Portfolio insurance under risk-measure constraint

Carmine De Franco¹ and Peter Tankov²

6th World Congress of the Bachelier Finance Society June 22-26 2010

¹Université Paris VII- LPMA, E Mail: carmine.de.franco@gmail.com ²Ecole Polytechnique-CMAP, E Mail: peter.tankov@[pol](#page-0-0)[yte](#page-1-0)[chni](#page-0-0)[q](#page-1-0)[ue.or](#page-0-0)[g](#page-1-0)

The Insurance

Carmine De Franco - Peter Tankov *[Portfolio insurance under risk-measure constraint](#page-0-0)*

 298

É

Market assumptions

We will assume that:

- The market is complete with a unique martingale measure $\mathcal{E} \mathbb{P}$ on (Ω, \mathscr{F})
- The risk is measured in terms of a law-invariant convex risk measure ρ continuous from above.

$$
\rho(X) := \sup_{Q \in \mathcal{M}_1(\mathbb{P})} (\mathbb{E}_Q [-X] - \gamma_{min}(Q))
$$

we will suppose $\rho(0) = 0$

• The risk exposure imposed on the Fund manager is given by ρ_0

 \sqrt{m}) \sqrt{m}) \sqrt{m})

Setting

If we let

$$
H:=\left\{X\in \mathbb{L}^1\left(\mathbb{P}\right)\left|\mathbb{E}\left[\xi X\right]\leq x_0, 0\leq \rho\left(-\left(X-z\right)^-\right)\leq \rho_0\right.\right\}
$$

then the **FM**'s aim is to find, if it exists, a $X^* \in H$ such that:

$$
\mathbb{E}\left[u\left(X^{*}-z\right)^{+}\right]=\sup_{X\in H}\mathbb{E}\left[u\left(X-z\right)^{+}\right]
$$

and the optimal payoff for the Investor will be

max (*X* ∗ , *z*)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 $2Q$

Þ

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Decoupling-Idea

Define
$$
U(X) := \mathbb{E} [u((X - z)^{+})]
$$
 and remark that

$$
U(X) = U(X \mathbf{1}_{A})
$$

where $A := \{X \geq z\}$. This means that only $X\mathbf{1}_A$ remains important for the investor. This remark suggests this decoupling:

4 D F

 $2Q$

Þ

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Decoupling-Idea

let $(A, x^+) \in \mathscr{F} \times \mathbb{R}^+$ and

$$
\mathscr{P}_1: \left\{ \begin{array}{ll} \sup U(X) & \text{s.t.} \\ \mathbb{E} \left[\xi X \right] \leq x^+, & X \in \mathbb{L}^1 \left(\mathbb{P} \right) \text{and} \\ X = 0 & \text{on } A^c, & X \geq z \quad \text{on } A \end{array} \right.
$$

and

$$
\triangle\left(A\right): \left\{\begin{array}{ll} \inf\mathbb{E}\left[\xi\,Y\right] & \text{s.t.} \\ \rho\left(-(Y-z)^{-}\,\mathbf{1}_{A^c}\right)\leq\rho_0, & Y\in\mathbb{L}^1\left(\mathbb{P}\right) \\ Y=0\quad\text{on}\ A, & Y\leq z\quad\text{on}\ A^c \end{array}\right.
$$

Define also $x_+(A) := x_0 - \triangle(A)$. Remark upon how both these problems can be solved by Lagrangian methods.

イロメ イ団メ イヨメ イヨメー

 $2Q$

B

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Decoupling-Idea

The next example will clarify the role of \triangle (A). Fix A such that $0 < \mathbb{P}(A) < 1$ and suppose $\triangle(A) = -\infty$. It is possible to find, $\forall n \in \mathbb{N}$ a $Y^n \in \mathscr{P}_2 \left(A \right)$ such that $\mathbb{E} \left[\xi Y^n \right] \leq -n.$ Consider now this payoff

$$
X^n = \frac{x_0 + n}{\mathbb{E} \left[\xi \mathbf{1}_A\right]} \mathbf{1}_A + Y^n
$$

We deduce $X^n \in H$ and $U(X^n) \to +\infty,$ which means that our problem has no finite solution.

