
One can easily recognize in this scheme a famous Crank-Nicolson scheme.

We do not want to invert the operator A−
x in order to compute the operator B because B is an integral operator.

Therefore, we will apply the operator A−
x to the both sides of the Eq. (24). The resulting equation is a pure differential

equation and reads
(

A
−
x −

√
VR

4
θ

)

C
k+1

(x) =

(

A
−
x +

√
VR

4
θ

)

C
k
(x). (25)

2 Let us work with the operator A−
x (for the operator A+

x all corresponding results can be obtained in a similar way).

The operator A−
x contains derivatives in x up to the order p + 1. If one uses a finite difference representation of these

derivatives the resulting matrix in the rhs of the Eq. (25) is a band matrix. The number of diagonals in the matrix
depends on the value of p = −(1 + αR ) > 0. For central difference approximation of derivatives of order d in x with
the order of approximation q the matrix will have at least l = d + q diagonals, where it appears that d + q is necessarily
an odd number. Therefore, if we consider a second order approximation in x , i.e. q = 2 in our case the number of
diagonals is l = p + 3 = 2 − αR .

As the rhs matrix D ≡ A−
x −

√
VRθ/4 is a band matrix the solution of the corresponding system of linear equations

in the Eq. (25) could be efficiently obtained using a modern technique (for instance, using a ScaLAPACK package). The
computational cost for the LU factorization of an N-by-N matrix with lower bandwidth P and upper bandwidth Q is
2NPQ (this is an upper bound) and storage-wise - N(P + Q). So in our case of the symmetric matrix the cost is

(1 − αR )
2N/2 performance-wise and N(1 − αR ) storage-wise. This means that the complexity of our algorithm is still

O(N) while the constant (1 − αR )
2/2 could be large.
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Solution of PPE

Numerical solution - cont.
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Solution of PPE

Numerical solution - cont.

1 Example: Solve our PDE using an x-grid with 300 nodes, so N = 300. Suppose αR = −10. Then the complexity of
the algorithm is 60N = 18000. Compare this with the FFT algorithm complexity which is (34/9)2N log2(2N) ≈ 20900
(We use 2N instead of N because in order to avoid undesirable wrap-round errors a common technique is to embed a
discretization Toeplitz matrix into a circulant matrix. This requires to double the initial vector of unknowns.), one can
see that our algorithm is of the same speed as the FFT.

2 The case m = 2 could be achieved either using symmetric (2,2) or diagonal (1,2) Padé approximations of the operator
exponent. The (1,2) Padé approximation reads

e
Bθ

=
1 + Bθ/3

1 − 2Bθ/3 + B
2
θ
2
/6

, (26)

and the corresponding finite difference scheme for the solution of the Eq. (22) is

[

(A
−
x )

2
−

1

3

√
VRθA

−
x +

1

24
VRθ

2
]

C
k+1

(x) = A
−
x

[

A
−
x +

1

6

√
VRθ

]

C
k
(x). (27)

which is of the third order in θ.
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3 The (2,2) Padé approximation is

e
Bθ

=
1 + Bθ/2 + B

2
θ
2
/12

1 − Bθ/2 + B
2
θ
2
/12

, (28)

and the corresponding finite difference scheme for the solution of the Eq. (22) is

[

(A
−
x )

2
−

1

4

√
VRθA

−
x +

1

48
VRθ

2
]

C
k+1

(x) =

[

(A
−
x )

2
+

1

4

√
VRθA

−
x +

1

48
VRθ

2
]

C
k
(x), (29)

which is of the fourth order in θ.
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Solution of PPE

Stability analysis

1 Stability analysis of the derived finite difference schemes could be provided using a standard von-Neumann method.

Suppose that operator A−
x has eigenvalues λ which belong to continuous spectrum. Any finite difference approximation

of the operator A−
x - FD(A−

x ) - transforms this continuous spectrum into some discrete spectrum, so we denote the

eigenvalues of the discrete operator FD(A−
x ) as λi , i = 1,N, where N is the total size of the finite difference grid.

Now let us consider, for example, the Crank-Nicolson scheme given in the Eq. (25). It is stable if in some norm ‖ · ‖

∥
∥
∥
∥
∥

(

A
−
x −

√
VR

4
θ

)−1 (

A
−
x +

√
VR

4
θ

)∥
∥
∥
∥
∥

< 1. (30)

It is easy to see that this inequality obeys when all eigenvalues of the operator A−
x are negative. However, based on the

definition of this operator given in the Proposition 2, it is clear that the central finite difference approximation of the

first derivative does not give rise to a full negative spectrum of eigenvalues of the operator FD(A−
x ).

