BFS 6th World Congress

Toronto

23, June, 2010

Convex risk measures on Orlicz spaces: inf-convolution and shortfall

Takuji Arai

Keio University (Tokyo)

- 1. Preliminaries
- 2. Inf-convolution
- 3. Shortfall risk measure

1. Preliminaries

Takuji Arai

Keio University

Consider an incomplete financial market with maturity T > 0 and zero interest rate.

 $(\Omega, \mathcal{F}, P; \mathbf{F} = \{\mathcal{F}_t\}_{t \in [0,T]})$: a completed probability space, where **F** is a filtration satisfying the so-called usual condition

A left-continuous non-decreasing convex non-trivial function $\Phi : \mathbb{R}_+ \to [0, \infty]$ with $\Phi(0) = 0$ is called an Orlicz function, where Φ is non-trivial if $\Phi(x) > 0$ for some x > 0 and $\Phi(x) < \infty$ for some x > 0.

When Φ is an R₊-valued continuous, strictly increasing Orlicz function, we call it a strict Orlicz function.

Takuji Arai3/36Keio University

Remark

Any polynomial function starting at 0 whose minimal degree is equal to or greater than 1, and all coefficients are positive, is a strict Orlicz function.

For example, cx^p for c > 0, $p \ge 1$, $x^2 + 3x^5$ and so forth.

Moreover, $e^x - 1$, $e^x - x - 1$, $(x + 1) \log(x + 1) - x$ and $x - \log(x + 1)$ are strict Orlicz functions.

For any strict Orlicz function Φ , $\Phi(x) \in (0, \infty)$ for any x > 0 and $\lim_{x\to\infty} \Phi(x) = \infty$.

A strict Orlicz function Φ is differentiable a.e. and its left-derivative Φ' satisfies

$$\Phi(x)=\int_0^x \Phi'(u) du.$$

 Φ' is left-continuous, and may have at most countably many jumps.

Define $I(y) := \inf\{x \in (0, \infty) | \Phi'(x) \ge y\}$, which is called the generalized left-continuous inverse of Φ' . Define $\Psi(y) := \int_0^y I(v) dv$ for $y \ge 0$, which is an Orlicz function and called the conjugate function of Φ .

 $\begin{array}{l} \underline{\text{Definition}}\\ \overline{\text{Orlicz space}}: \ L^{\Phi} := \{X \in L^{0} | E[\Phi(c|X|)] < \infty \ \text{for some} \ c > 0\},\\ \\ \overline{\text{Orlicz heart}}: \ M^{\Phi} := \{X \in L^{0} | E[\Phi(c|X|)] < \infty \ \text{for any} \ c > 0\}.\\ \\ \overline{\text{Luxemburg norm}}: \ \|X\|_{\Phi} := \inf \left\{\lambda > 0 | E\left[\Phi\left(\left|\frac{X}{\lambda}\right|\right)\right] \le 1\},\\ \\ \overline{\text{Orlicz norm}}: \ \|X\|_{\Phi}^{*} := \sup\{E[XY]| \ \|Y\|_{\Phi} \le 1\}. \end{array}$

 $\begin{array}{l} \underline{\operatorname{Remark}} \\ M^{\Phi} \subseteq L^{\Phi}. \\ \text{Both spaces } L^{\Phi} \text{ and } M^{\Phi} \text{ are linear.} \\ \text{In the case of the lower partial moments } \Phi(x) = x^p/p \text{ for } p > 1, \\ \text{the Orlicz space } L^{\Phi} \text{ and the Orlicz heart } M^{\Phi} \text{ both are identical with } \\ L^p. \end{array}$

The conjugate function Ψ in this case is given by $\Psi(x) = x^q/q$, where q = p/(p-1), and $M^{\Psi} = L^{\Psi} = L^q$.

In general, if $\limsup_{x\to\infty} \frac{x\Phi'(x)}{\Phi(x)} < \infty$, then M^{Φ} is identical with L^{Φ} . For instance, $\Phi(x) = x - \log(x+1)$ other than the lower partial moments.

Otherwise, M^{Φ} would be a proper subset of L^{Φ} .

