

Simple Improvement Method for Upper Bound of American Option

Koichi Matsumoto (joint work with M. Fujii, K. Tsubota) Faculty of Economics Kyushu University E-mail : k-matsu@en.kyushu-u.ac.jp

6th World Congress of the Bachelier Finance Society June, 2010@Hilton, Toronto, Canada

1 / 15

◆ロト→個ト→ミト→ミト | ミ

Numerical Methods for Pricing American Option

- 1. Closed-Form Solution: It is difficult to find a closed-form solution.
- 2. Lattice Methods: When the condition is simple, the lattice methods give good approximated solutions.

└────────────────────────────────

3. Monte Carlo Simulation: When the condition is complicated, the Monte Carlo simulation is practical.

Monte Carlo simulation

Lower Bound: A stopping time gives a lower bound. \vartriangleright The least-square method gives a good stopping time. Longstaff and Schwartz (2001) Upper Bound: A martingale gives an upper bound. - Can we find a good martingale?

Setup

The saving account is the numeraire. All prices are discounted prices.

- *T* ∈ **N** : Fixed Maturity
- $(\Omega, \mathcal{F}, P, \{F_k; k = 0, 1, \ldots, T\})$: Filtered probability space
- S_k $(k = 0, 1, ..., T)$: Price Process of Risky Asset
- H_k $(k = 0, 1, ..., T)$: Payoff of American Option
 V_k $(k = 0, 1, ..., T)$: Price of American Option
	- *V^k* (*k* = 0, 1,..., *T*) : Price of American Option

Assumption

- *P* is a unique equivalent martingale measure.
- \mathcal{F}_k is a natural filtration generated by *S*. We write $E_k[\cdot] = E[\cdot | \mathcal{F}_k]$.
- *H* is an adapted process.

Definition 1 A supersolution is a supermartingale *X* satisfying

$$
X_k \geq H_k, \quad k=0,1,\ldots, T-1
$$

and the maturity condition, that is, $X_T = H_T$.

V is a minimum supersolution.

 \triangleright \triangleright \triangleright \triangleright \triangleright Any supersolution is an upper bound process [of](#page-1-0) t[he](#page-3-0)[Am](#page-2-0)er[ic](#page-2-0)[a](#page-3-0)[n](#page-4-0) [o](#page-2-0)[pt](#page-3-0)i[on](#page-0-0)[.](#page-14-0)

 Ω 3 / 15

Main Problem

Suppose that a supersolution U is given. Note that U_0 is an upper bound. Suppose that the lower bound process *L* of the continuation value is given.

$$
L_k \leq \underbrace{E_k[V_{k+1}]}_{\text{max}} \leq V_k \leq U_k, \quad k < T,
$$

continuation value

 $L_T = H_T (= U_T)$.

We want to improve the upper bound U_0 in the Monte Carlo simulation. Chen and Glasserman (2007) proposes an iterative method.

- 1. Using the supersolution *U*, a martingale is given by $M_k^U = \sum_{t=1}^k (U_t - E_{t-1}[U_t]), \ k = 0, 1, \ldots, T.$
- 2. Using the martingale M , a new supersolution (= upper bound process) is given by $U_k^M = E_k[\max_{k \le t \le T} (H_t - M_t)] + M_k, k = 0, 1, ..., T$.
- The iterative improvement converges to the true price.
- The calculation of the conditional expectation is necessary at all times and all states for the Doob decomposition.
- The lower bound process is not used.

We want to find a computationally-efficient improvement method using *L*.

 $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ 4 / 15

Basic Result

Let T^k be the set of the stopping times whose values are greater than or equal to *k*.