2 Case αR < 0. In this case we will use a one-sided forward approximation of the first derivative which is a part of the

operator
(

νR − ∂
∂x

)αR . Define h = (xmax − xmin)/N to be the grid step in the x-direction. Also define

cki = Ck (xi ). To make our method to be of the second order in x we use the following numerical approximation

∂Ck (x)

∂x
=

−C
k
i+2 + 4C

k
i+1 − 3C

k
i

2h
+ O(h

2
) (31)

All eigenvalues of Mf are equal to −3/(2h).
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Solution of PPE

Stability analysis - cont.

To get a power of the matrix M we use its spectral decomposition, i.e. we represent it in the form M = EDE ′, where D is a
diagonal matrix of eigenvalues di , i = 1,N of the matrix M, and E is a matrix of eigenvectors of the matrix M. Then

Mp+1 = EDp+1E ′, where the matrix Dp+1 is a diagonal matrix with elements d
p+1
i

, i = 1,N. Therefore, the eigenvalues of

the matrix
(

νR − ∂
∂x

)αR are [νR + 3/(2h)]αR . And, consequently, the eigenvalues of the matrix B are

λB =
√

VRλRΓ(−αR )
{

[νR + 3/(2h)]
αR − ν

αR
R

}

. (32)

As αR < 0 and νR > 0 it follows that λB < 0. Taking into account that λB < 0 we arrive at the following result

∥
∥
∥
∥
∥

(

1 −
1

2
Bθ

)−1 (

1 +
1

2
Bθ

)∥∥
∥
∥
∥

< 1. (33)

We also obey the condition R

(

νR − ∂
∂x

)

> 0. Thus, our numerical method is unconditionally stable.

1 Case αL < 0. In this case we will use a one-sided backward approximation of the first derivative in the operator
(

νL + ∂
∂x

)αL which reads

∂Ck (x)

∂x
=

3C
k
i − 4C

k
i−1 + C

k
i−2

2h
+ O(h

2
) (34)

Same proof that the resulting FD scheme is unconditionally stable and of the second order of approximation.
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Numerical examples

Comparison with FFT
To apply an FFT approach we first select a domain in x space where the values of function C (x, τ are of our interest. Suppose
this is x ∈ (−x∗, x∗). We define a uniform grid in this domain which contains N points: x1 = −x∗, x2, ...xN−1, xN = x∗
such that xi − xi−1 = h, i = 2...N. We then approximate the integral in the rhs with the first order of accuracy in h as

∫ ∞

0
C (x + y, τ)λR

e
−νR |y|

|y|
1+αR

dy = h

N−i∑

j=1−i

Ci+j (τ)fj , fj ≡ λR

e
−νR |xj |

|xj |
1+αR

+ O(h
2
). (35)

This approximation means that we have to extend our computational domain to the left up to x1−N = x1 − hN.
The matrix |f | is a Toeplitz matrix. Using FFT directly to compute a matrix-vector product in the Eq. (35) will produce a
wrap-round error that significantly lowers the accuracy. Therefore a standard technique is to embed this Toeplitz matrix into a
circulant matrix F which is defined as follows. The first row of F is

F1 = (f0, f1, ..., fN−1, 0, f1−N , ..., f−1),

and others are generated by permutation (see, for instance Zhang & Wang 2009). We also define a vector

Ĉ = [C1(τ), ...CN (τ), 0, ..., 0
︸ ︷︷ ︸

N

]
T
.

Then the matrix-vector product in the rhs Eq. (35) is given by the first N rows in the vector V = ifft(fft(F1) ∗ fft(Ĉ )), where fft
and ifft are the forward and inverse discrete Fourier transforms as they are defined, say in Matlab. In practice, an error at edge
points close to x1 and xN is higher, therefore it is useful first to add some points left to x1 and right to xN and then apply the
above described algorithm to compute the integral. We investigated some test problems, for instance, where the function C was
chosen as C (x) = x so the integral can be computed analytically. Based on the obtained results we found that it is useful to
extend the computational domain adding N/2 points left to x1 and right to xN that provides an accurate solution in the domain
x1, ..., xN . The drawback of this is that the resulting circulant matrix has 4N x 4N elements that increases the computational
work by 4 times (4N log2(4N) ≈ 4(N log2 N)).
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Numerical examples

Comparison with FFT - FD setup

1 In our calculations we used x∗ = 20, h = 2x∗/N regardless of the value of N which varies in the experiments. Then we
extended the domain to x1 = −x∗ − h(N/2 − 1), xN = x∗ + h(N/2 + 1), and so this doubles the originally chosen
value of N, i.e. Nnew = 2N. But the final results were analyzed at the domain x ∈ (−x∗, x∗).
Integrating the PIDE in time we use an explicit Euler scheme of the first order which is pretty fast. This is done in order
to provide the worst case scenario for the below FD scheme. Thus, if our FD scheme is comparable in speed with FFT
in this situation it will even better if some other more accurate integration schemes are applied together with the FFT.

