Risk Measures in non-dominated Models

Magali Kervarec

Purpose: Study Risk Measures taking into account the model uncertainty in mathematical finance.

Non-dominated Models

- Model Uncertainty
- Fundamental topological Properties

2 Risk Measures on $\mathcal{L}_p(c)$

- Definitions
- Representation of Risk Measure on $\mathcal{L}_{\rho}(c)$
- Examples

Non-dominated Models

Model Uncertainty

Motivations

- Lots of probability models in mathematical finance to describe prices of assets
- For each model, problems of calibration
- It is natural to consider not completely specified models
- Example of framework taking into account model uncertainty : UVM (uncer tain volatility model). It is a generalization of the Black-Scholes model : the volatility process is not known but it is assumed to lie in a fixed interval.

In order to take into account model uncertainty, we consider that knowledge is not represented by one probability measure, but by a set of probability measures \mathcal{P} .

Framework

Framework

- d risky assets.
- Let Ω = C₀([0; T], ℝ^d)be the space of continuous functions defined on [0, T] with values in ℝ^d, vanishing in 0, endowed with the uniform convergence norm, (*F_t*) the canonical filtration.
- $(B_t)_{t \in [0,T]}$ the coordinates process, and for all $i \in \{1, ..., d\}$, $(B_{i,t})_{t \in [0;T]}$ the process of the i^{th} coordinate.
- For all *i* ∈ {1,..., *d*}, we consider <u>μ</u>_i and μ_i finite deterministic measures on [0, *T*]. We assume that for all *i*, μ_i and <u>μ</u>_i are Hölder-continuous.

Hypothesis

Definitions

A probability measure *P* is an orthogonal martingale law if the coordinate process is a martingale with respect to (*F_t*) under *P*, and if the martingales (*B_i*)_{1≤i≤d} are orthogonal, i.e.

$$\forall i \neq j, \forall t \in [0, T], < B_i, B_j >_t^P = 0 P a.s.$$

• An orthogonal martingale law satisfies the property $H(\mu, \mu)$ if

$$\forall i \in \{1,\ldots,d\}, \quad d\underline{\mu}_{i,t} \leqslant d < B_i >_t^P \leqslant d\mu_{i,t}.$$

Let \mathcal{P}_0 be the set of orthogonal martingale law satisfying the property $H(\underline{\mu}, \mu)$. (the case where $d\underline{\mu}_{i,t} = \underline{\sigma}_i^2 dt$ and $d\mu_{i,t} = \sigma_i^2 dt$ for some constants $\underline{\sigma}_i$ and σ_i , correspond to the case where the volatility of the *i*th asset belongs to a fixed interval)

$$\mathcal{P} = \left\{ Q; \exists P_0 \in \mathcal{P}_0, \frac{dQ}{dP_0} = \exp\left(\int_0^T \lambda_s dB_s - \frac{1}{2} \int_0^T |\lambda_s|^2 ds\right) \text{ avec } |\lambda| \leqslant C \right\}$$

Difficulties and capacities

Difficulties linked to non-dominated models

- Definition of a negligible set?
- Definition of "almost surely"?

Definitions

We define a regular capacity on $C_b(\Omega)$ with:

$$orall f\in \mathcal{C}_b(\Omega), \ \mathcal{c}_p(f)=\sup_{P\in\mathcal{P}_0} \mathcal{E}_P[|f|^p]^{rac{1}{p}}$$

Then, we consider the Lebesgue extension to all functions.

Definitions

• A set A is said to be polar if $c_p(\mathbf{1}_A) = 0$

 A property is said to hold "quasi-surely" if it holds outside a polar set.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fundamental topological Properties

Let $\mathcal{L}_p(c)$ be the topological completion of $C_b(\Omega)$ with respect to the semi-norm c_p .

Theorem of D. Feyel/A. De la Pradelle, dual of $\mathcal{L}_{\rho}(c)$

If T is a non negative linear form on $\mathcal{L}_p(c)$ then T is continuous and there exists a non negative finite measure λ which does not charge polar sets such that

$$\forall f \in \mathcal{L}_p(c), \ T(f) = \int_{\Omega} f(x) \lambda(dx)$$

Théorème

 $\ensuremath{\mathcal{P}}$ is weakly compact and convex.

Risk Measures on $\mathcal{L}_{\rho}(c)$

Definition of Risk Measures on $\mathcal{L}_{p}(c)$

Définition

A map $\rho : \Pi \to \mathbb{R}$ is said to be a monetary risk measure if it satisfies the following assertions for all $X, Y \in \Pi$:

- Monotonicity: If $X \leq Y$ quasi-everywhere, then $\rho(X) \ge \rho(Y)$
- Translation Invariance: $\forall m \in \mathbb{R}, \rho(X + m) = \rho(X) m$

A monetary risk measure is said to be convex if it satisfies the following assertion:

• Convexity: $\forall \lambda \in [0, 1], \ \forall X, Y \in \Pi, \ \rho \left(\lambda X + (1 - \lambda) Y\right) \leq \lambda \rho \left(X\right) + (1 - \lambda) \rho \left(Y\right)$

A convex risk measure is said to be a coherent measure of risk if it satisfies the following additional assertion:

• Positive Homogeneity: $\forall \lambda \ge 0, \forall X \in \Pi, \rho(\lambda X) = \lambda \rho(X)$

Representation of Coherent Risk Measure on $\mathcal{L}_{p}(c)$

Theorem

Let ρ be a coherent risk measure on $\mathcal{L}_{\rho}(c)$. Then, ρ is continuous and there exists a set \mathcal{Q} of probability measures on Ω which do not charge polar sets and such that

$$\forall X \in \mathcal{L}_{p}(c), \ \rho(X) = \sup_{P \in \mathcal{Q}} E_{P}[-X]$$

Moreover, \mathcal{Q} can be chosen convex and such that the supremum above is attained.