Theorem 1 Let $\tau_1, \tau_2 \in \mathcal{T}^0$ and $\tau_1 \leq \tau_2$. Suppose that *V* satisfies the martingale property in $[0, \tau_1] \cup [\tau_1 + 1, \tau_2]$, that is,

$$
V_k = E_k[V_{k+1}], \quad k \in [0, \tau_1 - 1] \cup [\tau_1 + 1, \tau_2 - 1].
$$

The problem is to find an a[pp](#page-3-0)ropriate pair of stoppi[ng](#page-5-0)[tim](#page-4-0)[e](#page-5-0)[s](#page-3-0) (τ_1, τ_2) (τ_1, τ_2) (τ_1, τ_2) (τ_1, τ_2) [.](#page-8-0)

Methods 1, 2

We use the mathematical convention the minimum over the empty set is ∞ , $min(\emptyset)=+\infty$.

Lemma 1 Let $\tau_1^* = \min\{k \geq 0 | H_k > L_k\} \wedge T$. Then *V* satisfies the martingale property in $[0, \tau_1^*]$, that is, $V_k = E_k[V_{k+1}]$ for $k \in [0, \tau_1^* - 1]$.

Corollary 1 Let $w_L^1 = w(\tau_1^*, \tau_1^*)$. Then $V_0 \leq w_L^1 \leq U_0$.

Corollary 2 Let $w_L^2 = w(\tau_1^*, (\tau_1^* + 1) \wedge T)$ **. Then** $V_0 \leq w_L^2 \leq w_L^1 \leq U_0$ **.**

• $w_L^2 \leq w_L^1$ \cdots w_L^2 is a better upper bound than w_L^1 .

\n- When
$$
U_k = E_k[\max_{k \leq t \leq T} (H_t - M_t)] + M_k
$$
, $w_L^1 = E[\max_{\tau_1^* \leq t \leq T} (H_t - M_t)],$, $w_L^2 = E[\max \left(H_{\tau_1^*}, E_{\tau_1^*}[\max_{\tau_1^* + 1 \land \tau \leq t \leq T} (H_t - M_t)] + M_{\tau_1^*} \right)].$
\n

- $w_{\frac{L}{2}}^{1}$ includes no conditional expectation per path.
- $w_L²$ requires only one conditional expectation per path.
- *•* The iterated method requires *^T* conditional expectations per path.

The calculations of w^1_L and w^2_L spend much less time than that of the iterative method. The proposed methods are more efficient.

◆ロト→個ト→ミト→ミト | ミ

Method 3

Lemma 2 Let $\tau_2^* = \min\{k > \tau_1^* | H_k > L_k\} \wedge T$. Then *V* satisfies the martingale property in $[\tau_1^* + 1, \tau_2^*]$, that is, $V_k = E_k[V_{k+1}]$ for $k \in [\tau_1^* + 1, \tau_2^* - 1]$.

Corollary 3 Let

$$
w_L^3 = w(\tau_1^*, \tau_2^*).
$$

Then

$$
V_0\leq w_L^3\leq w_L^2\leq U_0.
$$

 \bullet $w_L³$ is the best upper bound of the three proposed methods.

• When
$$
U_k = E_k[\max_{k \leq t \leq T} (H_t - M_t)] + M_k
$$
,

$$
w_{L}^{3} = E[\text{max}\left(H_{\tau_{1}^{*}},E_{\tau_{1}^{*}}[\max_{\tau_{2}^{*} \leq t \leq T}(H_{t}-M_{t})]+M_{\tau_{1}^{*}}\right)].
$$

We have to calculate τ_2^* . When the lower bound process can be calculated by an analytic formula, the calculation of τ_2^* is not $\tt time-consuming$ and then the amount of calculation of w_l^3 is as much as that of $w_L²$.

7 / 15

K ロ ⊁ K 倒 ≯ K 差 ≯ K 差 ≯ … 差

Lower Bound Effect

Lemma 3 Let
$$
\tau_a, \tau_b \in \mathcal{T}^0
$$
. If $\tau_a \leq \tau_b$, then

$$
w(\tau_a, \tau_a) \geq w(\tau_b, \tau_b),
$$

$$
w(\tau_a, (\tau_a + 1) \wedge T) \geq w(\tau_b, (\tau_b + 1) \wedge T).
$$

Proposition 1 Let L^a and L^b be lower bound processes. Suppose that

 $L_k^a \le L_k^b$, $k = 0, 1, ..., T$. L^b is a better lower bound process than L^a .