2 FD: We build a fixed grid in the x space by choosing Smin = 10−8 , Smax = 500, x1 = log(Smin), xN = log(Smax ),
h = (xN − x1)/N,N = 256. The Crank-Nicolson scheme was applied.
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x obtained using our finite-difference method
(FD) and an explicit Euler scheme in time where the jump integral is computed using FFT. αR = −1.
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Numerical examples

Comparison FD/FFT - cont.
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x obtained using our finite-difference method (FD)
and an explicit Euler scheme in time where the jump integral is computed using FFT. αR = −2.
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Numerical examples

Comparison FD/FFT - cont.
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x obtained using our finite-difference method (FD)
and an explicit Euler scheme in time where the jump integral is computed using FFT. αR = −5.
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Numerical examples

Comparison FD/FFT - cont.
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x obtained using our finite-difference method (FD)
and an explicit Euler scheme in time where the jump integral is computed using FFT. αR = −6.
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Numerical examples

Comparison FD/FFT - cont.

In case αR = −1 in Fig. 1 the FFT solution computed with N = 256 provides a relatively big error which disappears
with N increasing. It is clear, because the Crank-Nicolson scheme is of the second order in h while the approximation
Eq. (35) of the integral is of the first order in h. Numerical values of the corresponding steps in the described
experiments are given in Tab. 1.

FD256 FFT256 FFT512 FFT1024 FFT2048 FFT4096
h 0.096 0.1563 0.078 0.039 0.0195 0.00977

Table: Grid steps h used in the numerical experiments

Therefore, h2FD ≈ hFFT16
. Actually, the difference between the FD solution with NFD = 256 and the FFT one with

N = 4NFD is almost negligible. However, the FD solution is computed almost 13 times faster. Even the FFT solution
with N = NFD is 10 times slower than the FD one (It actually uses 4N points as it was already discussed).

For αR = −2 in Fig. 4 we see almost the same picture. For αR = −5 speed characteristics of both solutions are
almost same while the accuracy of the FD solution decreases. This is especially pronounced for αR = −6 in Fig. ?? at
low values of x . The problem is that when αR decreases the eigenvalues of matrix B grow significantly (in our tests at

αR = −6 the eigenvalues are of order of 107), so the norm of matrix is very close to 1. Thus the FD method becomes
just an A-stable. However, a significant difference is observed mostly at very low values of x which correspond to the
spot price S = exp(x) close to zero. For a boundary problem this effect is partly dumped by the boundary condition at
the low end of the domain.
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PIDE, α ∈ R

PIDE, α ∈ R

First idea for α < 0 - use interpolation.
The second series of tests deals with αR ∈ R using the same parameters νR = 1, λR = 0.2. Four point cubic interpolation is
used to compute the value of C (x, τ) at real αR using the closest four integer values of αR .
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x at αR ∈ R obtained using our finite-difference
method (FD) and interpolation and an explicit Euler scheme in time where the jump integral is computed using FFT.
αR = −1.5.
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PIDE, α ∈ R

PIDE, α ∈ R - interpolation, cont.

−20 −15 −10 −5 0 5 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time to compute the solution
FD

N
 = 0.035841 sec, N = 256, alpha

R
 = −2.500000

FD
N

/FFT
N

=0.606216
FD

N
/FFT

2N
=0.486168

FD
N

/FFT
4N

=0.479409
FD

N
/FFT

8N
=0.223783

FD
N

/FFT
16N

=0.082668

 

 

FD−FFT
N

FD−FFT
2N

FD−FFT
4N

FD−FFT
8N

FD−FFT
16N

Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x at αR ∈ R obtained using our finite-difference
method (FD) and interpolation and an explicit Euler scheme in time where the jump integral is computed using FFT.
αR = −2.5.
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PIDE, α ∈ R

