

Simple Improvement Method for Upper Bound of American Option

Koichi Matsumoto (joint work with M. Fujii, K. Tsubota) Faculty of Economics Kyushu University E-mail : k-matsu@en.kyushu-u.ac.jp

6th World Congress of the Bachelier Finance Society June, 2010@Hilton, Toronto, Canada

Introduction	Model and Problem	Main Results	Example	Conclusion	References
		Introduct	ion		

Numerical Methods for Pricing American Option

- 1. Closed-Form Solution: It is difficult to find a closed-form solution.
- 2. Lattice Methods: When the condition is simple, the lattice methods give good approximated solutions.
- 3. Monte Carlo Simulation: When the condition is complicated, the Monte Carlo simulation is practical.

```
    Monte Carlo simulation
    Lower Bound: A stopping time gives a lower bound.
    ▷ The least-square method gives a good stopping time.
    Longstaff and Schwartz (2001)
    Upper Bound: A martingale gives an upper bound.
    ▷ Can we find a good martingale?
```

Setup

The saving account is the numeraire. All prices are discounted prices.

- : Fixed Maturity
- $(\Omega, \mathcal{F}, P, \{\mathcal{F}_k; k = 0, 1, \dots, T\})$: Filtered probability space
 - : Price Process of Risky Asset
 - : Payoff of American Option
 - : Price of American Option

Assumption

 $S_k \ (k = 0, 1, \dots, T)$

 H_k (k = 0, 1, ..., T)

 V_k (k = 0, 1, ..., T)

 $T \in \mathbf{N}$

- *P* is a unique equivalent martingale measure.
- \mathcal{F}_k is a natural filtration generated by S. We write $E_k[\cdot] = E[\cdot|\mathcal{F}_k]$.
- *H* is an adapted process.

Definition 1 A supersolution is a supermartingale X satisfying

 $X_k \geq H_k, \ k=0,1,\ldots,T-1$

and the maturity condition, that is, $X_T = H_T$.

V is a minimum supersolution.

 \triangleright Any supersolution is an upper bound process of the American option.

Exam

◆□ > ◆□ > ◆臣 > ◆臣 >

Referen

Main Problem

Suppose that a supersolution U is given. Note that U_0 is an upper bound. Suppose that the lower bound process L of the continuation value is given.

$$L_k \leq \underbrace{E_k[V_{k+1}]}_{k+1} \leq V_k \leq U_k, \ k < T,$$

continuation value

 $L_T = H_T (= U_T).$

We want to improve the upper bound U_0 in the Monte Carlo simulation. Chen and Glasserman (2007) proposes an iterative method.

- 1. Using the supersolution U, a martingale is given by $M_k^U = \sum_{t=1}^k (U_t E_{t-1}[U_t]), \ k = 0, 1, \dots, T.$
- 2. Using the martingale M, a new supersolution (= upper bound process) is given by $U_k^M = E_k[\max_{k \le t \le T}(H_t M_t)] + M_k, \ k = 0, 1, ..., T$.
- The iterative improvement converges to the true price.
- The calculation of the conditional expectation is necessary at all times and all states for the Doob decomposition.
- The lower bound process is not used.

We want to find a computationally-efficient improvement method using L.

Example

Conclusio

Reference

Basic Result

Let \mathcal{T}^k be the set of the stopping times whose values are greater than or equal to k.

Theorem 1 Let $\tau_1, \tau_2 \in \mathcal{T}^0$ and $\tau_1 \leq \tau_2$. Suppose that V satisfies the martingale property in $[0, \tau_1] \cup [\tau_1 + 1, \tau_2]$, that is, $V_k = E_k[V_{k+1}], k \in [0, \tau_1 - 1] \cup [\tau_1 + 1, \tau_2 - 1].$ Martingale Martingale τ_1 0 $|\tau_1 + 1|$ τ_2 Let $w(\tau_1, \tau_2) = E[\max(H_{\tau_1}, E_{\tau_1}[U_{\tau_2}])].$ Then $V_0 \leq w(\tau_1, \tau_2) \leq U_0.$ New Upper Bound

The problem is to find an appropriate pair of stopping times (71, 72). Ξ

Examp

Methods 1, 2

We use the mathematical convention the minimum over the empty set is ∞ , $\min(\emptyset) = +\infty$.

