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Introduction

Numerical Methods for Pricing American Option

1. Closed-Form Solution: It is difficult to find a closed-form solution.

2. Lattice Methods: When the condition is simple, the lattice methods
give good approximated solutions.

3. Monte Carlo Simulation: When the condition is complicated, the
Monte Carlo simulation is practical.

Monte Carlo simulation� �
Lower Bound: A stopping time gives a lower bound.
� The least-square method gives a good stopping time.
Longstaff and Schwartz (2001)
Upper Bound: A martingale gives an upper bound.
� Can we find a good martingale?

� �
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Setup
The saving account is the numeraire. All prices are discounted prices.
T ∈ N : Fixed Maturity
(Ω,F , P , {Fk; k = 0, 1, . . . , T}) : Filtered probability space
Sk (k = 0, 1, . . . , T ) : Price Process of Risky Asset
Hk (k = 0, 1, . . . , T ) : Payoff of American Option
Vk (k = 0, 1, . . . , T ) : Price of American Option

Assumption

• P is a unique equivalent martingale measure.

• Fk is a natural filtration generated by S . We write Ek [·] = E [·|Fk].

• H is an adapted process.

Definition 1 A supersolution is a supermartingale X satisfying

Xk ≥ Hk , k = 0, 1, . . . , T − 1

and the maturity condition, that is, XT = HT .

V is a minimum supersolution.
� Any supersolution is an upper bound process of the American option.
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Main Problem
Suppose that a supersolution U is given. Note that U0 is an upper bound.
Suppose that the lower bound process L of the continuation value is given.

Lk ≤ Ek [Vk+1]| {z }
continuation value

≤ Vk ≤ Uk , k < T ,

LT = HT (= UT ) .

We want to improve the upper bound U0 in the Monte Carlo simulation.
Chen and Glasserman (2007) proposes an iterative method.

1. Using the supersolution U, a martingale is given by
MU

k =
Pk

t=1 (Ut − Et−1[Ut ]) , k = 0, 1, . . . , T .

2. Using the martingale M , a new supersolution (= upper bound process) is
given by UM

k = Ek [maxk≤t≤T (Ht − Mt)] + Mk , k = 0, 1, . . . , T .

• The iterative improvement converges to the true price.

• The calculation of the conditional expectation is necessary at all times
and all states for the Doob decomposition.

• The lower bound process is not used.� �
We want to find a computationally-efficient improvement method using L.

� �
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Basic Result
Let T k be the set of the stopping times whose values are greater than or
equal to k.

Theorem 1 Let τ1, τ2 ∈ T 0 and τ1 ≤ τ2. Suppose that V satisfies the
martingale property in [0, τ1] ∪ [τ1 + 1, τ2], that is,

Vk = Ek [Vk+1], k ∈ [0, τ1 − 1] ∪ [τ1 + 1, τ2 − 1].

0 τ1 τ2

Martingale Martingale

τ1 + 1
Let

w(τ1 , τ2) = E [max (Hτ1 , Eτ1 [Uτ2 ])].

Then

V0 ≤ w(τ1 , τ2)
︸ ︷︷ ︸

New Upper Bound

≤ U0.

The problem is to find an appropriate pair of stopping times (τ1, τ2).
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Methods 1, 2
We use the mathematical convention the minimum over the empty set is ∞,
min(∅) = +∞.

Lemma 1 Let τ∗
1 = min{k ≥ 0|Hk > Lk} ∧ T . Then V satisfies the martingale

property in [0, τ∗
1 ] , that is, Vk = Ek [Vk+1] for k ∈ [0, τ∗

1 − 1].

Corollary 1 Let w1
L = w(τ∗

1 , τ∗
1 ). Then V0 ≤ w1

L ≤ U0.

Corollary 2 Let w2
L = w(τ∗

1 , (τ∗
1 + 1) ∧ T ). Then V0 ≤ w2

L ≤ w1
L ≤ U0.

• w2
L ≤ w1

L . · · · w2
L is a better upper bound than w1

L .

• When Uk = Ek [maxk≤t≤T(Ht − Mt)] + Mk,
w1

L = E [maxτ∗
1 ≤t≤T (Ht − Mt)],

w2
L = E [max

“
Hτ∗

1
, Eτ∗

1
[max(τ∗

1 +1)∧T≤t≤T (Ht − Mt)] + Mτ∗
1

”
].