PIDE, α ∈ R - interpolation, cont.
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x at αR ∈ R obtained using our finite-difference
method (FD) and interpolation and an explicit Euler scheme in time where the jump integral is computed using FFT.
αR = −3.5.
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PIDE, α ∈ R

PIDE, α ∈ R - interpolation, cont.
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x at αR ∈ R obtained using our finite-difference
method (FD) and interpolation and an explicit Euler scheme in time where the jump integral is computed using FFT.
αR = −5.5.
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PIDE, α ∈ R

PIDE, α ∈ R - interpolation, cont.
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Figure: Difference (FD-FFT) in solutions of the PIDE as a function of x at αR ∈ R obtained using our finite-difference
method (FD) and interpolation and an explicit Euler scheme in time where the jump integral is computed using FFT.
αR = −0.5.

Actually, here the FFT to be accurate requires N > 8192.
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Special cases, α ≥ 0

Special cases, α = 0

This extreme case corresponds to the familiar Variance Gamma model. Operators BR ,BL have a special form.

BR =
√

VRλR

{

log(νR ) − log

(

νR −
∂

∂x

)}

(36)

BL =
√

VLλL

{

log(νL) − log

(

νL +
∂

∂x

)}

Therefore, the PPE could be integrated to obtain an explicit form of the Eq. (22)

C
k+1

(x) =

(

1 −
1

νR

∂

∂x

)−m

C
k
(x), m =

√
VRλRθ > 0, (37)

C
k+1

(x) =

(

1 +
1

νL

∂

∂x

)−m

C
k
(x), m =

√
VLλLθ,
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Exploit a modification of our interpolation method.

1 Typical values of λR , λL as well as VR , VL are limited, i.e. normally λR < M, λL < M, VR < M, VL < M where M
could be chosen in the range, say 3-5.
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could be chosen in the range, say 3-5.

2 The time step of integration θ in the Eq. (37) is determined by the time step used at the integration of the diffusion
part. So θ is usually small.
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2 The time step of integration θ in the Eq. (37) is determined by the time step used at the integration of the diffusion
part. So θ is usually small.

3 Thus, it is reasonable to assume that m < 2.
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2 The time step of integration θ in the Eq. (37) is determined by the time step used at the integration of the diffusion
part. So θ is usually small.

3 Thus, it is reasonable to assume that m < 2.

4 As follows from the definition of the fractional derivatives, the operators in the Eq. (37) are continuous in m.
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)}

Therefore, the PPE could be integrated to obtain an explicit form of the Eq. (22)

C
k+1

(x) =

(

1 −
1

νR

∂

∂x

)−m

C
k
(x), m =

√
VRλRθ > 0, (37)

C
k+1

(x) =

(

1 +
1

νL

∂

∂x

)−m

C
k
(x), m =

√
VLλLθ,

Exploit a modification of our interpolation method.

1 Typical values of λR , λL as well as VR , VL are limited, i.e. normally λR < M, λL < M, VR < M, VL < M where M
could be chosen in the range, say 3-5.

2 The time step of integration θ in the Eq. (37) is determined by the time step used at the integration of the diffusion
part. So θ is usually small.

3 Thus, it is reasonable to assume that m < 2.

4 As follows from the definition of the fractional derivatives, the operators in the Eq. (37) are continuous in m.

5 Therefore, we could solve the Eq. (37) for m = 0, 1, 2 and then use quadratic interpolation to get the solution given the

real value of m, and the condition m < 2. Note, that m = 0 is a trivial case so the solution Ck+1(X ) = Ck (x) is
already known.
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Special cases, α ≥ 0

Numerical details, α = 0

Construct a stable FD scheme to solve the first equation in the Eq. (37). A forward second order approximation of the

first derivative has to be chosen. Then the eigenvalues of the discrete operator
(

1 − 1
νR

∆
∆x

)−m
are

ζ =

(

1 +
3

2hνR

)−m

. (38)

We need to guarantee that ‖
(

1 − 1
νR

∆
∆x

)−m
‖ < 1. Thus, if νR < 1 this FD scheme is stable at

h < 3/[2(1 − νR )], and if νR ≥ 1 - it is unconditionally stable. As follows from the Proposition Eq. (5) R(νR ) > 1,
therefore the scheme is unconditionally stable.
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After this discretization the matrix of the lhs operator becomes one-sided tridiagonal if m = 1, and one-sided
pentadiagonal if m = 2.
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To preserve monotonicity of the solution for the second equation in the Eq. (37) a backward second order approximation
of the first derivative has to be chosen.
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After this discretization the matrix of the lhs operator becomes one-sided tridiagonal if m = 1, and one-sided
pentadiagonal if m = 2.