Example 1

In the case where $\Phi(x) = e^x - 1$ or $e^x - x - 1$, if a random variable X follows an exponential distribution with a positive parameter, then $X \in L^{\Phi}$ but $X \notin M^{\Phi}$.

Example 2 Set $\Phi(x) = e^{x^2} - 1$. Let X be a random variable following a normal distribution. Then $X \in L^{\Phi}$ but $X \notin M^{\Phi}$.

Example 3 It is natural that an aggregate insurance claim amount follows a compound distribution.

Denote by $(N_t)_{t\geq 0}$ the process which describes the number of claims during time period [0, t].

Assume that $(N_t)_{t\geq 0}$ is a Poisson process with a positive parameter. The size of the *i*-th claim is denoted by R_i , which is a nonnegative-valued random variable.

We suppose that $(R_i)_{i\geq 1}$ is an i.i.d. sequence which is independent of $(N_t)_{t\geq 0}.$

The aggregate insurance claim amount in this model is given by

$$A_t := egin{cases} \sum_{i=1}^{N_t} R_i, & ext{if } N_t > 0, \ 0, & ext{otherwise.} \end{cases}$$

Remark that $E[e^{cA_T}] = E[e^{N_T \log M(c)}]$ for any fixed time horizon T > 0and any constant c > 0, where M(c) is the moment generating function of R_i , that is, $M(c) := E[e^{cR_i}]$. Taking an exponential type function as Φ , say $\Phi(x) = e^x - 1$, if there exist $c_1 > c_2 > 0$ such that $M(c_1) = \infty$ and $M(c_2) < \infty$, then $A_T \in L^{\Phi}$, but $A_T \notin M^{\Phi}$.

For instance, if each R_i follows an exponential distribution with parameter $\sigma > 0$, then

$$M(c) = \left\{ egin{array}{c} rac{\sigma}{\sigma-c}, ext{ if } c < \sigma, \ \infty, ext{ otherwise.} \end{array}
ight.$$

Takuji Arai	10/36	Keio University
		<u>_</u> _

Moreover, if Φ is a strict Orlicz function, the norm dual of $(M^{\Phi}, \|\cdot\|_{\Phi})$ is given by $(L^{\Psi}, \|\cdot\|_{\Phi}^{*})$. The norm dual of $(L^{\Phi}, \|\cdot\|_{\Phi})$ includes a singular part. This fact would be crucial when we consider convex risk measures on Orlicz spaces.

Note that L^{Φ} becomes a Banach lattice under the usual pointwise ordering.

Throughout this paper, we fix a strict Orlicz function Φ .

Definition

A functional ρ defined on L^{Φ} is called a convex risk measure on L^{Φ} if it satisfies the following four conditions:

- (1) **Properness** : $\rho(0) \in \mathbb{R}$ and ρ is $(-\infty, \infty]$ -valued,
- (2) Monotonicity : $\rho(X) \ge \rho(Y)$ for any $X, Y \in L^{\Phi}$ such that $X \le Y$,
- (3) Translation invariance : $\rho(X + m) = \rho(X) m$ for $X \in L^{\Phi}$ and $m \in \mathbb{R}$,

(4) Convexity : $\rho(\lambda X + (1 - \lambda)Y) \leq \lambda \rho(X) + (1 - \lambda)\rho(Y)$ for any $X, Y \in L^{\Phi}$ and $\lambda \in [0, 1]$.

Moreover, if a convex risk measure ρ satisfies (5) Positive homogeneity : $\rho(\lambda X) = \lambda \rho(X)$ for any $\lambda \ge 0$, then ρ is called a coherent risk measure.

Biagini and Frittelli (2009) asserts that, when we consider a robust representation of convex risk measures, a significant issue is whether or not the topology on which the convex risk measures are defined has the order continuity.

In the case of order continuous, say L^p for $p \in [1, \infty)$ or Orlicz hearts, we do not have to care the order l.s.c. of convex risk measures. On the other hand, in the non-order continuous case, say L^{∞} or Orlicz spaces, we have to check it.

