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ROM Simulation

Introduction: Motivation

Simulating a N(µn,Σn) multivariate sample Xmn (Monte Carlo):

� Simulate standard normal Zmn = (zij), where zij = Φ−1(pij ),
pij ∼ U[0, 1] and Φ is the standard normal c.d.f

� Set Xmn = 1mµ
′

n + ZmnAn where A′

nAn = Σn and 1m = (1, . . . , 1)′

Problem: Error in sample moments

M(Xmn) = m−1
1
′

mXmn

V (Xmn) = m−1(Xmn − 1mM(Xmn))
′(Xmn − 1mM(Xmn))

� That is, particularly when m is small
�




�

	
M(Xmn) 6= µ

′

n and V (Xmn) 6= Σn
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ROM Simulation

ROM Simulations

Solution: Replace Zmn with an L-matrix satisfying

L
′

nmLmn = In and 1
′

mLmn = 0
′

n

� e.g Apply Gram-Schmidt (GS) orthogonalisation

Exact Mean-Covariance Sample: ROM Simulations

�




�

	
Xmn = 1mµ

′

n + m
1
2 QmLmnRnAn

where

� A′

nAn = Σn

� Rn is a random orthogonal matrix (ROM)

� Qm is a permutation satisfying 1′

mQm = 1′

m
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ROM Simulation

ROM Simulated Paths

Different ROMs, applied to the same L-matrix, lead to different samples:
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Figure: Both simulations based on the same multivariate normal sample. The solid lines
show the paths from the first simulation (no ROM) and the dashed lines show the
second simulation (with ROM). Path correlation is 0.75.
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ROM Simulation

L-Matrix Types

Parametric: Orthogonalisation of a zero mean parametric sample

� ROM Simulation −→ (small) adjustment to Monte Carlo

Data Specific: Orthogonalise a collection of data (mean deviations)

� ROM Simulation −→ infinitely many “historical samples”

Deterministic: Orthogonalise linearly independent vectors

vj = (0, . . . , 0
︸ ︷︷ ︸

j−1

, 1,−1, . . . , 1,−1
︸ ︷︷ ︸

2k

, 0, . . . , 0)′
GS

−−−−−−→ Lk
mn

� L1
mn relates to Helmertian (1876) matrices; k > 1 are new

� ROM Simulation −→ target higher multivariate moments
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ROM Simulation Properties

Multivariate Skewness and Kurtosis

We employ the multivariate measures introduced by Mardia (1970)

� Skewness:

τM(Xmn) = m−2
m∑

i=1

m∑

j=1

{
(xi − µ

′

n)V (Xmn)
−1(xj − µ

′

n)
′
}3

� Kurtosis:

κM(Xmn) = m−1
m∑

i=1

{
(xi − µ

′

n)V (Xmn)
−1(xi − µ

′

n)
′
}2

� Key Property is invariance under non-singular affine transformations:

τM(Xmn) = τM(1mb
′

n + XmnBn)

κM(Xmn) = κM(1mb′

n + XmnBn)
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ROM Simulation Properties

Skewness and Kurtosis of ROM Simulations

ROM simulations are (random) affine transformations of L-matrices

Parametric: Multivariate normal case

E[τM(Lmn)] = n(n + 1)(n + 2)m−1

E[κM(Lmn)] = n(n + 2)(m − 1)(m + 1)−1

Data Specific: ROM simulation moments identical to historical data

Deterministic: When k = 1

τM(L1
mn) = n

[
(m − 3) + (m − n)−1

]

κM(L1
mn) = n

[
(m − 2) + (m − n)−1

]

� When k > 1 −→ Moments available numerically

� Calibrate m (and k) for “moment targeting”
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ROM Simulation Properties

Orthogonal Matrices

Recall: ROM simulation equation Xmn = 1mµ
′ + m

1
2 QmLmnRnAn

� Qm are (cyclic) permutation matrices

� Rn are combinations of the following random orthogonal matrix types

(1) Sign Matrices: Rn = diag
{
(−1)d1 , . . . , (−1)dn

}

� where dk ∼ Bin(1, pk)

(2) Upper Hessenberg Rotations: Rn = Gn(θ1)Gn(θ2) . . . Gn(θn−1)

� where Gn(θj) are Givens (1958) rotations

From a random skew-symmetric matrix, satisfying S′

n = −Sn, we form

(3) Cayley (1846) Rotations: Rn = (In − Sn)
−1(In + Sn)

(4) Exponential Rotations: Rn = exp(Sn)
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ROM Simulation Properties

ROM Simulation Densities: Rotation Effects
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Figure: Histograms for the 5th marginal density of a ROM simulation involving
deterministic L-matrices (m = 15, n = 10, k = 2). Over 10,000 observations are
used for each simulation. Marginals are compared to scaled normal distributions.