To preserve monotonicity of the solution for the second equation in the Eq. (37) a backward second order approximation
of the first derivative has to be chosen.

Based on these results we extend our numerical test described in the previous section to the case αR = 0. However, to
preserve convergence of the integral now we have to use the extended equation

∂

∂τ
C (x, τ) =

∫ ∞

0
[C (x + y, τ) − C (x, τ)]λR

e
−νR |y|

|y|
1+αR

dy, αR < −1 (39)
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It should be underlined that the presented simple FFT algorithm completely loses its accuracy when αR → 0.
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Special cases, α ≥ 0

Special cases, α = 1

Let us remind that as follows from the Proposition 5 in this case the original PIDE Eq. (49) is equivalent to the PIDE

∂

∂τ
C (x,VR , VL, τ) =

√
VRλR

{

− νR log νR + (νR −
∂

∂x
) log

(

νR −
∂

∂x

)

(40)

+ [νR log νR − (νR − 1) log(νR − 1)]
∂

∂x

}

C (x,VR , VL, τ)

R(∂/∂x) < 0, R(νR ) > 1,

and

−νR log νR + (νR −
∂

∂x
) log

(

νR −
∂

∂x

)

+ [νR log νR − (νR − 1) log(νR − 1)]
∂

∂x

=

∫ ∞

ν

{

log νR − log

(

νR −
∂

∂x

)

+

(

log
νR − 1

νR

)
∂

∂x

}

dν (41)
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log
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νR
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∂

∂x
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dν (41)

So to construct a FD numerical method for solving the Eq. (40) we rewrite it in the form

∂

∂τ
C (x,VR , VL, τ) = LRC (x,VR ,VL, τ) (42)

∂

∂τ
C (x,VR , VL, τ) = LLC (x,VR , VL, τ)

LR ≡
√

VRλR

∫ ∞

ν

{

log(νR ) − log

(

νR −
∂

∂x

)

+

(

log
νR − 1

νR

)
∂

∂x

}

dν

LL ≡
√

VLλL

∫ ∞

ν

{

log(νL) − log

(

νL +
∂

∂x

)

+ log

(
νL + 1

νL

)
∂

∂x

}

dν

We already know how to solve these equations if the operators LR and LL do not contain the integrals.
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Special cases, α ≥ 0

Numerical details, α = 1

1 First truncate the upper limit in the integral to some ν∗ . This could be done because the integral in the Eq. (42) is
well-defined and at νR → ∞ the integral kernel tends to zero as

lim
νR→∞

LRC (x,VR ,VL, τ) =
√

VRλR

1

2ν
2
R

(

−
∂

∂x
+

∂2

∂x2

)

+ O(1/ν
3
R ) (43)

At the interval (ν, ν∗) we approximate the integral in ν using some quadrature formula or even adaptive quadratures.
So we partition the interval (ν, ν∗) into an even number of intervals M all of the same width h = (ν∗ − ν)/M.

2 Each operator BR ,BL now becomes a sum of M operators which commute with each other. Therefore, the solution of
the Eq. (42) reads

C (x,VR , VL, τ) = exp





M∑

i=0

Li,Rτ



C (x,VR , VL, 0) =
M∏

i=1

e
Li,Rτ

C (x,VR ,VL, 0) (44)

C (x,VR , VL, τ) = exp





M∑

i=0

Li,Lτ



C (x,VR , VL, 0) =

M∏

i=1

e
Li,LτC (x,VR ,VL, 0)

Using a splitting technique (Lanser, Verwer, Yoshida) we can represent this equation in the form

C1(x,VR , VL, θ) = e
L1,Rτ

C (x,VR , VL, 0) (45)

C2(x,VR , VL, θ) = e
L2,Rτ

C1(x,VR ,VL, θ)

..............................................

CM (x,VR , VL, θ) = e
LM,Rτ

CM−1(x,VR , VL, θ)

C (x,VR , VL, θ) = CM (x,VR , VL, θ)
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Special cases, α ≥ 0

Numerical details, α = 1

1 Each equation in the Eq. (45) is very similar to that corresponding to the case α = 0. The only difference is that the

operators Li,R now contain an extra term L3,i,R =

(

log
νi,R − 1

νi,R

)

∂
∂x

, and the operators Li,L now contain an extra

term L3,i,L =

(

log
νi,L + 1
νi,L

)

∂
∂x

. We can apply splitting to these operators similar to as we did in the above.