Lemma 1 Let $\tau_1^* = \min\{k \ge 0 | H_k > L_k\} \land T$. Then V satisfies the martingale property in $[0, \tau_1^*]$, that is, $V_k = E_k[V_{k+1}]$ for $k \in [0, \tau_1^* - 1]$.

Corollary 1 Let $w_L^1 = w(\tau_1^*, \tau_1^*)$. Then $V_0 \le w_L^1 \le U_0$.

Corollary 2 Let $w_L^2 = w(\tau_1^*, (\tau_1^* + 1) \wedge T)$. Then $V_0 \le w_L^2 \le w_L^1 \le U_0$.

• $w_L^2 \leq w_L^1$ w_L^2 is a better upper bound than w_L^1 .

• When
$$U_k = E_k[\max_{k \le t \le T}(H_t - M_t)] + M_k$$
,
 $w_L^1 = E[\max_{\tau_1^* \le t \le T}(H_t - M_t)]$,
 $w_L^2 = E[\max\left(H_{\tau_1^*}, E_{\tau_1^*}[\max_{(\tau_1^*+1) \land T \le t \le T}(H_t - M_t)] + M_{\tau_1^*}\right)]$.

- w_L^1 includes no conditional expectation per path.
- w_L^2 requires only one conditional expectation per path.
- The iterated method requires *T* conditional expectations per path.

The calculations of w_L^1 and w_L^2 spend much less time than that of the iterative method. The proposed methods are more efficient.

6 / 15

◆□ → ◆聞 → ◆臣 → ◆臣 → □ □

Main Results

Exa

2

R

Method 3

Lemma 2 Let $\tau_2^* = \min\{k > \tau_1^* | H_k > L_k\} \land T$. Then V satisfies the martingale property in $[\tau_1^* + 1, \tau_2^*]$, that is, $V_k = E_k[V_{k+1}]$ for $k \in [\tau_1^* + 1, \tau_2^* - 1]$.

Corollary 3 Let

$$\mathbf{w}_{L}^{3}=\mathbf{w}(\tau_{1}^{*},\tau_{2}^{*}).$$

Then

$$V_0 \leq w_L^3 \leq w_L^2 \leq U_0.$$

• w_L^3 is the best upper bound of the three proposed methods.

• When
$$U_k = E_k[\max_{k \leq t \leq T}(H_t - M_t)] + M_k$$
,

$$w_L^3 = E[\max\left(H_{\tau_1^*}, E_{\tau_1^*}[\max_{\tau_2^* \le t \le T}(H_t - M_t)] + M_{\tau_1^*}
ight)].$$

We have to calculate τ_2^* . When the lower bound process can be calculated by an analytic formula, the calculation of τ_2^* is not time-consuming and then the amount of calculation of w_L^3 is as much as that of w_L^2 .

Exar

Conclusio

References

Lower Bound Effect

Lemma 3 Let
$$\tau_a, \tau_b \in \mathcal{T}^0$$
. If $\tau_a \leq \tau_b$, then

$$egin{aligned} & \mathsf{w}(au_{a}, au_{a}) \geq \mathsf{w}(au_{b}, au_{b}), \ & \mathsf{w}(au_{a},(au_{a}+1)\wedge T) \geq \mathsf{w}(au_{b},(au_{b}+1)\wedge T). \end{aligned}$$

Proposition 1 Let L^a and L^b be lower bound processes. Suppose that

 $L_k^a \leq L_k^b, \ k = 0, 1, \dots, T.$ L^b is a better lower bound process than L^a .

Then

$$\begin{split} w^1_{L^a} &\geq w^1_{L^b}, \\ w^2_{L^a} &\geq w^2_{L^b}, \\ w^3_{L^a} &\geq w^3_{L^b}. \end{split}$$

The better a lower bound process is, the greater improvement of upper bound can be expected.

European Option Based Model

Let V^{E} be the price process of the European option satisfying $V_{k}^{E} = E_{k}[H_{T}]$.

$$\begin{aligned} \mathbf{M}_k &= \mathbf{V}_k^E - \mathbf{V}_0^E, \\ \mathbf{U}_k &= E_k[\max_{k \leq t \leq T} (\mathbf{H}_t - \mathbf{M}_t)] + \mathbf{M}_k. \end{aligned}$$

We call this model the European option based model.

Proposition 2 Consider the European option based model with $L = V^{E}$. If $\tau \in T^{0}$ satisfies $\tau < \tau_{1}^{*}$, then

$$U_0 = w(\tau, \tau) = w(\tau, (\tau + 1) \wedge T).$$

If L is smaller than V^E , it fails to improve the upper bound.