Alexander and Ledermann (ICMA Centre) 23rd June 2010 11 / 20



ROM Simulation Properties

ROM Simulation Densities: Sign Matrix Effects
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Figure: Histograms for the 5th marginal distribution of two ROM simulations
involving deterministic L-matrices (m = 15, n = 10, k = 0) and Cayley matrices.
In the lower figure sign matrices are used to induce negative skew.
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Applications in Finance

Portfolio Value-at-Risk (VaR)

The level VaR(α, h) represents the h-day portfolio loss that we assume is
exceeded with probability α

� If portfolio h-day returns are normally distributed then

VaR(α, h) = −Φ−1(α)σh − µh

� Portfolio losses are typically non-normal (leptokurtic)

� Common to simulate losses (returns) and calculate empirical quantiles

VaR(α, h) = −qα(rhm)

where rhm is a vector containing m scenarios for portfolio h-day returns

� Historical “simulation” is particularly popular
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Applications in Finance

An MSCI Country Index Portfolio

We consider a portfolio whose assets individually track the n = 45 country
indices in the MSCI All Country World Index

� Portfolio return rπ is weighted average of asset returns
x = (x1, . . . , xn)

rπ = π(x) =

n∑

i=1

wixi where

n∑

i=1

wi = 1

� Correlations between the assets returns are key

� Multivariate kurtosis is also important

� Let Xmn denote m (simulated) scenarios on the n assets, then

Xmn
π

−−−→ rm

where rm is a vector of portfolio scenarios
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Applications in Finance

Scenario Generation Techniques for VaR

�

�

�

�Two year historical window −→ target moments µn, Sn, κM

We generate scenarios Xmn using six different techniques:

(1) - (3) ROM Simulations

� Type I L-matrices used to target κM

� Three types of random orthogonal matrices

(4) Multivariate Normal (Monte Carlo and analytic)

(5) Multivariate Student-t (Monte Carlo, ν = 6 degrees of freedom)

(6) Historical simulation (two years of observations)

Note: Limited data are available for historical quantile estimation

�

�

�

�Estimate portfolio VaR −→ roll window forward and repeat
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Applications in Finance

Daily VaR for Equally Weighted Portfolio
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Figure: Evolution of daily VaR, given as a percentage of the portfolio value
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Applications in Finance

Daily VaR Exceedances
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Figure: Equally weighted daily portfolio returns, plotted with negative VaR

Alexander and Ledermann (ICMA Centre) 23rd June 2010 18 / 20



Applications in Finance

Proportion of Exceedances for Equally Weighted Portfolio

Exceedances Coverage Tests

m1 m1/m Uncond. Cond.

Hessenberg 24 0.89% 0.36 6.03%

Cayley 32 1.18% 0.86 4.45%

Exponential 56 2.07% 23.89 47.49%

Normal (MC) 73 2.70% 53.80 84.48%

Student-t (MC) 41 1.52% 6.27 24.23%

Historical 37 1.37% 3.31 18.39%

Normal (Analytic) 74 2.73% 55.84 85.82%

Table: m is the total number of out-of-sample returns (2647 daily). The 1%
critical values are 6.63 for the Unconditional test and 9.21 for the Conditional test
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Applications in Finance

Summary

� Exact mean-covariance samples are generated from L-matrices

� Orthogonal matrices can be used to randomise these samples

� Different simulation properties associated with different types of
orthogonal matrix

� Target higher order moments with deterministic L-matrices

� ROM simulation is a useful scenario generation technique

• Portfolio Value-at-Risk

• Portfolio allocation optimisations
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