Further thee terms e
L3,i,R θ and e

L3,i,Lθ could be approximated with the second order of accuracy in θ by using Pade.

2 Finally, each equation in the Eq. (45) reads

C
k+1
−1 (x) = C

k
(x) (46)

C
k+1
i∗ (x) =

1 +
mi

2
L3,i,Rθ

1 −
mi

2
L3,i,Rθ

C
k
i−1(x)

C
k+1
i (x) =

(

1 −
1

ν1,R

∂

∂x

)−mi

C
k
i∗(x), i = 0, ...,M, mi ≡ ai

√
VRλR

ν∗ − ν

3M
θ

C
k+1

(x) = C
k+1
M (x)

We can chose the number M to guarantee that the value of mi is less than 2 and then use interpolation solving the
above equations at mi = 0, 1, 2.
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We can chose the number M to guarantee that the value of mi is less than 2 and then use interpolation solving the
above equations at mi = 0, 1, 2.

3 The matrix in the rhs of the second equation in the Eq. (46) is upper tridiagonal. The matrix in the rhs of the third
equation in the Eq. (46) is lower tridiagonal at mi = 1 and lower pentadiagonal at mi = 2. The total complexity of the
algorithm as compared with the case α = 0 is: one extra equation at each step, M steps instead of just one in the case
α = 0. Therefore, using our numerical tests we can expect that at M = 30 this algorithm is about 3 times slower than
the FFT. On the other hand it provides the second order approximation in both space and time, and does not require to
re-interpolate the FFT results to the FD grid which was previously used to find solution for the diffusion part of the
original PIDE.
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Special cases, α ≥ 0

Numerical details, α = 1
To verify this we provided two numerical experiments. In the first experiment ν∗ varied while h = (ν∗ − νR )/M was chosen to
be constant. At ν∗ = 5 we chose M = 30. The other parameters are same as in the previous numerical experiments reported in
the above.
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Figure: Difference in solutions obtained at various ν∗ and that at ν∗ = 5 at M = 30 and αR = 1.

The computational time rawly increases by the factor M/2, i.e. for M = 30 it is almost same as for the corresponding FFT. It is

seen that an appropriate value of ν∗ should be more than 300.
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Special cases, α ≥ 0

Numerical details, α = 1
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Solution as a function of M
Computational time = 0.368299 sec, N = 256, α

R
 = 1.000000, ν

*
 = 300.000000
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Figure: Difference in solutions obtained at various M and that at M = 21 at ν∗ = 300 and αR = 1.

In the second experiment we fixed the value ν∗ = 300 and varied M to see at which M one could expect to get
convergency. As it is seen M = 81 seems to be sufficient to obtain the convergency. The computational time in the
case M = 81 is 1.4 sec which 3.6 times more than that for the FFT. Thus, in this case our algorithm is almost 4 times
slower than the FFT.
As it was already mentioned this could be compensated a) by the second order of accuracy in space and time, and b) no
need for re-interpolation of the FFT results to the FD grid. One more advantage is that we don’t need to treat the
point y = 0 in a special way as it was done, say in Cont, Voltchkova 2003.
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need for re-interpolation of the FFT results to the FD grid. One more advantage is that we don’t need to treat the
point y = 0 in a special way as it was done, say in Cont, Voltchkova 2003.
Note, that as we use M steps in the splitting scheme, the error in time becomes O(Mθ2) that could kill the second
order of approximation. Therefore, for instance, it is better to use a third order approximation in time. This scheme
increases the total computational time by about 10%, however the accuracy in time increases to O(Mθ3).
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Alternative methods for real α

Alternative methods for real α

1 Suppose we consider GTSP/KoBoL/SSM class of models. We will
transform the corresponding PIDE to a fractional PDE. Fractional
PDEs for Lévy processes with finite variation were obtained by
Boyarchenko and Levendorsky (2002) and later by Cartea (2007)
using a characteristic function technique.

2 We derive it in all cases including processes with infinite variation
using a different technique - shift operators.

Sa = exp

(

a
∂

∂x

)

, so Saf (x) = f (x + a). (47)
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2 We derive it in all cases including processes with infinite variation
using a different technique - shift operators.