Indeed, Corollary 28 of BF09 products a robust representation for convex risk measures defined on locally convex Fréchet lattices under the order l.s.c. and the C-property.

Now, we shall state a robust representation theorem for convex risk measures on L^{Φ} based on Corollary 28 of BF09.

Definition

A linear topology τ has C-property, if a net $\{X_{\alpha}\}$ converges to X in τ , then there exist a subsequence $\{X_{\alpha_n}\}_{n\geq 1}$ and convex combinations $Y_n \in \operatorname{conv}(X_{\alpha_n}, X_{\alpha_{n+1}}, \ldots)$ such that Y_n is order convergent to X.

Note that the topology $(L^{\Phi}, \sigma(L^{\Phi}, L^{\Psi}))$ has the C-property, and, in this case, " $Y_n \to X$ in order" means " $Y_n \to X$ a.s. and there exists a $Y \in L^{\Phi}$ such that $|Y_n| \leq Y$ for any $n \geq 1$ ".

Let \mathcal{P}^{Ψ} be the set of all probability measures being absolutely continuous with respect to P and having L^{Ψ} -density with respect to P, that is, $\mathcal{P}^{\Psi} := \{Q \ll P | dQ/dP \in L^{\Psi}\}.$

Theorem 1

Let ρ be a convex risk measure on L^{Φ} . We define

$$lpha_
ho(Q):=\sup_{X\in \mathcal{A}_
ho}E_Q[-X]$$
 .

for any $Q \in \mathcal{P}^{\Psi}$, where $\mathcal{A}_{\rho} := \{X \in L^{\Phi} | \rho(X) \leq 0\}$. If ρ has the order l.s.c., then it is represented as follows:

$$\rho(X) = \sup_{Q \in \mathcal{P}^{\Psi}} \left\{ E_Q[-X] - \alpha_{\rho}(Q) \right\}.$$
(1)

Takuji Arai	15/36	Keio University

Remark

The functional α_{ρ} and the set \mathcal{A}_{ρ} are called the penalty function and the acceptance set of ρ , respectively.

In order to prove that $\rho^*(-dQ/dP)$ and $\alpha_{\rho}(Q)$ coincide, we do not need the order l.s.c. of ρ .

Corollary

For a coherent risk measure ρ on L^{Φ} having the order l.s.c., there exists a convex subset $\mathcal{P}' \subseteq \mathcal{P}^{\Psi}$ such that $\rho(X) = \sup_{Q \in \mathcal{P}'} E_Q[-X]$.

2. Inf-convolution

Takuji Arai

Keio University

Definition

(a) Suppose that $\mathcal{B} \subseteq L^{\Phi}$ is non-empty convex.

The inf-convolution of a convex risk measure ρ on L^{Φ} and \mathcal{B} is defined as

$$ho \Box \mathcal{B}(X) := \inf_{Y \in \mathcal{B}}
ho(X - Y), ext{ for any } X \in L^{\Phi}.$$

(b) Let ρ_1 and ρ_2 be two convex risk measures on L^{Φ} . The inf-convolution of ρ_1 and ρ_2 is defined as

$$ho_1 \Box
ho_2(X) := \inf_{Y \in L^\Phi} \{
ho_1(X-Y) +
ho_2(Y)\}, ext{ for any } X \in L^\Phi.$$

Proposition 1

Let ρ be a convex risk measure on L^{Φ} satisfying

$$\rho(X) < \infty \text{ for any } X \in L^{\Phi} \text{ such that } E[\Phi(|X|)] < \infty.$$
(2)

Moreover, let $\mathcal{B} \subseteq L^{\Phi}$ be a convex set including 0. If $\rho \Box \mathcal{B}(0) > -\infty$, then the following hold:

(a) $\rho \Box \mathcal{B}$ is a convex risk measure on L^{Φ} .

(b) If ρ is coherent and \mathcal{B} is cone, then $\rho \Box \mathcal{B}$ is also coherent.

(c) If \mathcal{B} is sequentially compact in $\sigma(L^{\Phi}, L^{\Psi})$ and ρ is order l.s.c., then so is $\rho \Box \mathcal{B}$.