We will then carry out the following:

Assumption

$$
\text{inf}_{A\in\mathscr{F}}\,\triangle\,(A)>-\infty
$$

イロト イ母 トイラ トイラト

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Decoupling-Idea

The following condition guarantees our assumption:

Theorem

Let ρ *be a law-invariant convex risk measure and* ξ *the risk-neutral probability of the market. If*

 $\gamma_{min}(\xi \mathbb{P}) < +\infty$

then $\inf_{A} \Delta(A) > -\infty$ *.*

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

B

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Decoupling

Let X (A, $x^+)$ the solution of problem \mathscr{P}_1 with parameters A and x^+ and recall that x^+ (*A*) := x_0 – \triangle (*A*)

Theorem

$$
\textit{If} \, \text{inf}_A \, \triangle \, (A) > -\infty \, \, \textit{then} \,
$$

$$
\sup_{X\in H} U(X) = \sup_{A\in\mathscr{F}} U\left(X\left(A, x^{+}\left(A\right)\right)\right)
$$

If inf_A \triangle (A) = $-\infty$ *then we already know*

$$
\sup_{X\in H} U(X)=+\infty
$$

イロン イ部ン イ君ン イ君ン 一番

 $2Q$

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Using the last Theorem, we can solve our problem as the following:

- **1** fix *A* ∈ \mathscr{F}
- **2** solve $\mathcal{P}_2(A)$ and find $\triangle(A)$
- **3** solve \mathscr{P}_1 (A) with parameter $x^+(A)$
- **4** maximize the value function of $\mathscr{P}_1(A)$, $U(X(A, x^+(A))),$ over $A \in \mathcal{F}$

イロト イ押ト イヨト イヨト

B

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

We can use the last result to give a necessary and sufficient condition for the existence of a finite solution

Theorem

Assume $inf_A \triangle (A) > -\infty$ *and X*^{*} *is optimal for our problem. Define A*[∗] := { X^* ≥ *z*}*. One has*

$$
\sup_{A\in\mathscr{F}} U\left(X\left(A,x^+\left(A\right)\right)\right)=U\left(X\left(A^*,x^+\left(A^*\right)\right)\right)
$$
\n
$$
\triangle\left(A^*\right)=\mathbb{E}\left[\xi Y^*\right], \text{ where } Y^*:=X^*-X^*1_{A^*}
$$

イロト イ母 トイラ トイラトー

E

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Decoupling

 $Reciprocally, let A^* \in \mathscr{F}$ and a $Y^* \in \mathscr{P}_2(A^*)$ such that

$$
U(X (A^*, x^+(A^*))) = \sup_{A \in \mathscr{F}} U(X (A, x^+(A)))
$$

$$
\mathbb{E}[\xi Y^*] = \triangle (A^*) = \inf_{Y \in \mathscr{H}_2(A^*)} \mathbb{E}[\xi Y]
$$

Then a solution of our problem is given by

$$
X^* := X\left(A^*, x^+\left(A^*\right)\right) \, \pmb{1}_{A^*} + Y^* \, \pmb{1}_{A^{*,c}}
$$

In this case, the payoff for the investor will be

Payoff =
$$
X(A^*, x^+(A^*))
$$
 1_{A^{*}} + z

4 何)

4 0 8

 $2Q$

Þ

A R-valued Maximization Problem

- **•** Generally a maximization over the sets in $\mathscr F$ is not simple
- Our aim here is to show that this latter maximization may be carried out over a subset of $\mathcal F$, parameterized by a real number, Jin and Zhou (2008).

define

$$
v(A):=\sup_{X\in\mathcal{P}_1(A,x^+(A))}U(X)
$$

so then

$$
\sup_{X\in H} U(X)=\sup_{A\in\mathscr{F}} U\left(X\left(A, x^{+}\left(A\right)\right)\right)=\sup_{A\in\mathscr{F}} v\left(A\right)
$$

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

A R-valued Maximization Problem

Theorem

Suppose ξ *has not atoms. Define* ξ := *essinf* ξ *and* $\overline{\xi}:=\mathsf{esssup}\, \xi.$ Let $\mathcal{A}\in\mathscr{F}$ and $\pmb{c}\in\left[\xi,\overline{\xi}\right]$ such that $\mathbb{P}(\xi \leq c) = \mathbb{P}(A)$. Then

$$
v(A) \leq v(\{\xi \leq c\})
$$

which means

$$
\sup_{X \in H} U(X) = \sup_{A \in \mathscr{F}} v(A) = \sup_{c \in [\underline{\xi}, \overline{\xi}]} v(\{\xi \leq c\})
$$

イロト イ母 トイラ トイラトー

B

[Decoupling](#page-4-0) [A R-valued Maximization Problem](#page-12-0)

Using the last Theorem we can solve our problem as the following:

• fix
$$
c \in [\underline{\xi}, \overline{\xi}]
$$

- **2** solve \mathscr{P}_2 (*c*) and find \triangle (*c*)
- **3** solve \mathscr{P}_1 (*c*) with parameter $x_+(c) = x_0 \Delta(c)$
- **4** find c^* that maximizes $U(X_1 (\{ξ ≤ c\}, X_+(c)))$
- **⁵** A optimal payoff for the Investor will be *X*^{*} = *X*₁ ({ $\xi \le c$ }, *x*₊ (*c*)) **1**_{{ $\xi \le c$ } + *z*}

イロト イ押ト イヨト イヨト

 QQ

Œ.