Sa = exp

(

a
∂

∂x

)

, so Saf (x) = f (x + a). (47)

3 and a pure jump PIDE (could be always obtained by using splitting)
reads (positive jumps, but negative - by analogy)

∂

∂τ
C(x , τ) = B1C(x , τ)

B1 ≡

∫ ∞

0

[

exp

(

y
∂

∂x

)

− 1− (ey − 1)
∂

∂x

]

λR
e−νR |y|

|y |1+αR
dy (48)

Formal integration could be fulfilled if we treat a differential operator
∂/∂x as a parameter.
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Fractional representation Positive jumps

Main theorem

Theorem (1)

The PIDE
∂

∂τ
C (x, τ) =

∫ ∞

0

[

C (x + y, τ) − C (x, τ) −
∂

∂x
C (x, τ)(e

y
− 1)

]

λR

e−νR |y|

|y|1+αR
dy (49)

is equivalent to the fractional PDE

∂

∂τ
C (x, τ) = λRΓ(−αR )

{(

νR −
∂

∂x

)αR
− ν

αR
R

+
[

ν
αR
R

− (νR − 1)
αR
] ∂

∂x

}

C (x, τ),

R(αR ) < 2, R(νR − ∂/∂x) > 0, R(νR ) > 1. (50)

In special cases this equation changes to

∂

∂τ
C (x, τ) = λR

{

log(νR ) − log

(

νR −
∂

∂x

)

+ log

(
νR − 1

νR

)
∂

∂x

}

C (x, τ) (51)

αR = 0, R(νR − ∂/∂x) > 0, R(νR ) > 1,

and

∂

∂τ
C (x, τ) = λR

{

− νR log νR + (νR −
∂

∂x
) log

(

νR −
∂

∂x

)

+ [νR log νR − (νR − 1) log(νR − 1)]
∂

∂x

}

C (x, τ)

αR = 1, R(∂/∂x) < 0, R(νR ) > 1,
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Fractional representation Negative jumps

Main theorem - cont.

Theorem (2)

The PIDE
∂

∂τ
C (x, τ) =

∫
0

−∞

[

C (x + y, τ) − C (x, τ) −
∂

∂x
C (x, τ)(e

y
− 1)

]

λL

e−νL|y|

|y|1+αL
dy (52)

is equivalent to the fractional PDE

∂

∂τ
C (x, τ) = λLΓ(−αL)

{(

νL +
∂

∂x

)αL
− ν

αL
L

+
[

ν
αL
L

− (νL + 1)
αL
] ∂

∂x

}

C (x, τ),

R(αL) < 2, R(νL + ∂/∂x) > 0, R(νL) > 0. (53)

In special cases this equation changes to

∂

∂τ
C (x, τ) = λL

{

log

(

νL +
∂

∂x

)

− log(νL) − log

(
νL + 1

νL

)
∂

∂x

}

(54)

αL = 0, R(νL + ∂/∂x) > 0, R(νL) > 0,

and

∂

∂τ
C (x, τ) = λL

{

− νL log νL + [νL log νL − (νL + 1) log(νL + 1)]
∂

∂x
+ (νL +

∂

∂x
) log

(

νL +
∂

∂x

)}

C (x, τ)

αR = 1, R(∂/∂x) < 0, R(νL) > 0,
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Fractional representation History

History
Similar representations were obtained first by Boyarchenko and Levendorsky (2002) and later Cartea (2007) using a characteristic
function approach. For instance, the latter authors considered several Lévy processes with known characteristic function, namely
LS, CGMY or KoBoL. Then using Fourier transform they managed to convert the governing PIDE (same type as the Eq. (3) but
for the Black-Scholes model with jumps) to a fractional PDE. In their notation our operator A1 is represented as

A1 ∝ (−1)
αR e

νR xD
αR
∞

(

e
−νR C (x, t)

)

, (55)

and operator A2 as

A2 ∝ e
νR ∞D

αR
x

(

e
−νR C (x, t)

)

, (56)

So to compare we have to note that aside of the different method of how to derive these equations our main contribution is:

1 Special cases αr = 0, 1, αl = 0, 1 are not considered by Cartea. in BL (2002) a corresponding characteristic function
of the KoBoL process was obtained in all cases for α ≤ 1. However, the authors did not consider numerical solution of
the fractional PDE. In this paper we derive a fractional PDE for all α < 2 and propose a numerical method for their
solution.

2 Jumps up and down are considered separately so the model in use (SSM) is slightly different from the model considered
by Cartea.
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2 Jumps up and down are considered separately so the model in use (SSM) is slightly different from the model considered
by Cartea.

