Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles

Beatrice Acciaio University of Perugia and Vienna University

<http://arxiv.org/abs/1002.3627> (joint work with Hans Föllmer and Irina Penner)

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Static risk measures on random variables

Origin: axiomatic analysis of capital requirements needed to cover the risk of future liabilities.

- A static risk measure is a map $\rho: L^{\infty}(\Omega, \mathcal{F}, P) \to \mathbb{R}$ satisfying certain axioms
- \bullet L[∞] set of discounted terminal values of financial positions
- $\rho(X)$ minimal amount of cash that has to be added to the financial position X in order to make it acceptable

(Artzner, Delbaen, Eber &Heath(1997,99), Föllmer&Schied(2002), Frittelli & Rosazza Gianin(2002),...)

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Conditional risk measures on processes

In the static setting: the role of information is not visible and the timing of payments not considered.

- A conditional risk measure on processes is a map $\rho_t: \mathcal{R}_t^\infty \to L^\infty(\Omega,\mathcal{F}_t,P)$ satisfying analogous axioms
- \mathcal{R}_t^∞ : bounded adapted processes from time t on - set of cumulated cash flows (value processes)
- $\rho_t(X)$ minimal conditional capital that has to be added to the cash flow X at time t in order to make it acceptable

(Cheridito, Delbaen & Kupper (2004,05,06), Artzner, Delbaen, Eber, Heath & Ku (2007),...)

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Dynamical setting

Discrete-time setting, with finite or infinite time horizon T :

- \bullet $\mathcal{T} \in \mathbb{N}$, time axis $\mathbb{T} = \{0, 1, ..., T\}$
- $T = \infty$, time axis $T = N_0$ or $T = N_0 \cup \{\infty\}$

Multiperiod information structure: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in\mathbb{T}}, P)$

 \mathcal{R}^{∞} = bounded adapted processes on $(\Omega, \mathcal{F}_{\mathcal{T}}, (\mathcal{F}_{t})_{t\in\mathbb{T}}, P)$ $=$ (cumulated) cash flows

 $\mathcal{R}_t^\infty =$ cash flows from time t on

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Conditional convex risk measures

 $\rho_t\,:\,\mathcal{R}_t^{\infty} \,\to\, L^{\infty}(\Omega,\mathcal{F}_t,P)$ is called a **conditional convex risk measure** for processes if for all $X, Y \in \mathcal{R}_t^{\infty}$:

- Normalization: $\rho_t(0) = 0$
- Monotonicity: $X \le Y \Rightarrow \rho_t(X) \ge \rho_t(Y)$
- Conditional convexity: $\forall \lambda \in L^{\infty}(\Omega, \mathcal{F}_t, P)$, $0 \leq \lambda \leq 1$: $\rho_t(\lambda X + (1 - \lambda)Y) \leq \lambda \rho_t(X) + (1 - \lambda) \rho_t(Y)$
- Conditional cash-invariance:

 $\rho_t(X + m1_{\{t, t+1, \ldots\}}) = \rho_t(X) - m, \quad m \in L^{\infty}(\Omega, \mathcal{F}_t, P)$

- \triangleright The timing of the payment is taken into account
- $(\rho_t)_t$ is called **dynamic convex risk measure** for processes

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Product space and optional filtration

• Define the **product space** $(\overline{\Omega}, \overline{\mathcal{F}}, \overline{P})$ as: $\overline{\Omega} = \Omega \times \mathbb{T}$,

 $\bar{\mathcal{F}} = \sigma(\{A_t \times \{t\} \mid A_t \in \mathcal{F}_t, t \in \mathbb{T}), \quad \bar{P} = P \otimes \mu,$

where $\mu = (\mu_t)_{t \in \mathbb{T}}$ is some adapted reference process s.t. $\mu_t > 0$ and $\sum_t \mu_t = 1$, and $\textit{E}_{\bar{P}}[X] := \textit{E}_{P}\left[\sum_t X_t \mu_t\right]$

Consider the **optional filtration** $(\bar{\mathcal{F}}_t)_{t\in\mathbb{T}}$ on $(\bar{\Omega}, \bar{\mathcal{F}})$, given by