Proposition 2

Let ρ_i , i = 1, 2, be convex risk measures on L^{Φ} . Denote their acceptance sets and penalty functions by \mathcal{A}_i and α_i , respectively. Assume that ρ_1 satisfies the condition (2), and \mathcal{A}_2 includes 0. If $\rho_1 \Box \rho_2(0) > -\infty$, then the following hold:

(a) $\rho_1 \Box \rho_2$ is a convex risk measure on L^{Φ} , and represented as $\rho_1 \Box \rho_2(X) = \rho_1 \Box \mathcal{A}_2(X) = \inf_{Y \in \mathcal{B}} \{ \rho_1(X - Y) + \rho_2(Y) \}$, for any $X \in L^{\Phi}$, where \mathcal{B} is a subset of L^{Φ} including \mathcal{A}_2 .

(b) If ρ_1 and ρ_2 both are coherent, then so is $\rho_1 \Box \rho_2$.

(c) The penalty function of $\rho_1 \Box \rho_2$ is given by

$$lpha_{1\square 2}(Q)=lpha_1(Q)+lpha_2(Q) ext{ for any } Q\in \mathcal{P}^{\Psi}.$$

(d) Let \mathcal{A}_2 be sequentially compact in $\sigma(L^{\Phi}, L^{\Psi})$. If ρ_1 is order l.s.c., then so is $\rho_1 \Box \rho_2$. Moreover, the acceptance set of $\rho_1 \Box \rho_2$ satisfies

$$\mathcal{A}_{1 \Box 2} = \overline{\mathcal{A}_1 + \mathcal{A}_2},$$

which is the closure of $\mathcal{A}_1 + \mathcal{A}_2$ in $\sigma(L^{\Phi}, L^{\Psi}).$

Remark

Under the condition of (d), ρ_2 is also order l.s.c.

Proposition 3

Let \mathcal{B} be a convex subset of L^{Φ} including 0, ρ a convex risk measure on L^{Φ} satisfying (2). Define $\rho^{\mathcal{B}}(X) := \inf\{x \in \mathbb{R} | x + X \in \mathcal{B}\}$ for any $X \in L^{\Phi}$. Let $\alpha_{\mathcal{B}}$ be defined as, for any $Q \in \mathcal{P}^{\Psi}$,

$$lpha_{\mathcal{B}}(Q) = egin{cases} 0, & ext{if } E_Q[-X] \leq 0 ext{ for any } X \in \mathcal{A}_{\mathcal{B}}, \ \infty, & ext{otherwise}, \end{cases}$$

where $\mathcal{A}_{\mathcal{B}}$ is the acceptance set of $\rho^{\mathcal{B}}$, that is,

 $\mathcal{A}_{\mathcal{B}}:=\{X\in L^{\Phi}|
ho^{\mathcal{B}}(X)\leq 0\}=\{X\in L^{\Phi}|x+X\in \mathcal{B} ext{ for any }x>0\}.$

Assume that $-\mathcal{B}$ is solid, and $\rho \Box \rho^{\mathcal{B}}(0) > -\infty$. (a) We have $\rho \Box \mathcal{B} = \rho \Box \rho^{\mathcal{B}}$.

(b) If \mathcal{B} is cone, then the penalty function $\alpha_{\rho \square \mathcal{B}}$ of $\rho \square \mathcal{B}$ is given by

 $\alpha_{\rho\Box\mathcal{B}} = \alpha_{\rho} + \alpha_{\mathcal{B}},$

where α_{ρ} is the penalty function of ρ .

<u>Solid</u>

A is said to be solid if

$$X \in A, Y \in L^{\Phi}, Y \ge X \Longrightarrow Y \in A.$$

3. Shortfall risk measure

Takuji Arai

Keio University

Let \mathcal{C} be a convex subset of L^{Φ} including 0. In this section, we regard \mathcal{C} as the set of all attainable claims with zero initial endowment.

Furthermore, each element of \mathcal{C} is interpreted as a hedging strategy. Denote by X a contingent claim, which is a payoff at the maturity T. Thus, X is an \mathcal{F}_T -measurable random variable. In particular, we presume that X is in L^{Φ} .