• w1
L includes no conditional expectation per path.

• w2
L requires only one conditional expectation per path.

• The iterated method requires T conditional expectations per path.

The calculations of w1
L and w2

L spend much less time than that of the
iterative method. The proposed methods are more efficient.
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Method 3
Lemma 2 Let τ∗

2 = min{k > τ∗
1 |Hk > Lk} ∧ T . Then V satisfies the martingale

property in [τ∗
1 + 1, τ∗

2 ] , that is, Vk = Ek [Vk+1] for k ∈ [τ∗
1 + 1, τ∗

2 − 1].

Corollary 3 Let
w3

L = w(τ∗
1 , τ∗

2 ).

Then

V0 ≤ w3
L ≤ w2

L ≤ U0.

• w3
L is the best upper bound of the three proposed methods.

• When Uk = Ek [maxk≤t≤T(Ht − Mt)] + Mk,

w3
L = E [max

„
Hτ∗

1
, Eτ∗

1
[ max
τ∗
2 ≤t≤T

(Ht − Mt)] + Mτ∗
1

«
].

We have to calculate τ∗
2 . When the lower bound process can be

calculated by an analytic formula, the calculation of τ∗
2 is not

time-consuming and then the amount of calculation of w3
L is as much as

that of w2
L .
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Lower Bound Effect

Lemma 3 Let τa, τb ∈ T 0. If τa ≤ τb , then

w(τa, τa) ≥ w(τb , τb),

w(τa, (τa + 1) ∧ T ) ≥ w(τb , (τb + 1) ∧ T ).

Proposition 1 Let La and Lb be lower bound processes. Suppose that

La
k ≤ Lb

k , k = 0, 1, . . . , T . Lb is a better lower bound process than La.

Then

w1
La ≥ w1

Lb ,

w2
La ≥ w2

Lb ,

w3
La ≥ w3

Lb .

The better a lower bound process is, the greater improvement of upper bound

can be expected.
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European Option Based Model
Let V E be the price process of the European option satisfying V E

k = Ek [HT ].

Mk = V E
k − V E

0 ,

Uk = Ek [ max
k≤t≤T

(Ht − Mt)] + Mk.

We call this model the European option based model.

Proposition 2 Consider the European option based model with L = V E . If
τ ∈ T 0 satisfies τ < τ∗

1 , then

U0 = w(τ, τ) = w(τ, (τ + 1) ∧ T ).

If L is smaller than V E , it fails to improve the upper bound.

Proposition 3 In the European option based model, if L = V E , then we have

U0 = w1
L≥w2

L = w3
L .

• V E is the worst lower bound which may improve the upper bound.

• We check whether w2
L = w3

L generated by V E can improve the upper
bound by the numerical analysis.
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Simulation Condition

• The price process is given by the Black Scholes Model, that is,

Sk = Sk−1 exp

„
−σ2

2
�t + σ

p
�tξk

«
, k = 1, . . . , T ,

Hk = max
“
Ke−rk�t − Sk , 0

”
, k = 0, 1, . . . , T ,

where ξ1, . . . , ξT are independent and standard normally distributed.

• Let L = V E , that is,

Lk = KΦ(d(k ,T , K , 0)) − SkΦ(d(k ,T , K , σ2)), k = 0, 1, . . . , T − 1

where Φ(·) is the standard normal distribution function and

d(k , T , K , r) =
1

σ
p

(T − k)�t

„
log

K

Sk
−
„

r − 1

2
σ2

«
(T − k)�t

«
.

• S0 = 100, r = 0.04, σ = 0.3, �t = 0.01, T = 50, 100, 150.

• The number of paths for calculating the expectation is 2, 500.

• The number of paths for calculating the conditional expectation is 500.

• The antithetic sampling is used.
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Better Lower Bound
• Let La

T = Lb
T = HT and for k = 0, 1, . . . , T − 1,

La
k = max

t0>k

 
sup

τ∈Tt0,T

Ek [Hτ ]

!
, Lb

k = sup
τ∈T k+1

Ek [Hτ ]

where Tt0,T is the set of the stopping times whose values are t0 or T .