 $\bar{\mathcal{F}}_t = \sigma \left({\{A_j \times \{j\}, A_t \times \{t,..\}} | A_j \in \mathcal{F}_j, j = 0,.., t-1, A_t \in \mathcal{F}_t\}} \right)$

$$
\Longrightarrow \qquad \qquad \mathcal{R}^\infty = L^\infty(\bar\Omega,\bar{\mathcal{F}},\bar{P})
$$

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0)

[Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Risk measures viewed on the optional filtration

Theorem. There is a one-to-one correspondence between

• conditional convex risk measures for processes

$$
\rho_t\,:\,\mathcal{R}_t^{\infty}\,\to\,L^{\infty}(\Omega,\mathcal{F}_t,P)
$$

• conditional convex risk measures for random variables on the product space

$$
\bar{\rho}_t\,:\,L^\infty(\bar{\Omega},\bar{\mathcal{F}},\bar{P})\,\to\,L^\infty(\bar{\Omega},\bar{\mathcal{F}}_t,\bar{P})
$$

The relation is given by

$$
\bar{\rho}_t(X) = -X_0 1_{\{0\}} - \ldots - X_{t-1} 1_{\{t-1\}} + \rho_t(X) 1_{\{t, t+1, \ldots\}}
$$

[Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Representation of risk measures on random variables

Theorem. For $\rho_t: L^{\infty}(\Omega, \mathcal{F}, P) \to L^{\infty}(\Omega, \mathcal{F}_t, P)$ TFAE:

1. ρ_t is continuous from above: $X^n \searrow X \Rightarrow \rho_t(X^n) \nearrow \rho_t(X)$ 2. ρ_t has the following **robust representation**:

$$
\rho_t(X) = \operatorname*{\mathrm{ess\,sup}}_{Q \in \mathcal{Q}_t} (E_Q[-X|\mathcal{F}_t] - \alpha_t(Q))
$$

where

$$
Q_t = \left\{ \left. Q \ll P \; \right| \; Q = P|_{\mathcal{F}_t} \right\},\
$$

and the **minimal penalty function** α_t is given by

$$
\alpha_t(Q) = \operatorname*{ess\,sup}_{X \in L^{\infty}(\mathcal{F})} (E_Q[-X|\mathcal{F}_t] - \rho_t(X))
$$

(Detlefsen and Scandolo (2005))

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Optional random measures

For a measure $Q \ll_{loc} P$ we introduce:

• the set $\Gamma(Q)$ of **optional random measures** γ on $\mathbb T$ which are normalized with respect to Q :

 $\gamma=(\gamma_t)_{t\in\mathbb{T}}$ nonnegative adapted process s.t. $\sum_{t\in\mathbb{T}}\gamma_t=1$ Q-a.s.

with the additional property

$$
\gamma_{\infty} = 0 \ \ Q\text{-a.s. on } \left\{ \lim_{t \to \infty} \frac{dQ}{dP} \Big|_{\mathcal{F}_t} = \infty \right\} \text{ if } \mathbb{T} = \mathbb{N}_0 \cup \{\infty\}
$$

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Predictable discounting processes

For a measure $Q \ll_{loc} P$ we introduce:

• the set $\mathcal{D}(Q)$ of predictable discounting processes D:

 $D=(D_t)_{t\in\mathbb{T}}$ predict. non-increasing, $D_0=1$, $D_{\infty}=\lim_{t\to\infty}D_t$ Q-a.s.

where

$$
D_\infty=0\quad \text{Q-a.s.}\quad \text{if}\quad \mathbb{T}=\mathbb{N}_0,
$$

$$
D_{\infty} = 0 \quad Q\text{-a.s. on }\left\{\lim_{t \to \infty} \frac{dQ}{dP}\Big|_{\mathcal{F}_t} = \infty\right\} \quad \text{if } \mathbb{T} = \mathbb{N}_0 \cup \{\infty\}
$$

 $\blacktriangleright\blacktriangleright$ There is a one-to-one correspondence between optional random measures in $\Gamma(Q)$ and predictable discounting in $\mathcal{D}(Q)$:

$$
\gamma_t = D_t - D_{t+1}, t < \infty, \quad \gamma_\infty = D_\infty
$$

[Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Decomposition of measures on the optional σ -field

