Dual Representation of Quasiconvex Conditional Maps Quasiconvex Dynamic Risk Measures

Marco Frittelli and Marco Maggis

Milano University

VI World Congress of the Bachelier Finance Society, Toronto, June 2010

 Ω

Marco Frittelli (Milano University) [Quasiconvex Dynamic Risk Measures](#page-29-0) VI Congress BFS 1/25

2 [Conditional quasiconvex maps](#page-5-0)

[Applications](#page-8-0)

- 5 [The results](#page-19-0)
- 6 [On the proof of the Theorem](#page-25-0)
	- 7 [The Module approach](#page-28-0)

4.0.3

画

 Ω

一本 重 下

 \sim

On Quasiconvexity (QCO)

$$
\bullet\ f:E\to\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty\}\cup\{\infty\}\text{ is quasiconvex (QCO) if }
$$

 $f(\lambda X + (1 - \lambda)Y) \leq \max\{f(X), f(Y)\}, \lambda \in [0,1]$

• Equivalently: f is (QCO) if all the lower level sets

 $\{X \in E \mid f(X) \leq c\}$ $\forall c \in \mathbb{R}$

are convex

- Findings on (QCO) real valued functions go back to De Finetti (1949), Fenchel (1949)...
- On (QCO) real valued functions and their dual representation: J-P Penot 1990 - 2007, Volle 1998, ...

KET KEN KEN (EN 1900)

Dual representation for real valued maps

As a straightforward application of the Hahn-Banach Theorem:

Proposition (Volle 98)

Let E be a locally convex topological vector space and E' be its topological dual space. If $f : E \to \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ is lsc and (QCO) then

> $f(x) = \textsf{sup}$ $x' \in E'$ $R(x'(x), x'),$

where $R: \mathbb{R} \times E' \rightarrow \overline{\mathbb{R}}$ is defined by

 $R(m, x') := \inf \{ f(\xi) \mid \xi \in E \text{ such that } x'(\xi) \ge m \}.$

An application of the above result leads to:

 200

Dual representation of static (QCO) cash-subadditive risk measures

Proposition (Cerreia-Maccheroni-Marinacci-Montrucchio, 2009)

A function $\rho: L^{\infty} \to \overline{\mathbb{R}}$ is quasiconvex cash-subadditive decreasing if and only if

$$
\rho(X) = \max_{Q \in ba_+(1)} R(E_Q[-X], Q),
$$

$$
R(m, Q) = \inf \{ \rho(\xi) \mid \xi \in L^{\infty} \text{ and } E_Q[-\xi] = m \}
$$

where $R : \mathbb{R} \times ba_+(1) \to \overline{\mathbb{R}}$ and $R(m, Q)$ is the reserve amount required today, under the scenario Q , to cover an expected loss m in the future.

 QQ

ラメ メラメ

The conditional setting: let $G \subseteq \mathcal{F}$

A map

$$
\pi:L(\Omega,\mathcal{F},P)\to L(\Omega,\mathcal{G},P)
$$

is quasiconvex (QCO) if $\forall X, Y \in L(\Omega, \mathcal{F}, P)$ and for all G-measurable r.v. $Λ$, $0 < Λ < 1$,

 $\pi(\Lambda X + (1 - \Lambda)Y) \leq \pi(X) \vee \pi(Y);$

or equivalently if all the lower level sets

 $A(Y) = \{X \in L(\Omega, \mathcal{F}, P) \mid \pi(X) \leq Y\} \quad \forall Y \in L(\Omega, \mathcal{G}, P)$

are conditionally convex, i.e. for all $X_1, X_2 \in \mathcal{A}(Y)$ one has that $\Lambda X_1 + (1 - \Lambda) X_2 \in \mathcal{A}(Y)$.

KED KARD KED KED E VOOR

The problem

Let $\mathcal{G} \subset \mathcal{F}$ be an arbitrary sub sigma algebra.

Which is the dual representation of a (QCO) conditional map

$$
\pi: L(\Omega,\mathcal{F},P)\to L(\Omega,\mathcal{G},P)
$$
?

- 30

正々 メラメ

4 0 8

 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

 OQ

The problem

Let $\mathcal{G} \subset \mathcal{F}$ be an arbitrary sub sigma algebra.