Proposition 3 In the European option based model, if $L = V^{E}$, then we have

$$U_0 = w_L^1 \ge w_L^2 = w_L^3.$$

- V^E is the worst lower bound which may improve the upper bound.
- We check whether $w_L^2 = w_L^3$ generated by V^E can improve the upper bound by the numerical analysis.

Conclusio

References

Simulation Condition

• The price process is given by the Black Scholes Model, that is,

$$S_{k} = S_{k-1} \exp\left(-\frac{\sigma^{2}}{2} \Delta t + \sigma \sqrt{\Delta t} \xi_{k}\right), \ k = 1, \dots, T,$$
$$H_{k} = \max\left(Ke^{-rk\Delta t} - S_{k}, 0\right), \ k = 0, 1, \dots, T,$$

where ξ_1, \ldots, ξ_T are independent and standard normally distributed. • Let $L = V^E$, that is,

$$L_{k} = K\Phi(d(k, T, K, 0)) - S_{k}\Phi(d(k, T, K, \sigma^{2})), \quad k = 0, 1, ..., T - 1$$

where $\Phi(\cdot)$ is the standard normal distribution function and

$$d(k, T, K, r) = \frac{1}{\sigma \sqrt{(T-k) \triangle t}} \left(\log \frac{K}{S_k} - \left(r - \frac{1}{2} \sigma^2 \right) (T-k) \triangle t \right).$$

- $S_0 = 100$, r = 0.04, $\sigma = 0.3$, $\triangle t = 0.01$, T = 50, 100, 150.
- The number of paths for calculating the expectation is 2, 500.
- The number of paths for calculating the conditional expectation is 500.
- The antithetic sampling is used.

Better Lower Bound

• Let $L_T^a = L_T^b = H_T$ and for k = 0, 1, ..., T - 1,

$$\boldsymbol{L}_{k}^{a} = \max_{t_{0} > k} \left(\sup_{\tau \in \mathcal{T}_{t_{0}, \tau}} \boldsymbol{E}_{k}[\boldsymbol{H}_{\tau}] \right), \ \boldsymbol{L}_{k}^{b} = \sup_{\tau \in \mathcal{T}^{k+1}} \boldsymbol{E}_{k}[\boldsymbol{H}_{\tau}]$$

where $T_{t_0,T}$ is the set of the stopping times whose values are t_0 or T. • L^a can be calculated by the analytic formula since

$$\begin{split} \sup_{\tau \in \mathcal{I}_{t_1, \tau}} E_{t_0}[H_{\tau}] &= K \Phi(d(t_0, t_1, S^*_{t_1}, 0)) - S_{t_0} \Phi(d(t_0, t_1, S^*_{t_1}, \sigma^2)) \\ &+ K \Phi_2(-d(t_0, t_1, S^*_{t_1}, 0), d(t_0, T, K, 0); \frac{t_1 - t_0}{T - t_0}) \\ &- S_{t_0} \Phi_2(-d(t_0, t_1, S^*_{t_1}, \sigma^2), d(t_0, T, K, \sigma^2); \frac{t_1 - t_0}{T - t_0}) \end{split}$$

where $\Phi_2(\cdot, \cdot; \rho)$ is the standard bivariate normal distribution function. $S_{t_1}^*$ is a solution of

$$\mathcal{K}\Phi(d(t_1, \mathcal{T}, \mathcal{K}, 0)) - S^*_{t_1}\Phi(d(t_1, \mathcal{T}, \mathcal{K}, \sigma^2)) = \mathcal{K}e^{-rt_1 \bigtriangleup t} - S^*_{t_1}.$$

L^b is used in order to estimate the maximum improvement.
 Note that L^b can be calculated by the lattice tree.