Theorem. For any probability measure \overline{Q} on $(\overline{\Omega}, \overline{\mathcal{F}})$ we have: $\bar{Q} \ll \bar{P}$ if and only if there exist

• a probability measure Q on $(\Omega, \mathcal{F}_{T})$, $Q \ll_{loc} P$

• an optional random measure $\gamma \in \Gamma(Q)$ (resp. $D \in \mathcal{D}(Q)$) such that

$$
E_{\bar{Q}}[X] = E_Q\left[\sum_{t \in \mathbb{T}} \gamma_t X_t\right] = E_Q\left[\sum_{t=0}^T D_t \Delta X_t\right], \quad X \in \mathcal{R}^{\infty}
$$

(combining the Itˆo-Watanabe factorization with an extension theorem for standard systems)

In this case we write: $\overline{Q} = Q \otimes \gamma = Q \otimes D$

[Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Risk measures viewed on the product space](#page-5-0) [Decomposition of measures on the optional](#page-8-0) σ -field [Robust representation: model and discounting ambiguity](#page-11-0)

Robust representation

Theorem. For $\rho_t : \mathcal{R}_t^{\infty} \to L^{\infty}(\Omega, \mathcal{F}_t, P)$ TFAE:

1. ρ_t continuous from above: $X_s^n \searrow X_s \forall s \geq t \Rightarrow \rho_t(X^n) \nearrow \rho_t(X)$ 2. ρ_t has the following **robust representation**:

$$
\rho_t(X) = \operatorname*{\mathrm{ess\,sup}}_{Q \in \mathcal{Q}_t^{\mathrm{loc}}} \operatorname*{\mathrm{ess\,sup}}_{D \in \mathcal{D}_t(Q)} \left(E_Q \left[-\sum_{s=t}^T D_s \Delta X_s \mid \mathcal{F}_t \right] - \alpha_t (Q \otimes D) \right),
$$

\n
$$
\uparrow \qquad \qquad \uparrow
$$

\nmodel \qquad \qquad \uparrow \qquad

$$
Q_t^{\text{loc}} = \{Q \ll_{loc} P: Q = P |_{\mathcal{F}_t}\}, D_t(Q) = \{D \in \mathcal{D}(Q): D_s = 1 \text{ s} \leq t\}
$$

$$
\alpha_t(Q \otimes D) = Q\text{-ess} \sup_{X \in \mathcal{R}_t^{\infty}} \left(E_Q \left[-\sum_{s \geq t} \frac{\gamma_s}{D_t} X_s \middle| \mathcal{F}_t \right] - \rho_t(X) \right)
$$

[Supermartingale properties](#page-13-0) [Bubbles](#page-14-0) [Asymptotic safety](#page-15-0)

Time consistency

 $X \in \mathcal{R}^{\infty} \to (\rho_t(X))_t$ describes the evolution of risk over time.

Question: How should risk measurement be updated as more information becomes available?

 $(\rho_t)_t$ is called (strongly) time consistent if for all $t\geq 0$ $X_t = Y_t$ and $\rho_{t+1}(X) \leq \rho_{t+1}(Y) \Rightarrow \rho_t(X) \leq \rho_t(Y)$ An equivalent characterization of TC is recursiveness:

$$
\rho_t(X) = \rho_t(X_t 1_{\{t\}} - \rho_{t+1}(X) 1_{\{t+1,\ldots\}}) \quad \forall \ t \geq 0
$$

Remark. $(\rho_t)_t$ on \mathcal{R}^{∞} is time consistent \iff the corresponding $(\bar{\rho}_t)_t$ on $L^{\infty}(\bar{\Omega}, \bar{\mathcal{F}}, \bar{P})$ is time consistent

[Supermartingale properties](#page-13-0) [Bubbles](#page-14-0) [Asymptotic safety](#page-15-0)

Supermartingale properties

Let $(\rho_t)_t$ on \mathcal{R}^{∞} be continuous from above and **time consistent**. Then, $\forall \bar{Q} = Q \otimes D \ll \bar{P}$ such that $\alpha_0(Q \otimes D) < \infty$,

- the discounted penalty process $(D_t \alpha_t(\bar{Q}))_{t\in\mathbb{T}\cap\mathbb{N}_0}$
- the 'global risk' process of $X \in \mathbb{R}^{\infty}$

$$
D_t(\rho_t(X-X_t)+\alpha_t(\bar{Q}))-\sum_{s=0}^t D_s\Delta X_s, \quad t\in\mathbb{T}\cap\mathbb{N}_0
$$

are Q-supermartingales.