Which is the dual representation of a (QCO) conditional map

$$
\pi: L(\Omega,\mathcal{F},P)\to L(\Omega,\mathcal{G},P)\quad ?
$$

As in the convex case, the dual representation of a (QCO) conditional map turns out to have the same structure of the real valued case,

...but the proof is not a straightforward application of known facts.

 $=$ Ω

ラメ メラメ

Dynamic (QCO) Risk Measures

- Let Λ , $0 \leq \Lambda \leq 1$, be *G*-measurable random variables
- The convexity of $\pi : L(\Omega, \mathcal{F}, P) \to L(\Omega, \mathcal{G}, P)$

$$
\pi(\Lambda X+(1-\Lambda)Y)\leq \Lambda\pi(X)+(1-\Lambda)\pi(Y)
$$

implies:

$$
\pi(\Lambda X+(1-\Lambda)Y)\leq \Lambda \pi(X)+(1-\Lambda)\pi(Y)\leq \pi(X)\vee \pi(Y).
$$

• Quasiconvexity alone:

$$
\pi(\Lambda X+(1-\Lambda)Y)\leq \pi(X)\vee \pi(Y)
$$

allows to control the risk of a diversified position.

 \equiv \cap α

The South Trans

Conditional Certainty Equivalent: CCE [F. Maggis 2010]

Consider a Stochastic Dynamic Utility (SDU) $u(x, t, \omega)$

$$
\mathsf{u}:\mathbb{R}\mathord\times[0,\infty)\times\Omega\to\mathbb{R}\cup\{-\infty\}
$$

Definition

Let u be a SDU and X be a \mathcal{F}_t measurable random variable. For each $s \in [0, t]$, the backward Conditional Certainty Equivalent $C_{s,t}(X)$ of X is the \mathcal{F}_s measurable random variable solution of the equation:

$$
u(C_{s,t}(X),s,\omega)=E[u(X,t,\omega)|\mathcal{F}_s].
$$

This valuation operator $\mathcal{C}_{\mathsf{s},t} (X) = u^{-1} \left(E \left[u(X,t,\omega) | \mathcal{F}_{\mathsf{s}} \right], \mathsf{s},\omega \right)$ is the natural generalization to the dynamic and stochastic environment of the classical definition of the certainty equivalent, as given in Pratt 1964. Even if $u(.,t,\omega)$ is concave the CCE is not a concave functional, but it is conditionally quasiconcave. ヨメ メヨメ QQ

Marco Frittelli (Milano University) [Quasiconvex Dynamic Risk Measures](#page-0-0) VI Congress BFS 9/25

- Other applications of real valued quasiconvex maps in finance (static quasiconvex risk measures) can be found in the papers by:
- Cerreia–Voglio, Maccheroni, Marinacci and Montrucchio 2009
- Drapeau and Kupper 2010
	- Dynamic quasiconvex risk measures are studied in:
- F. Maggis 2009 and 2010

 $=$ Ω

ラメ メラメ

Setting for the dual representation

$$
\pi: L_{\mathcal{F}} \to L_{\mathcal{G}}
$$

We now state the assumptions on the spaces of random variables $L_{\mathcal{F}}$ and L_G and on the quasiconvex conditional map π in order to obtain the dual representation.

4 D F

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

- 3

 Ω

Notations

- $L^p_{\mathcal{I}}$ $P^{\rho}_{\mathcal{F}}:=L^{\rho}(\Omega, \mathcal{F}, P),\; p\in [0,\infty].$
- $L_{\mathcal{F}}:=L(\Omega,\mathcal{F},P)\subseteq L^0(\Omega,\mathcal{F},P)$ is a lattice of $\mathcal F$ measurable random variables.
- $\mathcal{L}_\mathcal{G}:=\mathcal{L}(\Omega,\mathcal{G},P)\subseteq\mathcal{L}^0(\Omega,\mathcal{G},P)$ is a lattice of $\mathcal G$ measurable random variables.
- $\mathcal{L}^c_\mathcal{F} = (\mathcal{L}_\mathcal{F}, \geq)^c$ is the order continuous dual of $(\mathcal{L}_\mathcal{F}, \geq),$ which is also a lattice.

KOD KARD KED KED E VAN

Standing assumptions on the spaces

 \bullet L_F (resp. L_G) satisfies the property 1_F (resp 1_G):

$$
X \in L_{\mathcal{F}} \text{ and } A \in \mathcal{F} \Longrightarrow (X\mathbf{1}_A) \in L_{\mathcal{F}}.\tag{1F}
$$

2 $(L_{\mathcal{F}}, \sigma(L_{\mathcal{F}}, L_{\mathcal{F}}^c))$ is a locally convex TVS.