Example-CVaR

We will now see what happens when $\rho = CVaR_\lambda$, $\lambda \in (0,1)$:

$$
CVaR_{\lambda}(X) \ := \ \frac{1}{\lambda}\int_0^{\lambda} VaR_{\mu}(X) \, du
$$

or, equivalently

$$
\begin{array}{rcl}\n\mathbf{CVaR}_{\lambda}\left(X\right) & = & \int_{0}^{+\infty}\psi_{\lambda}\left(\mathbb{P}\left(-X>t\right)\right)dt \\
\text{where }\psi_{\lambda}\left(u\right) & = & \frac{\left(u\wedge\lambda\right)}{\lambda}\n\end{array}
$$

(ロトス個) (運) (運)

 $2Q$

Þ

[Example-CVaR](#page-15-0) [Example-Entropic Risk Measure \(ERM\)](#page-19-0) [Numerical Results](#page-23-0)

Example-CVaR

We then have the following:

Theorem

Let ξ *the state price density.*

i) *If* ξ *is unbounded then our problem has no finite solution*

ii) *If* ξ *is bounded then our value function is:*

$$
\sup_{X \in H} U(X) = \sup_{c \in [\underline{\xi}, \overline{\xi}]} \mathbb{E} \left[u \left([I(\lambda(c)\xi)]^+ \right) \mathbf{1}_{\{\xi \leq c\}} \right]
$$

イロト イ母 トイラ トイラト

 $2Q$

[Example-CVaR](#page-15-0) [Example-Entropic Risk Measure \(ERM\)](#page-19-0) [Numerical Results](#page-23-0)

Example-CVaR

where

- $I = (u')^{-1}$
- $\lambda\left(\bm{c}\right)$ is given by: $\mathbb{E}\left[\xi\left(\left[l\left(\lambda\left(\bm{c}\right)\xi\right)\right]^+\right)\ \bm{1}_{\{\xi\leq \bm{c}\}}\right]=\mathsf{x}_0+\rho_0\beta\bar{\xi}$

We do not have a solution for the Fund Manager problem because problem \mathcal{P}_2 does not have a minimum. However we can give a solution for the investor which is

$$
X^*=z+[I(\lambda(c^*)\,\xi)]^+
$$

 \sqrt{m}) \sqrt{m}) \sqrt{m})

Example-CVaR

Note also that the minimal penalty function for the $CVaR_\lambda$ is given by:

$$
\gamma_{\textsf{min}}\left(Q\right) := \left\{ \begin{array}{ll} \textbf{0} & \text{if $\frac{dQ}{d\mathbb{P}} \leq \frac{1}{\lambda}$,} \\ +\infty & \text{otherwise} \end{array} \right. \quad \mathbb{P}\text{-a.s}
$$

So, for example, if we have ξ bounded but $\mathbb{P}\left(\xi > \frac{1}{\lambda}\right) > 0$ then it turns out $\gamma_{min}(\xi \mathbb{P}) = +\infty$ even if the problem has a solution! Here is a good example where we have a solution even if $\gamma_{min}(\xi \mathbb{P}) = +\infty$!

イロト イ母 トイラ トイラト

 QQQ

Example-Entropic Risk Measure

If we consider $\rho = ERM_\lambda$, where $\lambda > 0$ and

$$
\textit{ERM}_{\lambda}(X) := \lambda \ln \mathbb{E}\left[\text{exp}\left(-\frac{1}{\lambda}X\right)\right]
$$

We have:

イロメ イ部メ イヨメ イヨメー

 $2Q$

B

Example-Entropic Risk Measure

Theorem

Assume that the state price density ξ *has no atoms and* satisfies ξ log $\xi \in \mathbb{L}^1$ (\mathbb{P}). Then the optimal payoff for the fund *manager is given by*

$$
X^* := z + [I(\lambda(c^*)\xi)]^+ \mathbf{1}_{\{\xi \leq c^*\}} - \beta \left[\log \left(\frac{\beta}{\eta(c^*)} \xi \right) \right]^+ \mathbf{1}_{\{\xi > c^*\}}
$$