[Supermartingale properties](#page-13-0) [Bubbles](#page-14-0) [Asymptotic safety](#page-15-0)

Appearance of bubbles in the dynamic penalization

Riesz decomposition of the discounted penalty process:

$$
D_t \alpha_t(\bar{Q}) = E_Q \Big[\sum_{k=t}^{T-1} D_k \alpha_{k,k+1}(\bar{Q}) | \mathcal{F}_t \Big] + \underbrace{\lim_{s \to \infty} E_Q [D_s \alpha_s(\bar{Q}) | \mathcal{F}_t]}_{\text{"bubble"}} \quad Q\text{-a.s.}
$$
\n
$$
\downarrow
$$
\nbreak down of asymptotic safety

where $\alpha_{k,k+1}$ is the 'one-step' penalty function, i.e., the penalty function of ρ_k restricted to the 'one-step' processes

 \rightarrow Bubbles reflect an excessive neglect of models which may be relevant for the risk assessment

[Supermartingale properties](#page-13-0) [Bubbles](#page-14-0) [Asymptotic safety](#page-15-0)

Asymptotic safety

Consider $\mathbb{T} = \mathbb{N}_0 \cup \{\infty\}$, and fix a model \overline{Q} s.t. $\alpha_0(\overline{Q}) < \infty$.

 $(\rho_t)_{t\in\mathbb{N}_0}$ on \mathcal{R}^∞ is called **asymptotically safe** under the model $\overline{Q} = Q \otimes D$ if for any $X \in \mathcal{R}^{\infty}$

$$
\rho_\infty(X) := \lim_{t \to \infty} \rho_t(X) \ge -X_\infty \quad \text{Q-a.s. on } \{D_\infty > 0\}
$$

Theorem. For $(\rho_t)_{t \in \mathbb{N}_0}$ TC and continuous from above TFAE: $(\rho_t)_{t\in\mathbb{N}_0}$ is asymptotically safe under $\bar Q$;

• the model \overline{Q} has no bubble, i.e., the martingale in the Riesz decomposition of $(D_t\alpha_t(\bar Q))_{t\in\mathbb{N}_0}$ vanishes.

[Time value of money](#page-17-0) [Calibration to ZCB](#page-18-0)

Cash additivity and subadditivity

- A conditional convex risk measure for processes ρ_t is called
	- cash subadditive if for all $s > t$

$$
\rho_t(X + m1_{\{s,s+1,\ldots\}}) \ge \rho_t(X) - m \qquad \forall m \in L^{\infty}_+(\mathcal{F}_t)
$$

(resp. $\le \q \forall m \in L^{\infty}_-(\mathcal{F}_t)$)

(El Karoui & Ravanelli (2009))

• cash additive at s, for some $s > t$, if

$$
\rho_t(X+m1_{\{s,s+1,\ldots\}})=\rho_t(X)-m\qquad\forall m\in L^{\infty}(\mathcal{F}_t)
$$

Remark. By monotonicity and cash-invariance every conditional convex risk measure for processes is cash subadditive

[Time value of money](#page-17-0) [Calibration to ZCB](#page-18-0)

Time value of money

Proposition. Let $\rho_t : \mathcal{R}_t^{\infty} \to L_t^{\infty}$ be continuous from above. Then

 ρ_t is **cash additive at time** $s > t \iff$ there is no discounting up to time s: $\forall \overline{Q} = Q \otimes D$ s.t. $\alpha_t(\overline{Q}) < \infty$

$$
D_t = D_{t+1} = \cdots = D_s = 1
$$
 Q-a.s.