This condition requires that the order continuous dual $L_{\mathcal{F}}^c$ is rich enough to separate the points of $L_{\mathcal{F}}$.

- \blacktriangleright $\mathcal{L}^c_{\mathcal{F}} \hookrightarrow L^1(\Omega,\mathcal{F},P)$
- $\mathcal{L}_{\mathcal{F}}^c$ satisfies the property $1_{\mathcal{F}}$

KALA SI YEN E YAN

Examples of spaces satisfying the assumptions

- The L^p spaces: $L_{\mathcal{F}} := L^p_{\mathcal{J}}$ $^{\rho}_{\mathcal{F}},$ with $p \in [1,\infty].$ Then: $L_{\mathcal{F}}^c = L_{\mathcal{I}}^q$ $g^q_{\mathcal{F}} \hookrightarrow L^1_{\mathcal{F}}$ (with $q=1$ when $p=\infty$).
- The Orlicz spaces $L_{\mathcal{F}}:=L_{\mathcal{F}}^{\Psi},$ for any Young function $\Psi.$ Then $L_{\mathcal{F}}^c = L^{\Psi^*} \hookrightarrow L_{\mathcal{F}}^1$, where Ψ^* is the conjugate of Ψ .
- The Morse subspace $L_{\mathcal{F}} := M^{\Psi}$ for any continuous Young function Ψ . Then $L_{\mathcal{F}}^c = L^{\Psi^*} \hookrightarrow L_{\mathcal{F}}^1$.

KOD KARD KED KED B YOUR

Conditions on $\pi : L_{\mathcal{F}} \to L_G$

Let $X_1, X_2 \in L_{\mathcal{F}}$

(MON) $X_1 \leq X_2 \Longrightarrow \pi(X_1) \leq \pi(X_2)$

Marco Frittelli (Milano University) [Quasiconvex Dynamic Risk Measures](#page-0-0) VI Congress BFS 15 / 25

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Conditions on
$$
\pi
$$
 : $L_{\mathcal{F}} \to L_{\mathcal{G}}$

Let $X_1, X_2 \in L_{\mathcal{F}}$

(MON) $X_1 \leq X_2 \Longrightarrow \pi(X_1) \leq \pi(X_2)$

 $(\tau$ -LSC) the lower level set

$$
\mathcal{A}_Y = \{ X \in L_{\mathcal{F}} \mid \pi(X) \leq Y \}
$$

is τ closed for each $\mathcal G$ -measurable Y

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Conditions on
$$
\pi
$$
 : $L_{\mathcal{F}} \to L_{\mathcal{G}}$

Let $X_1, X_2 \in L_{\mathcal{F}}$

(MON) $X_1 \leq X_2 \Longrightarrow \pi(X_1) \leq \pi(X_2)$

 $(\tau$ -LSC) the lower level set

$$
\mathcal{A}_Y = \{ X \in L_{\mathcal{F}} \mid \pi(X) \leq Y \}
$$

is τ closed for each $\mathcal G$ -measurable Y

 $(REG) \ \forall A \in \mathcal{G}, \ \pi(X_1\mathbf{1}_A + X_2\mathbf{1}_A^C) = \pi(X_1)\mathbf{1}_A + \pi(X_2)\mathbf{1}_A^C$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q ⊙

On continuity from below (CFB)

(CFB) $\pi: L_{\mathcal{F}} \to L_{\mathcal{G}}$ is continuous from below if

 $X_n \uparrow X$ P a.s. $\Rightarrow \pi(X_n) \uparrow \pi(X)$ P a.s.

Under a very weak assumption on $\sigma(L_{\mathcal{F}},L_{\mathcal{F}}^c)$, that is satisfied in all cases of interest, we have:

Proposition

If $\pi : L_{\mathcal{F}} \to L_G$ satisfies (MON) and (QCO), then are equivalent: (i) π is $\sigma(L_{\mathcal{F}}, L_{\mathcal{F}}^c)$ -(LSC) (ii) π is (CFB) (iii) π is order-(LSC) (i.e. the Fatou property)

Conclusion: in the following results, we may replace the condition $\sigma(L_{\mathcal{F}}, L_{\mathcal{F}}^c)$ -(LSC) with (CFB).