Numerical Result (Lower Bound Effect)

K = 90 (OTM)

Т	U_0	w_L^3	WL ³	$w_{L^b}^3$	V_0
50	3.471(0.002)	3.469(0.002)	3.465(0.002)	3.463(0.002)	3.460
100	5.861(0.006)	5.856(0.006)	5.845(0.006)	5.821(0.006)	5.806
150	7.618(0.010)	7.612(0.009)	7.584(0.010)	7.542(0.010)	7.509

K = 100 (ATM)

Т	U_0	w_L^3	$W_{L^a}^3$	$w_{L^b}^3$	V_0
50	7.612(0.004)	7.608(0.004)	7.596(0.004)	7.581(0.004)	7.579
100	10.334(0.009)	10.327(0.008)	10.299(0.009)	10.254(0.009)	10.223
150	12.274(0.015)	12.268(0.013)	12.225(0.014)	12.123(0.014)	12.064

K = 110 (ITM)

Т	U_0	w_L^3	W _L ³	$w_{L^b}^3$	V_0
50	13.704(0.006)	13.696(0.006)	13.671(0.006)	13.629(0.006)	13.616
100	16.253(0.013)	16.241(0.011)	16.195(0.012)	16.089(0.012)	16.037
150	18.151(0.019)	18.145(0.016)	18.066(0.018)	17.888(0.019)	17.782

- 1. $U_0 > w_L^3 > w_{L^a}^3 > w_{L^b}^3 > V_0$. $\cdots L \le L^a \le L^b$, Lower Bound Effect
- w¹_{Lb} > V₀. The proposed methods can improve the upper bound efficiently but cannot attain the true price.

Bermudan Max Call Option on five Assets

• Suppose that the price processes S^i for $i = 1, \ldots, 5$ are given by $S_0^i = S_0$,

$$S_k^i = S_{k-1}^i \exp\left(\left(-q - \frac{\sigma^2}{2}\right) \bigtriangleup t + \sigma \sqrt{\bigtriangleup t} \xi_k^i\right), \quad k = 1, \dots, T.$$

• $H_k = \max\left(\max_{1 \leq i \leq 5} S_k^i - Ke^{-rk \bigtriangleup t}, 0\right), \ k = 0, 1, \dots, T.$

- $K = 100, q = 0.1, \sigma = 0.2, r = 0.05, T = \frac{3}{\Delta t}.$
- The number of paths for calculating the expectation and the conditional expectation are 250,000 and 500 respectively.
- An upper bound process is generated by the single European options.
- A lower bound process is based on the least square method.
- The true price V_0 is the point estimate in Broadie and Glasserman (2004).

$\triangle t$	S_0	U_0	w_L^1	w_L^2	V_0
1/2	90	17.572 (0.015)	16.866 (0.015)	16.496 (0.014)	16.474
1/2	100	28.038 (0.019)	26.645 (0.020)	25.997 (0.019)	25.920
1/2	110	39.721 (0.023)	37.545 (0.024)	36.615 (0.023)	36.497
1/3	90	17.804 (0.014)	17.033 (0.014)	16.677 (0.013)	16.659
1/3	100	28.296 (0.018)	26.855 (0.018)	26.264 (0.017)	26.158
1/3	110	39.956 (0.021)	37.816 (0.022)	36.994 (0.021)	36.782

Concluding Remarks

We have proposed a simple and computationally tractable improvement method for the upper bound of American options.

- The method is based on two stopping times. The stopping times are generated from a lower bound process of the continuation value.
- A better, namely higher lower bound process gives a greater improvement of the upper bound.
- Our method can be used together with the approximation of lower bound process by the least square method.

References

- L. Andersen and M. Broadie, *Primal-dual simulation algorithm for pricing multidimensional American options*, Management Science 50 (2004), pp.1222-1234.
- M. Broadie and M. Cao, Improved lower and upper bound algorithms for pricing American options by simulation, Quantitative Finance 8 (2008), pp.845-861.
- M. Broadie and P. Glasserman, A stochastic mesh method for pricing high-dimensional American options, Journal of Computational Finance 7 (2004), pp.35-72.
- N. Chen and P. Glasserman, Additive and multiplicative duals for American option pricing, Finance and Stochastics 11 (2007), pp.153-179.
- M. Haugh and L. Kogan, Pricing American options: a dual approach, Operations Research 52 (2004), pp.258-270.
- A. Kolodko and J. Schoenmakers, *Iterative Construction of the Optimal Bermudan Stopping Time*, Finance and Stochastics 10 (2006), pp.27-49.
- F. Longstaff and E. Schwartz, Valuing American options by simulation: a simple least-squares approach, The Review of Financial Studies 14 (2001), pp.113-147.

M. S. Joshi, A Simple Derivation of and Improvements to Jamshidian's and Rogers' Upper Bound Methods for Bermudan Options, Applied Mathematical Finance 14 (2007), pp.197-205.

- L. C. G. Rogers, Monte Carlo valuation of American options, Mathematical Finance 12 (2002), pp.271-286.
 - = •) ((• 15/15