Representation of Convex Risk Measure on $\mathcal{L}_{\rho}(c)$

Theorem

Let ρ be a convex risk measure on $\mathcal{L}_{\rho}(c)$. Then, ρ admits the following representation:

$$\forall X \in \mathcal{L}_{p}(c), \ \rho(X) = \sup_{Q \in \mathcal{P}'} E_{Q}[-X] - \alpha_{\min}(Q)$$

where

$$\alpha_{\min}(Q) = \sup_{X \in \mathcal{L}_{\rho}(c)} \left(E_Q[-X] - \rho(X) \right) = \sup_{X \in \mathcal{A}_{\rho}} E_Q[-X]$$

and \mathcal{P}' the set of probability measures which do not charge polar sets and belonging to $(\mathcal{L}_p(c))^*$. Moreover, for all $X \in \mathcal{L}_p(c)$, there exists a probability measure $P_X \in \mathcal{P}'$ such that:

$$\rho(X) = E_{P_X}[-X] - \alpha_{\min}(P_X)$$

And, α_{min} is the minimal penality function, meaning that if α is another

A Monetary Risk Measure

Definition

Let $\alpha \in (0, 1)$. We define

 $\forall X \in \mathcal{L}_{\rho}(c), \ V @R_{\alpha}(X) = -\inf\{x \in \mathbb{R}, \ \exists P \in \mathcal{P}, P(X \leq x) > \alpha\}.$

Properties

Let $p \ge 1$, then for all $X \in \mathcal{L}_{p}(c)$, $V@R_{\alpha}(X)$ is finite and

$$\mathsf{V}@\mathsf{R}_{\alpha}(X) = \sup_{\mathsf{P}\in\mathcal{P}} \mathsf{V}@\mathsf{R}^{\mathsf{P}}_{\alpha}(X) = \sup_{\mathsf{P}\in\mathcal{P}} \left(-\inf\left\{x\in\mathbb{R}, \ \mathsf{P}\left(X\leqslant x\right) > \alpha\right\}\right)$$

Moreover, $V@R_{\alpha}$ is a monetary risk measure on $\mathcal{L}_{p}(c)$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A Coherent Risk Measure

Définition(Föllmer/Shied)

Let $\lambda \in (0, 1)$. We put

$$orall X\in L^{\infty}\left(P
ight) ,\ AV@R^{P}_{\lambda}\left(X
ight) =rac{1}{\lambda}\int_{0}^{\lambda}V@R^{P}_{lpha}\left(X
ight) dlpha$$

Définition

Let $\lambda \in (0, 1)$ and p > 1. We put

$$\forall X \in \mathcal{L}_{\rho}(c), \ AV@R_{\lambda}(X) = \sup_{P \in \mathcal{P}} \left(\frac{1}{\lambda} \int_{0}^{\lambda} V@R_{\alpha}^{P}(X) d\alpha\right)$$

$$\forall X \in L^{\infty}\left(\mathcal{P}\right) \cap \mathcal{L}_{p}(c), \ \mathcal{AV}@R_{\lambda}\left(X
ight) = \sup_{\mathcal{P} \in \mathcal{P}} \mathcal{AV}@R_{\lambda}^{\mathcal{P}}\left(X
ight)$$

⊒ →

A Coherent Risk Measure

Theorem

For all p > 1 and $\lambda \in (0, 1)$, $AV@R_{\lambda}$ is a coherent risk measure on $\mathcal{L}_p(c)$ which admits the following representation:

(1)
$$\forall X \in \mathcal{L}_{\rho}(c), \ AV@R_{\lambda}(X) = \sup_{Q \in \mathcal{Q}_{\lambda}} E_{Q}[-X]$$

where $Q_{\lambda} = \{ Q \in \mathcal{P}'; \exists P \in \mathcal{P} \text{ s.t. } Q \ll P \text{ and } \frac{dQ}{dP} \leq \frac{1}{\lambda} P - a.s \}$. Moreover, the supremum in (1) is attained.

A Convex Risk Measure

Let $I : \mathbb{R} \to \mathbb{R}$ be an increasing, convex loss function not identically constant and such that there exists a constant M > 0 satisfying

$$\forall x \in \mathbb{R}, |I(x)| \leq M(1+|x|^{p})$$

For example, we can take: $\forall x \in \mathbb{R}$, $I(x) = (x^+)^p$. Assume that x_0 belongs to the interior of $I(\mathbb{R})$ and let \mathcal{A} be the set of acceptable positions :

$$\mathcal{A} = \{ X \in \mathcal{L}_{\mathcal{P}}(\mathbf{C}), \ \forall \mathbf{P} \in \mathcal{P}, \ \mathbf{E}_{\mathbf{P}}\left[I\left(-X\right) \right] \leqslant x_{0} \}$$

Thus, a financial position is considered to be acceptable if whatever the scenario that happens, whatever the model (i.e. for all $P \in \mathcal{P}$), the mean loss is smaller than x_0 .

Shortfall risk

$$\rho_{l,x_0}(X) = \inf\{m \in \mathbb{R}; m + X \in \mathcal{A}\} \\ = \inf\{m \in \mathbb{R}; \forall P \in \mathcal{P}, E_P[l(-m-X)] \leq x_0\}$$

 ρ_{l,x_0} is a convex risk measure on $\mathcal{L}_{\rho}(c)$.

Perspectives

Difficultés et perspectives:

- Link with G-expectations.
- Definition and study of dynamic risk measure in a framework taking into account model uncertainty.