イロト イ押ト イヨト イヨト

 298

Ξ

Example-Entropic Risk Measure

where

- $I = (u')^{-1}$
- $\lambda\left(c\right)$ is given by: $\mathbb{E}\left[\xi\left[I(\lambda\left(c\right)\xi\right)]^{+}$ $\textbf{1}_{\left\{ \xi\leq c\right\} }\right]=\text{x}_{0}-\triangle\left(c\right)$
- α (*c*) = $\mathbb{P}(\xi > c)$
- $\psi\left(\bm{c}\right) := \mathbb{E}\left[\xi \bm{1}_{\{\xi > \bm{c}\}} \right]$

$$
\bullet \ \triangle(c) = -\beta \left(\log\left(\frac{\beta}{\eta(c)}\right) \psi\left(c \vee \frac{\eta(c)}{\beta}\right) + \hat{\psi}\left(c \vee \frac{\eta(c)}{\beta}\right)\right)
$$

\bullet η (*c*) *is given by:* β $\frac{\beta}{\eta(c)}\psi\left(\boldsymbol{c}\vee\frac{\eta(\boldsymbol{c})}{\beta}\right)$ $\binom{(c)}{\beta} + \mathbb{P}\left(\bm{c}<\xi\leq \frac{\eta(\bm{c})}{\beta}\right)$ $\left(\frac{c}{\beta}\right) = e^{\frac{\rho_0}{\beta}} + \alpha\left(c\right) - 1$

 c^* *attains the supremum of* $c \to \mathbb{E}\left[u\left(\left[I(\lambda(c)\xi)\right]^+\right)$ $\mathbf{1}_{\{\xi \leq c\}}\right]$

 $2Q$

イロト イ母 トイラ トイラト

Example-Entropic Risk Measure

Again, the proof is not complicated; one just needs to follow the **Algorithm 2**.

Remark that the penalty function for the *ERM*λ:

$$
\gamma_{\textit{min}}\left(Q\right) := \lambda \mathcal{H}\left(Q \left| \mathbb{P}\right.\right) := \lambda \mathbb{E}_{Q}\left[\log \left(\frac{dQ}{d\mathbb{P}}\right)\right]
$$

With our hypothesis, we easily have $\gamma_{min}(\xi \mathbb{P}) < \infty$: we know that this is a sufficient condition under which the problem has a solution. The condition $\xi\log\xi\in\mathbb{L}^{1}\left(\mathbb{P}\right)$ is naturally verified in a Black-Scholes framework.

イロト イ押ト イヨト イヨト

Numerical Results

We will see now what happens in a very simple one-dimensional Black-Scholes model: On $(Ω, \mathscr{F}, \mathscr{F}_t, \mathbb{P})$, let

$$
dS_t = S_t (bdt + \sigma dW_t) S_0 = 1
$$

and suppose $\mu = b/\sigma > 0$. The unique equivalent martingale measure is given by $\mathbb{Q} = \xi \mathbb{P}$, where

$$
\xi=\text{exp}(-\mu W_{\mathcal{T}}-\mu^{2}\mathcal{T}/2)=\left[S_{\mathcal{T}}\,\text{exp}\left(\mathcal{T}\left(\sigma^{2}-b\right)/2\right)/S_{0}\right]^{-\frac{b}{\sigma^{2}}}.
$$

イロト イ押ト イヨト イヨト

Þ

Numerical Results

We will use the utility function $u\left(x\right)=1-e^{-\delta x}$ and the ERM_{λ} as risk measure. Our initial data is:

 $2Q$

B

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

Numerical Results

An optimal payoff will be:

$$
X^* := \left[\frac{L}{\delta}\log\left(S_{T}\right) + K_{1}\right]^{+} \mathbf{1}_{\{S_{T}\geq s^*\}} - \beta \left[K_{2} - L\log\left(S_{T}\right)\right]^{+} \mathbf{1}_{\{S_{T}< s^*\}} + z
$$

where

$$
s^*=0.9375,\quad K_1=1.34026,\quad K_2=3.18886
$$

Other quantities one can also compute are optimal *c* ∗ , value functions of problems $\mathcal{P}_1-\mathcal{P}_2$ and the "success" probability:

$$
c^* = 2.72293, \quad v(c^*) = 0.900134
$$

$$
\triangle (c^*) = -1.17387, \quad \mathbb{P}(S_T \geq s^*) = 0.946722
$$

The following figure is the value function $c \rightarrow v(c)$:

 \overline{A}

þ.

k. Þ

4 0 8

 $2Q$

重

Graphics

The Payoff profile for the Fund Manager

4 III F \overline{A} ×

 298

É

Þ

×

Suppose, for sake of simplicity, $z = 0$ and let us see what happens if we do not allow any risk, i.e. $\rho_0 = 0$. We can see this by solving the following problem

$$
\max \mathbb{E}[1 - e^{-\delta X^+}]
$$

$$
\mathbb{E}[X] \le x_0, \quad X \ge 0
$$

and compare the payoff profiles

Graphics

Graphics

メロトメ 伊 トメ ミトメ ミト

重