Then

$$
w_{L^a}^1 \geq w_{L^b}^1,
$$

\n
$$
w_{L^a}^2 \geq w_{L^b}^2,
$$

\n
$$
w_{L^a}^3 \geq w_{L^b}^3.
$$

The better a lower bound process is, the greater improvement of upper bound can be expected.

> **◆ロ ▶ ◆ 御 ▶ → 唐 ▶ → 唐 ▶ │ 唐** QQQ 8 / 15

European Option Based Model

Let V^E be the price process of the European option satisfying $V^E_k = E_k[H_T]$.

$$
M_k = V_k^E - V_0^E,
$$

\n
$$
U_k = E_k[\max_{k \leq t \leq T} (H_t - M_t)] + M_k.
$$

We call this model the European option based model.

Proposition 2 Consider the European option based model with $L = V^E$. If $\tau\in\mathcal{T}^0$ satisfies $\tau<\tau^*_1$, then

$$
U_0 = w(\tau, \tau) = w(\tau, (\tau + 1) \wedge T).
$$

If *L* is smaller than V^E , it fails to improve the upper bound.

Proposition 3 In the European option based model, if $L = V^E$, then we have

$$
U_0=w_L^1\geq w_L^2=w_L^3.
$$

- V^E is the worst lower bound which may improve the upper bound.
- We check whether $w_L^2 = w_L^3$ generated by V^E can improve the upper bound by the numerical analysis.

Simulation Condition

• The price process is given by the Black Scholes Model, that is,

$$
S_k = S_{k-1} \exp \left(-\frac{\sigma^2}{2} \triangle t + \sigma \sqrt{\triangle t} \xi_k\right), k = 1, ..., T,
$$

$$
H_k = \max \left(K e^{-rk\triangle t} - S_k, 0\right), k = 0, 1, ..., T,
$$

where ξ_1,\ldots,ξ_T are independent and standard normally distributed. • Let $L = V^E$, that is,

$$
L_k = K\Phi(d(k,T,K,0)) - S_k\Phi(d(k,T,K,\sigma^2)), \quad k=0,1,\ldots,T-1
$$

where $\Phi(\cdot)$ is the standard normal distribution function and

$$
d(k, T, K, r) = \frac{1}{\sigma \sqrt{(T-k)\Delta t}} \left(\log \frac{K}{S_k} - \left(r - \frac{1}{2} \sigma^2 \right) (T-k) \Delta t \right).
$$

- $S_0 = 100$, $r = 0.04$, $\sigma = 0.3$, $\triangle t = 0.01$, $\overline{T} = 50$, 100, 150.
- The number of paths for calculating the expectation is 2,500.
- The number of paths for calculating the conditional expectation is 500.
- • The antithetic sampling is used.

Better Lower Bound

• Let $L^a_T = L^b_T = H_T$ and for $k = 0, 1, \ldots, T - 1$,

$$
L_k^a = \max_{t_0 > k} \left(\sup_{\tau \in \mathcal{T}_{t_0, \tau}} E_k[H_\tau] \right), \ L_k^b = \sup_{\tau \in \mathcal{T}^{k+1}} E_k[H_\tau]
$$

where $T_{t_0,T}$ is the set of the stopping times whose values are t_0 or T . • *L^a* can be calculated by the analytic formula since

$$
\sup_{\tau \in \mathcal{T}_{t_1,T}} E_{t_0}[H_{\tau}] = K\Phi(d(t_0, t_1, S_{t_1}^*, 0)) - S_{t_0}\Phi(d(t_0, t_1, S_{t_1}^*, \sigma^2))
$$

+ $K\Phi_2(-d(t_0, t_1, S_{t_1}^*, 0), d(t_0, T, K, 0); \frac{t_1 - t_0}{T - t_0})$
- $S_{t_0}\Phi_2(-d(t_0, t_1, S_{t_1}^*, \sigma^2), d(t_0, T, K, \sigma^2); \frac{t_1 - t_0}{T - t_0})$

where $\Phi_2(\cdot, \cdot; \rho)$ is the standard bivariate normal distribution function. $S_{t_1}^*$ is a solution of

$$
K\Phi(d(t_1, T, K, 0)) - S_{t_1}^* \Phi(d(t_1, T, K, \sigma^2)) = K e^{-rt_1 \triangle t} - S_{t_1}^*.
$$

• *L^b* is used in order to estimate the maximum improvement. Note that L^b can be calculated by the lattice t[ree](#page-9-0).