if $T < \infty$ or $\mathbb{T} = \mathbb{N}_0 \cup \{\infty\}$, ρ_t is cash additive at all times $s > t \iff$ it reduces to a risk measure for random variables:

$$
\rho_t(X) = \operatorname*{ess\,sup}_{Q \in \mathcal{Q}_t} \left(E_Q[-X_\mathcal{T} \mid \mathcal{F}_t] - \alpha_t(Q) \right)
$$

• if $\mathbb{T} = \mathbb{N}_0$, ρ_t cannot be cash additive at all times $s > t$

[Time value of money](#page-17-0) [Calibration to ZCB](#page-18-0)

Calibration to ZCB

- $(G_t)_{t=0,\ldots,T}$, $B_t > 0 \ \forall t$, money market account;
- zero coupon bonds for all maturities are available, with $B_{t,k}$ price at time t of a ZCB paying 1 at maturity k .

Suppose that ρ_t satisfies the following **calibration condition**:

$$
\rho_t\Big(\lambda_t \frac{B_t}{B_k} 1_{\{k, k+1, \ldots\}}\Big) = -\lambda_t B_{t,k} \quad \forall \lambda_t \in L^{\infty}(\mathcal{F}_t), \ k \geq t.
$$

Then ρ_t is cash additive at time k if and only if

$$
E_Q\left[\frac{B_t}{B_k}\,\big|\,\mathcal{F}_t\,\right]=B_{t,k}\quad\forall Q\,:\,\exists D\,\,\text{with}\,\,\alpha_t(Q\otimes D)<\infty
$$

 \longrightarrow "no arbitrage" condition

[Time value of money](#page-17-0) [Calibration to ZCB](#page-18-0)

Calibration to ZCB

In particular, if

- \bullet $(B_t)_{t=0,\dots,T}$ is predictable
- $(\rho_t)_{t=0,\ldots,T}$ is time consistent

then ρ_t reduces to a convex risk measure on random variables $\forall t$.

That is, discounting ambiguity is completely resolved and we are only left with model ambiguity.

 \rightarrow the time value of the money is completely determined by the term structure specified by the prices of zero coupon bonds

[Entropic risk measure](#page-20-0) [Average Value at Risk](#page-21-0) [Unambiguous discounting](#page-22-0) [Worst stopping](#page-23-0)

Entropic risk measure for processes

On the product space the conditional entropic risk measure $\bar \rho_t:L^\infty(\bar \Omega,\bar{\cal F}_\mathcal T,\bar P)\to L^\infty(\bar \Omega,\bar{\cal F}_t,\bar P)$ is defined by

$$
\bar{\rho}_t(X) = \frac{1}{R_t} \cdot \log E_{\bar{P}} \left[e^{-R_t \cdot X} \mid \bar{\mathcal{F}}_t \right]
$$

with risk aversion parameter $R_t = (r_0, ..., r_{t-1}, r_t, ..., r_t)$, $r_s > 0$ and \mathcal{F}_{s} -measurable, for all $s = 0, ..., t$.

The corresponding conditional convex risk measure for processes $\rho_t\,:\,\mathcal{R}_t^\infty\,\rightarrow\, L^\infty(\Omega,\mathcal{F}_t,P)$ takes the form

$$
\rho_t(X) = \rho_t^{P,r_t} \Big(- \frac{1}{r_t} \log \Big(\sum_{s \ge t} e^{-r_t X_s} \mu_s^t \Big) \Big) = \rho_t^{P,r_t} \Big(- \rho_t^{\mu(\omega),r_t(\omega)} \big(X(\omega)\big) \Big),
$$

where ρ_t^{P,r_t} is the usual conditional entropic risk measure on random variables with risk aversion parameter r_t and $\rho^{\mu,r}$ is its analogous "with respect to time".