• La can be calculated by the analytic formula since

sup
τ∈Tt1,T

Et0 [Hτ ] = KΦ(d(t0, t1, S
∗
t1 , 0)) − St0Φ(d(t0, t1, S

∗
t1 , σ

2))

+ KΦ2(−d(t0, t1, S
∗
t1 , 0), d(t0, T , K , 0);

t1 − t0
T − t0

)

− St0Φ2(−d(t0, t1, S
∗
t1 , σ

2), d(t0, T , K , σ2);
t1 − t0
T − t0

)

where Φ2(·, ·; ρ) is the standard bivariate normal distribution function.
S∗

t1 is a solution of

KΦ(d(t1, T , K , 0)) − S∗
t1Φ(d(t1, T , K , σ2)) = Ke−rt1�t − S∗

t1 .

• Lb is used in order to estimate the maximum improvement.
Note that Lb can be calculated by the lattice tree.
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Numerical Result (Lower Bound Effect)
K = 90 (OTM)

T U0 w3
L w3

La w3
Lb V0

50 3.471(0.002) 3.469(0.002) 3.465(0.002) 3.463(0.002) 3.460
100 5.861(0.006) 5.856(0.006) 5.845(0.006) 5.821(0.006) 5.806

150 7.618(0.010) 7.612(0.009) 7.584(0.010) 7.542(0.010) 7.509

K = 100 (ATM)
T U0 w3

L w3
La w3

Lb V0

50 7.612(0.004) 7.608(0.004) 7.596(0.004) 7.581(0.004) 7.579

100 10.334(0.009) 10.327(0.008) 10.299(0.009) 10.254(0.009) 10.223
150 12.274(0.015) 12.268(0.013) 12.225(0.014) 12.123(0.014) 12.064

K = 110 (ITM)

T U0 w3
L w3

La w3
Lb V0

50 13.704(0.006) 13.696(0.006) 13.671(0.006) 13.629(0.006) 13.616
100 16.253(0.013) 16.241(0.011) 16.195(0.012) 16.089(0.012) 16.037
150 18.151(0.019) 18.145(0.016) 18.066(0.018) 17.888(0.019) 17.782

1. U0 > w3
L > w3

La > w3
Lb > V0. · · · L ≤ La ≤ Lb, Lower Bound Effect

2. w3
Lb > V0. The proposed methods can improve the upper bound efficiently

but cannot attain the true price.
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Bermudan Max Call Option on five Assets
• Suppose that the price processes S i for i = 1, . . . , 5 are given by S i

0 = S0,

S i
k = S i

k−1 exp

„„
−q − σ2

2

«
�t + σ

p
�tξ i

k

«
, k = 1, . . . , T .

• Hk = max
`
max1≤i≤5 S i

k − Ke−rk�t , 0
´
, k = 0, 1, . . . , T .

• K = 100, q = 0.1, σ = 0.2, r = 0.05, T = 3
�t

.

• The number of paths for calculating the expectation and the conditional
expectation are 250, 000 and 500 respectively.

• An upper bound process is generated by the single European options.

• A lower bound process is based on the least square method.

• The true price V0 is the point estimate in Broadie and Glasserman (2004).

�t S0 U0 w1
L w2

L V0

1/2 90 17.572 (0.015) 16.866 (0.015) 16.496 (0.014) 16.474

1/2 100 28.038 (0.019) 26.645 (0.020) 25.997 (0.019) 25.920
1/2 110 39.721 (0.023) 37.545 (0.024) 36.615 (0.023) 36.497
1/3 90 17.804 (0.014) 17.033 (0.014) 16.677 (0.013) 16.659

1/3 100 28.296 (0.018) 26.855 (0.018) 26.264 (0.017) 26.158
1/3 110 39.956 (0.021) 37.816 (0.022) 36.994 (0.021) 36.782
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Concluding Remarks

We have proposed a simple and computationally tractable improvement
method for the upper bound of American options.

• The method is based on two stopping times. The stopping times are
generated from a lower bound process of the continuation value.

• A better, namely higher lower bound process gives a greater
improvement of the upper bound.

• Our method can be used together with the approximation of lower
bound process by the least square method.
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