The dual representation of conditional quasiconvex maps

Theorem

If $\pi: L_{\mathcal{F}} \to L_{\mathcal{G}}$ is (MON), (QCO), (REG) and $\sigma(L_{\mathcal{F}}, L_{\mathcal{F}}^c)$ -LSC then

$$
\pi(X) = \mathop{\mathrm{ess}}\nolimits \sup_{Q \in L^c_{\mathcal{F}} \cap \mathcal{P}} K(X,Q)
$$

where

 $K(X, Q) := \text{ess} \inf_{\xi \in L_{\mathcal{F}}} \{ \pi(\xi) \mid E_Q[\xi | \mathcal{G}] \geq_Q E_Q[X | \mathcal{G}] \}$ $P =: \{Q \lt P \text{ and } Q \text{ probability}\}$

 Ω

Exactly the same representation of the real valued case, but with conditional expectations!

$Q = P$ on G

Corollary

Suppose that the assumptions of the Theorem hold true. If for $X \in L_{\mathcal{F}}$ there exists $\eta \in L_{\mathcal{F}}$ and $\varepsilon > 0$ such that $\pi(\eta) + \varepsilon < \pi(X)$, then

$$
\pi(X) = \text{ess} \sup_{Q \in L_{\mathcal{F}}^c \cap \mathcal{P}_{\mathcal{G}}} K(X, Q),
$$

where

$$
\mathcal{P}_{\mathcal{G}} = \{ Q \in \mathcal{P} \text{ and } Q = P \text{ on } \mathcal{G} \}.
$$

NOTE: The (weak) additional assumption allows us to replace $P =: \{Q \ll P \text{ and } Q \text{ probability}\}\$ with the same set P_G that is used in the convex conditional case.

 \equiv \cap α

 $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \rangle$, $\langle \vert \bar{m} \rangle$

Cash additivity

• A map $\pi: L_{\mathcal{F}} \to L_{\mathcal{G}}$ is said to be (CAS) cash additive if for all $X \in L_{\mathcal{F}}$ and $\Lambda \in L_{\mathcal{G}}$

$$
\pi(X+\Lambda)=\pi(X)+\Lambda.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 \equiv 990

Marco Frittelli (Milano University) [Quasiconvex Dynamic Risk Measures](#page-0-0) VI Congress BFS 19 / 25

Cash additivity

• A map $\pi: L_{\mathcal{F}} \to L_G$ is said to be (CAS) cash additive if for all $X \in L_{\mathcal{F}}$ and $\Lambda \in L_{G}$

$$
\pi(X+\Lambda)=\pi(X)+\Lambda.
$$

• Note: (CAS) and (QCO) implies Convexity.

4 日下

 $A \oplus B$ $A \oplus B$ $A \oplus B$

 $=$ Ω

Cash additivity

• A map $\pi: L_{\mathcal{F}} \to L_{G}$ is said to be (CAS) cash additive if for all $X \in L_{\mathcal{F}}$ and $\Lambda \in L_{\mathcal{G}}$

$$
\pi(X+\Lambda)=\pi(X)+\Lambda.
$$

- Note: (CAS) and (QCO) implies Convexity.
- Next, we show that we recover the result of Detlefsen Scandolo 05 for convex conditional maps.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 \equiv Ω

The conditional convex case

Corollary

Suppose that the assumptions of the Theorem hold true. Suppose that for every $Q \in L^c_{\mathcal{F}} \cap \mathcal{P}_{\mathcal{G}}$ and $\xi \in L_{\mathcal{F}}$ we have $E_Q[\xi|\mathcal{G}] \in L_{\mathcal{F}}$. If $\pi : L_{\mathcal{F}} \to L_G$ satisfies in addition (CAS) then

$$
K(X,Q)=E_Q[X|\mathcal{G}]-\pi^*(Q)
$$

and

$$
\pi(X) = \text{ess} \sup_{Q \in L^c_{\mathcal{F}} \cap \mathcal{P}_{\mathcal{G}}} \{ E_Q[X|\mathcal{G}] - \pi^*(Q) \}
$$

where

$$
\pi^*(Q) = \text{ess} \sup_{\xi \in L_{\mathcal{F}}} \left\{ E_Q[\xi | \mathcal{G}] - \pi(\xi) \right\}.
$$

 200

Why the proofs of the real valued case and convex case do not work

• We cannot directly apply Hahn-Banach to $\pi : L_{\mathcal{F}} \to L_{\mathcal{G}}$, as it happened in the real case, since

$$
\{\xi\in L_{\mathcal{F}}\mid \pi(\xi)\leq \pi(X)-\varepsilon\}^C
$$

is not any more convex!