Let l be a function from R to R_+ satisfying l(x) = 0 if $x \leq 0$, and $l(x) = \Phi(x)$ if x > 0.

We presume a risk-averse investor who intends to sell the claim X, and whose loss function is given by l.

When the price of X and the hedging strategy are given by $x \in \mathbb{R}$ and $U \in \mathcal{C}$, resp., the shortfall risk for the seller is expressed by

$$E[l(-x - U + X)].$$

Denote by $\delta > 0$ the threshold of the seller.

Note that the threshold δ determines the limit of the shortfall risk which she can endure.

Define, in addition, a subset of L^{Φ} as

$$\mathcal{A}_0:=\{X\in L^\Phi|E[l(-X)]\leq \delta\}.$$

We define, by using \mathcal{A}_0 , a functional $\hat{\rho}$ defined on L^{Φ} as $\hat{\rho}(X) := \inf \{ x \in \mathbb{R} | \text{ there exists a } U \in \mathcal{C} \text{ such that } x + U + X \in \mathcal{A}_0 \}.$ We call $\hat{\rho}$ the shortfall risk measure.

Note that $\hat{\rho}(-X)$ would give the least price which the seller can accept.

In other words, if the seller sells the claim X for a price more than $\hat{\rho}(-X)$, then she could find a hedging strategy whose corresponding shortfall risk is less than or equal to the threshold δ .

We focus on a robust representation result for $\hat{\rho}$.

As we have seen in Example 3, there are several examples of claims which are included in L^{Φ} , but not in M^{Φ} .

Since Orlicz hearts are order continuous, we do not need to get the order l.s.c. of $\hat{\rho}$ to obtain its representation.

On the other hand, we have to investigate the order l.s.c. of $\hat{\rho}$ for the Orlicz space case, since Orlicz spaces do not have the order continuity in general.

Assumption 1 $\hat{\rho}(0) > -\infty$.

Denoting
$$\rho_0(X) := \inf\{x \in \mathrm{R} | x + X \in \mathcal{A}_0\},\$$

<u>Lemma 1</u> ρ_0 is a convex risk measure on L^{Φ} .

```
Proposition 4 \hat{\rho} = \rho_0 \Box(-\mathcal{C}).
```

<u>Lemma 2</u> ρ_0 is order l.s.c.

 $\frac{\text{Reminder (Proposition 1 (c))}}{\text{If }\mathcal{B} \text{ is sequentially compact in } \sigma(L^{\Phi}, L^{\Psi}) \text{ and } \rho \text{ is order l.s.c., then so is } \rho \Box \mathcal{B}.$

Theorem 2

Under Assumption 1, if \mathcal{C} is sequentially compact in $\sigma(L^{\Phi}, L^{\Psi})$, then $\hat{\rho}$ is a $(-\infty, +\infty]$ -valued convex risk measure on L^{Φ} satisfying the following:

$$\widehat{
ho}(X) = \sup_{Q\in\mathcal{P}^{\Psi}}\left\{E_Q[-X] - \sup_{X^1\in\mathcal{A}_1}E_Q[-X^1] - \inf_{\lambda>0}rac{1}{\lambda}\left\{\delta + E\left[\Psi\left(\lambdarac{dQ}{dP}
ight)
ight]
ight\}
ight\},$$

where $\mathcal{A}_1 := \{X \in L^{\Phi} | ext{ there exists a } U \in \mathcal{C} ext{ such that } X + U \geq 0 \}.$

 $\frac{\text{Reminder (Theorem 1)}}{\text{If a convex risk measure } \rho \text{ has the order l.s.c., then}}$

$$ho(X) = \sup_{Q\in\mathcal{P}^{\Psi}} \left\{ E_Q[-X] - lpha_
ho(Q)
ight\}.$$

Takuji Arai	30/36	Keio University

Construction of \mathcal{C} having the sequential compactness

From the view of Theorem 2, $\hat{\rho}$ has a robust representation if \mathcal{C} has the sequential compactness in $\sigma(L^{\Phi}, L^{\Psi})$. We construct an example of \mathcal{C} being sequentially compact in $\sigma(L^{\Phi}, L^{\Psi})$.