3 In Cartea (2007) a Crank-Nicolson type numerical scheme was proposed to solve the obtained FPDE in time while
discretization in space was done using the Grunwald-Letnikov approximation which is of the first order in space. Here we
propose high-order schemes in both time and space.
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3 In Cartea (2007) a Crank-Nicolson type numerical scheme was proposed to solve the obtained FPDE in time while
discretization in space was done using the Grunwald-Letnikov approximation which is of the first order in space. Here we
propose high-order schemes in both time and space.

4 As it is known from recent papers (Abu,Saman (2007), Meerschaert,Tadjeran (2004), Tadjeran (2006), Meerschaert,
Tadjeran (2006), Sousa (2008)), a standard Grunwald-Letnikov approximation leads to unconditionally unstable
schemes. To improve this a shifted Grunwald-Letnikov approximation was proposed which allows construction of the
unconditionally stable scheme of the first order in space. Here we use a shifted approximation to derive the
unconditionally stable scheme of higher order.
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schemes. To improve this a shifted Grunwald-Letnikov approximation was proposed which allows construction of the
unconditionally stable scheme of the first order in space. Here we use a shifted approximation to derive the
unconditionally stable scheme of higher order.

5 We show that when considering jumps with finite activity and finite variation despite it is a common practice to integrate
out all Lévy compensators in the integral terms this breaks the stability of the scheme at least for the fractional PDE.
Therefore, in order to construct the unconditionally stable scheme one must keep some other terms under the integrals.
To resolve this in Cartea (2007) the authors were compelled to change their definition of the fractional derivative.
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Fractional representation History

Approximation
First, we remind that for integer coefficients αR ∈ I, αL ∈ I, αR < 0, αL < 0 the FD scheme could be written in the form

(

L
−
1 −

1

2
L
−
2 θ
)

C
k+1

(x) =

(

L
−
1 +

1

2
L
−
2 θ

)

C
k
(x), (57)

L
−
1 ≡

(

νR −
∂

∂x

)−αR
, L

−
2 ≡ 1 − ν

αR
R

L
−
1

Finite difference operators L
−
1 and L

−
2 have upper band matrices, and therefore the Eq. (57) can be simply solved by a

backward substitution. Computational cost of such an algorithm is C (N) ∝ N(2α + 1).
In the general case of real coefficients αR ∈ R, αL ∈ R, αR < 0, αL < 0 it is still convenient to represent the discrete PIDE

in the form of the Eq. (57). Approximation of the operator L−
1 should now rely on a proper definition of the fractional derivative.

It is known (see, for instance, Podlubniy (2009)) that the left and right sided Riemann-Liouville derivatives are defined by

aD
µ
x φ(x) =

1

Γ(m − µ)

(
d

dx

)m ∫ x

a

φ(ξ)dξ

(x − ξ)
µ−m+1

, m − 1 < µ ≤ m, (58)

xD
µ
b
φ(x) =

1

Γ(m − µ)

(

−
d

dx

)m ∫ b

x

φ(ξ)dξ

(ξ − x)
µ−m+1

, m − 1 < µ ≤ m,

It is also known that the left-sided Riemann-Liouville fractional derivative aD
µ
x can be approximated in all nodes of the

equidistant space discretization net simultaneously with the help of the upper(lower) triangular strip matrix Fα
N . As applied to

our problem, we have to use this approximation for the operator B− with a = 0 and B
+ with b = 0. A useful approximation to

the left-sided and right-sided fractional derivatives is given by the Grunwald-Letnikov formula

d
α
f (x)

d+x
α = lim

M+→∞

1

h
α

M+∑

k=0

(−1)
k
C
α
k f (x − kh), (59)

d
α
f (x)

d−x
α = lim

M−→∞

1

h
α

M−∑

k=0

(−1)
k
C
α
k f (x + kh),

where M+,M− are positive integers, h+ is the grid space step in the right plane (0,M+ , i.e h+ = xmax/M+ , h− is the grid
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Fractional representation History

Conclusion:

1 Pseudo-differential equations can be used instead of some PIDE in
mathematical finance. For GTSP/CGMY/KoBoL family of processes
at α ∈ I our numerical FD schemes seem to be more efficient than
the standard FFT approach.

2 At α ∈ R, α < 0 interpolation can be used together with the FD
schemes still be more efficient than the FFT.
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2 At α ∈ R, α < 0 interpolation can be used together with the FD
schemes still be more efficient than the FFT.

3 Fractional derivatives approach combined with a Grunwald-Letnikov
scheme of higher-order can be used for any α ∈ R, α < 2. Despite
the speed becomes O(N2) vs O(N log(N)) of the FFT, the accuracy
of the numerical approximation could be much higher.
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