Numerical Result (Lower Bound Effect)

 $K = 90$ (OTM)

	J۵	Wì	Wĭa	W_{Ib}	Vo
50	3.471(0.002)	3.469(0.002)	3.465(0.002)	3.463(0.002)	3.460
100	5.861(0.006)	5.856(0.006)	5.845(0.006)	5.821(0.006)	5.806
150	7.618(0.010)	7.612(0.009)	7.584(0.010)	7.542(0.010)	7.509

$K = 100$ (ATM)

$K = 110$ (ITM)

- 1. $U_0 > w_l^3 > w_{L^a}^3 > w_{L^b}^3 > V_0$. $\cdots L \le L^a \le L^b$, Lower Bound Effect
- 2. $w_{\mu}^3 > V_0$. The proposed methods can improve the upper bound efficiently but cannot attain the true price.

12/15

12/15

Bermudan Max Call Option on five Assets

• Suppose that the price processes S^i for $i = 1, \ldots, 5$ are given by $S_0^i = S_0$,

$$
S_k^i = S_{k-1}^i \exp\left(\left(-q - \frac{\sigma^2}{2}\right) \triangle t + \sigma \sqrt{\triangle t} \xi_k^i\right), \quad k = 1, \ldots, T.
$$

● $H_k = \max(\max_{1 \le i \le 5} S_k^i - Ke^{-rk\Delta t}, 0), k = 0, 1, ..., T$.

- $K = 100, q = 0.1, \sigma = 0.2, r = 0.05, T = \frac{3}{\triangle t}$.
- The number of paths for calculating the expectation and the conditional expectation are 250, 000 and 500 respectively.
- An upper bound process is generated by the single European options.
- A lower bound process is based on the least square method.
- The true price V_0 is the point estimate in Broadie and Glasserman (2004).

Concluding Remarks

We have proposed a simple and computationally tractable improvement method for the upper bound of American options.

- The method is based on two stopping times. The stopping times are generated from a lower bound process of the continuation value.
- A better, namely higher lower bound process gives a greater improvement of the upper bound.
- • Our method can be used together with the approximation of lower bound process by the least square method.

15 / 15

References

- H L. Andersen and M. Broadie, *Primal-dual simulation algorithm for pricing multidimensional American options*, Management Science 50 (2004), pp.1222-1234.
- H M. Broadie and M. Cao, *Improved lower and upper bound algorithms for pricing American options by simulation*, Quantitative Finance 8 (2008), pp.845-861.
- E
- M. Broadie and P. Glasserman, *A stochastic mesh method for pricing high-dimensional American options*, Journal of Computational Finance 7 (2004), pp.35-72.
- Ē N. Chen and P. Glasserman, *Additive and multiplicative duals for American option pricing*, Finance and Stochastics 11 (2007), pp.153-179.
- E M. Haugh and L. Kogan, *Pricing American options: a dual approach*, Operations Research 52 (2004), pp.258-270.
- E
- A. Kolodko and J. Schoenmakers, *Iterative Construction of the Optimal Bermudan Stopping Time*, Finance and Stochastics 10 (2006), pp.27-49.

F. Longstaff and E. Schwartz, *Valuing American options by simulation: a simple least-squares approach*, The Review of Financial Studies 14 (2001), pp.113-147.

M. S. Joshi, *A Simple Derivation of and Improvements to Jamshidian's and Rogers' Upper Bound Methods for Bermudan Options*, Applied Mathematical Finance 14 (2007), pp.197-205.

L. C. G. Rogers, *Monte Carlo valuation of American options*, Mathematical Finance 12 (2002), pp.271-286. K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 !!