We consider an incomplete financial market being composed of one riskless asset and d risky assets.

The fluctuation of the risky assets is described by an \mathbb{R}^d -valued RCLL special semimartingale S, which is possibly non-locally bounded.

Instead, we suppose that S is locally in L^{Φ} in the following sense: there exists a localizing sequence $(\tau^n)_{n\geq 1}$ of stopping times such that, for any $n \geq 1$, the family $\{S_{\tau} | \tau: \text{ stopping time}, \tau \leq \tau^n\}$ is a subset of L^{Φ} .

Now, we construct, by the same manner as Xia and Yan (2006), a $\sigma(L^{\Phi}, L^{\Psi})$ -closed set of stochastic integrals.

Let K_{Φ}^s be the subspace of L^{Φ} spanned by the simple stochastic integrals of the form $h^{tr}(S_{\sigma_2} - S_{\sigma_1})$, where $\sigma_1 \leq \sigma_2$ are stopping times such that $\{S_{\sigma} | \sigma: \text{ stopping time}, \sigma \leq \sigma_2\} \subseteq L^{\Phi}$ and $h \in L^{\infty}$ is \mathcal{F}_{σ_1} -measurable.

Denote the following:

$$\mathcal{M}^{\Psi,s} := \{Z \in L^{\Psi} | E[WZ] = 0 ext{ for any } W \in K^s_{\Phi} ext{ and } E[Z] = 1\},$$
 $\mathcal{M}^{\Psi,e} := \{Z \in \mathcal{M}^{\Psi,s} | Z > 0 ext{ a.s.}\},$

and $K^{\Phi} := \overline{K^s_{\Phi}}$, which is the closure of K^s_{Φ} in $\sigma(L^{\Phi}, L^{\Psi})$.

 Θ^{L} denotes the set of all S-integrable predictable processes ϑ such that $\int_{0}^{T} \vartheta_{s} dS_{s} \in L^{\Phi}$ and $E[\int_{0}^{T} \vartheta_{s} dS_{s} \cdot Z] = 0$ for any $Z \in \mathcal{M}^{\Psi,s}$.

Moreover, we denote $G := \{\int_0^T \vartheta_s dS_s | \vartheta \in \Theta^L \}$. Note that, if $\mathcal{M}^{\Psi,s} \neq \emptyset$, then $G \subseteq K^{\Phi}$.

Assumption 2 $\mathcal{M}^{\Psi,e} \neq \emptyset$.

Theorem 3 Under Assumption 2, we have $K^{\Phi} = G$, that is, G is closed in $\sigma(L^{\Phi}, L^{\Psi}).$

Assumption 3 $\lim_{k\to 0} k^{-1} E[\Phi(k|W|)] = 0$ uniformly in $W \in G$.

Under Assumptions 2 and 3, G is sequentially compact in $\sigma(L^{\Phi}, L^{\Psi})$ by Theorem IV.5.3 of *Rao and Ren (1991)* and Theorem 3.

Taking G - A as the set C of all attainable claims with zero initial endowment, where A is a sequentially compact subset of L^{Φ}_{+} in $\sigma(L^{\Phi}, L^{\Psi})$, C is also sequentially compact. Hence, we can conclude the following:

Theorem 4

Under Assumptions 1-3, $\hat{\rho}$ is a $(-\infty, +\infty]$ -valued convex risk measure on L^{Φ} satisfying

$$\widehat{
ho}(X) = \sup_{Q\in\mathcal{P}^{\Psi}} \left\{ E_Q[-X] - \sup_{X^1\in\mathcal{A}_1} E_Q[-X^1] - \inf_{\lambda>0}rac{1}{\lambda} \left\{ \delta + E\left[\Psi\left(\lambdarac{dQ}{dP}
ight)
ight]
ight\}
ight\}.$$

Convex risk measures on Orlicz spaces

Finish

Thank you for your attention!!

Takuji Arai

Keio University