[Entropic risk measure](#page-20-0) [Average Value at Risk](#page-21-0) [Unambiguous discounting](#page-22-0) [Worst stopping](#page-23-0)

Average Value at Risk for processes

On the product space the conditional Average Value at Risk at level $\Lambda_t=(\lambda_0,...,\lambda_{t-1},\lambda_t,...,\lambda_t),\;0<\lambda_s\leq 1,\;\lambda_s\in L^\infty(\mathcal{F}_s)$ ∀s is $\bar{\rho}_t(X) = \text{ess sup}\{E_{\bar{Q}}[-X|\bar{\mathcal{F}}_t] \bigm| \bar{Q} \in \bar{\mathcal{Q}}_t, d\bar{Q}/d\bar{P} \leq \Lambda_t^{-1}\}$

The corresponding conditional convex risk measure for processes $\rho_t\,:\,\mathcal{R}_t^\infty\,\rightarrow\, L^\infty(\Omega,\mathcal{F}_t,P)$ takes the form

$$
\rho_t(X) = \operatorname{ess} \operatorname{sup} \left\{ E_Q \left[- \sum_{s \geq t} X_s \gamma_s \mid \mathcal{F}_t \right] : \frac{\gamma_s M_s}{\mu_s^t} \leq \frac{1}{\lambda_t} \forall s \geq t \right\}
$$

[Entropic risk measure](#page-20-0) [Average Value at Risk](#page-21-0) [Unambiguous discounting](#page-22-0) [Worst stopping](#page-23-0)

Unambiguous discounting process

If there is **no ambiguity** regarding the **discounting process**, i.e. $\exists D \Rightarrow$ we can work on discounted terms:

$$
Y_0 := X_0, \quad \Delta Y_s := D_s \Delta X_s \ \forall \ s \geq 1, \quad \text{and} \ \ Y_\infty := \lim_{t \to \infty} Y_t
$$

Then ρ_t reduces to

$$
\rho_t(X) = \psi_t\Big(\sum_{s=t}^T D_s \Delta X_s\Big) = \psi_t\Big(\sum_{s=t}^T \Delta Y_s\Big) = \psi_t(Y_T),
$$

where $\psi_t: L^\infty(\Omega,\mathcal{F},P)\rightarrow L^\infty(\Omega,\mathcal{F}_t,P)$ is a conditional convex risk measure for random variables.

[Convex Risk Measures](#page-1-0) [Time consistency](#page-12-0) [Cash \(sub\)additivity](#page-16-0) [Examples](#page-20-0) [Entropic risk measure](#page-20-0) [Average Value at Risk](#page-21-0) [Unambiguous discounting](#page-22-0) [Worst stopping](#page-23-0)

Worst stopping

Let $\psi_t: L^\infty(\Omega,\mathcal{F},P)\rightarrow L^\infty(\Omega,\mathcal{F}_t,P)$ be a conditional convex risk measure on random variables.

 Θ_t = set of all stopping times valued in $\{t, t+1, ...\}$

Then $\rho_t: \mathcal{R}_t^\infty \to L^\infty(\Omega,\mathcal{F}_t,P)$ defined by the worst stopping of $(\psi_t(X_s))_{s\geq t}$:

$$
\rho_t(X):=\operatornamewithlimits{ess\,sup}_{\tau\in\Theta_t}\psi_t(X_\tau)
$$

is a convex risk measure on processes (Cheridito & Kupper (2006)), with representation over the set of optional random measures

$$
\left\{\left.(\mathbf{1}_{\{\tau=s\}})_{s=t,t+1,\ldots}|\tau\in\Theta_t\right.\right\}
$$

[Entropic risk measure](#page-20-0) [Average Value at Risk](#page-21-0) [Unambiguous discounting](#page-22-0) [Worst stopping](#page-23-0)

References

- Acciaio B., Föllmer H. & Penner I. (2009). Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles. Submitted.
- Artzner P., Delbaen F., Eber J-M., Heath D. & Ku H. (2007). Coherent multiperiod risk adjusted values and Bellman's principle. Ann. Oper. Res., 152:5-22.
- **•** Cheridito P., Delbaen F. & Kupper M. (2006). Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11/3, 57-106 (electronic).
- Cheridito P. & Kupper M. (2006). Composition of time-consistent dynamic monetary risk measures in discrete time. Forthcoming in International Journal of Theoretical and Applied Finance .
- El Karoui N. & Ravanelli C. (2009). Cash subadditive risk measures and interest rate ambiguity. Math. Finance 19/4, 561-590.