• Scalarization does not work! Convexity is preserved by the map:

$$
\pi_0: L_{\mathcal{F}} \to \mathbb{R} \quad \pi_0(X) := E[\pi(X)]
$$

but not quasiconvexity!

 Ω

Approximation argument

The idea is to approximate π with combinations of quasiconvex real valued functions π_A

$$
\pi_{A}(X):=\textrm{ess}\sup_{\omega\in A}\pi(X),\,\,A\in\mathcal{G}.
$$

We consider finite partitions $\mathsf{\Gamma}=\left\{A^{\mathsf{\Gamma}}\right\}$ of ${\mathcal{G}}$ measurable sets $A^{\mathsf{\Gamma}}$ and

$$
\pi^{\Gamma}(X):=\sum_{A^{\Gamma}\in \Gamma}\pi_{A^{\Gamma}}(X)\mathbf{1}_{A^{\Gamma}},
$$

$$
H^{\Gamma}(X) := \sup_{Q \in L_{\mathcal{F}}^c \cap \mathcal{P}} \inf_{\xi \in L_{\mathcal{F}}} \left\{ \pi^{\Gamma}(\xi) \mid E_Q[\xi | \mathcal{G}] \geq E_Q[X | \mathcal{G}] \right\}
$$

Marco Frittelli (Milano University) [Quasiconvex Dynamic Risk Measures](#page-0-0) VI Congress BFS 22 / 25

正々 メラメ

- B

 Ω

Steps of the proof

If First we show
$$
H^{\Gamma}(X) = \pi^{\Gamma}(X)
$$
.

II Then it is a simple matter to deduce

$$
\pi(X) = \inf_{\Gamma} \pi^{\Gamma}(X) = \inf_{\Gamma} H^{\Gamma}(X)
$$

III Finally we prove that

$$
\inf_{\Gamma} H^{\Gamma}(X) = \inf_{\Gamma} \sup_{Q \in L_{\tau}^c \cap \mathcal{P}} \inf_{\xi \in L_t} \left\{ \pi^{\Gamma}(\xi) |E_Q[\xi | \mathcal{F}_s] \ge E_Q[X | \mathcal{F}_s] \right\}
$$

=
$$
\sup_{Q \in L_t^c \cap \mathcal{P}} \inf_{\xi \in L_t} \left\{ \pi(\xi) |E_Q[\xi | \mathcal{F}_s] \ge E_Q[X | \mathcal{F}_s] \right\}
$$

that is based on a uniform approximation result.

画

 Ω

→ 何 ト → ヨ ト → ヨ ト

4 日下

Following [Filipovic, Kupper, Vogelpoth 2009-2010] we may consider maps

$$
\rho:L_{\mathcal{G}}^{\rho}(\mathcal{F})\to \overline{L}^0(\mathcal{G})
$$

where

$$
L_{\mathcal{G}}^{p}(\mathcal{F})=L^{0}(\mathcal{G})L^{p}(\mathcal{F})=\{YX \mid Y \in L^{0}(\mathcal{G}), \ X \in L^{p}(\mathcal{F})\}
$$

is an $L^0(\mathcal{G})$ normed module.

- We showed that the dual representation of a quasiconvex dynamic risk measure defined on L^p_G $^p_{\mathcal{G}}(\mathcal{F})$ also works in this setting.
- The proof is easier: it is similar to the real valued case, since it uses the conditional Hahn Banach Th., as developed in [FKV09]
- Quasiconvex dynamic risk measures defined on vector spaces L^p_{σ} $^{\rho}_{\cal F}$ or on $L^0(\mathcal{G})$ normed module L^p $^{\rho}_{\mathcal{G}}(\mathcal{F})$ are different objects (satisfy different properties) and therefore the results in the two cases are different.

 Ω

Thank you for your attention

Marco Frittelli (Milano University) [Quasiconvex Dynamic Risk Measures](#page-0-0) VI Congress BFS 25 / 25

 \triangleright \rightarrow \Rightarrow

4 日下

⊜⊪ ÷ QQ

D.