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‖I Basic question.

Mn How to evaluate the risk of X ∈ L0
d = L0

(
Ω,F , P ;Rd

)
?

‖I Basic problems.

Mn (1) u1, u2 ∈ Rd compensate for the risk of X, but might not

Mn be comparable.

Example. 1-1 exchange rate, 10% transaction costs: neither of

u1 =

(
1000

0

)
, u2 =

(
0

1000

)
is ”better”.
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‖I Basic question.

Mn How to evaluate the risk of X ∈ L0
d = L0

(
Ω,F , P ;Rd

)
?

‖I Basic problems.

Mn (1) u1, u2 ∈ Rd compensate for the risk of X, but might not

Mn be comparable.

Mn (2) u1 ∈ Rd does not compensate for the risk of X, but can be

Mn exchanged at initial time into u2 ∈ Rd which does.

Mn (3) u ∈ Rd does not compensate for the risk of X1, but X1 can

Mn be exchanged at terminal time into X2 such that u compensates

Mn for X2.



‖I Basic idea.

Mn A ⊆ L0
d set of acceptable payoffs: The mapping

X 7→ RA (X) =
{
u ∈ Rd : X + u1I ∈ A

}
⊆ P

(
Rd
)

Mn is understood as a set-valued risk measure RA : L0
d → P

(
Rd
)
.

‖I References.

Mn Superhedging theorems for markets with transaction costs

Mn (Kabanov 99, Schachermayer 04, Pennanen/Penner 10 ...)

Mn Set-valued risk measure ad hoc: Jouini/Touzi/Meddeb 04

Mn Complete theory, constant cone: Hamel/Heyde 10

Mn Complete theory, random cone: Hamel/Heyde/Rudloff 10+
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‖I Rest of the talk.

Mn • Formal definitions and primal representation

Mn • Dual representation and dual variables

Mn • Super-hedging price as a coherent SRM

Mn • A set-valued AV@R: definition and computation



‖I Formal definitions.

Space of eligible portfolios.

Mn • M ⊆ Rd linear subspace, e.g. M = Rm × {0}d−m

Acceptance sets. A ⊆ L
p
d, 0 ≤ p ≤ ∞, with

Mn (A1) M1I ∩A 6= ∅, M1I ∩
(
L

p
d\A

)
6= ∅

Mn (A2) A +
(
L

p
d

)
+
⊆ A.

Risk measures. RA : L
p
d → P (M) defined by

RA (X) = {u ∈ M : X + u1I ∈ A} , X ∈ L
p
d.

Note. Set-valuedness solves the problem of incomparableness!
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Result. The set-valued function X 7→ RA (X) is

Mn (R0) M-translative, i.e.

∀X ∈ L
p
d, ∀u ∈ M : R (X + u1I) = R (X)− u.

Mn (R1) finite at zero: R (0) 6= ∅ and R (0) 6= M .

Mn (R2)
(
L

p
d

)
+

-monotone, i.e.

X2 −X1 ∈
(
L

p
d

)
+

⇒ R
(
X2

)
⊇ R

(
X1

)
.

M-translative functions and some subsets of L
p
d are one–to–one via

AR =
{
X ∈ L

p
d : 0 ∈ R (X)

}
, RA (X) = {u ∈ M : X + u1I ∈ A}
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Conical market models with one period.

At Initial Time.

• KI ⊆ Rd a solvency cone: closed convex cone with Rd
+ ⊆ KI 6= Rd

• KM
I = KI ∩M solvency cone restricted to eligible portfolios

• KI-compatible: X ∈ A, u ∈ KM
I ⇒ X + u1I ∈ A.

At Terminal Time.

• KT : Ω → P
(
Rd
)

(measurable) solvency cone mapping

• KT -compatible: X ∈ A, X ′ ∈ KT a.s. ⇒ X + X ′ ∈ A.
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One-to-one properties for M-translative functions R and A ⊆ L
p
d:

AR =
{
X ∈ L

p
d : 0 ∈ R (X)

}
, RA (X) = {u ∈ M : X + u1I ∈ A}

R A

finite at zero R(0) 6= ∅ M1I ∩A 6= ∅
R(0) 6= M M1I ∩ (Lp

d\A) 6= ∅
market-compatible L

p
d(KT )-monotone A + L

p
d(KT ) ⊆ A

R(X) = R(X) + KM
0 A + KM

0 1I ⊆ A

convex convex
positively homogeneous cone
subadditive A + A ⊆ A
sublinear convex cone
closed images directionally closed
closed graph closed



‖I Duality.

Result. If a function R : L
p
d → P (M) is convex (closed), then R (X)

is convex (closed) for all X ∈ L
p
d. A closed convex KI-compatible risk

measure R maps into

G (M) =
{
D ⊆ Rd : D = cl co

(
D + KM

I

)}
.

Here: convexity, closedness in terms of the graph

gr R =
{
(X, u) ∈ L

p
d ×M : u ∈ R (X)

}
.



Dual representation theorem. R : L
p
d → G (M) is a closed con-

vex market-compatible risk measure if and only if there is a penalty
function −α : Wq → G (M) such that for all X ∈ L

p
d

R (X) =
⋂

(Q,w)∈Wq

{
−α (Q, w) +

(
EQ [−X] + G (w)

)
∩M

}
.

In this case,

−α (Q, w) ⊆ cl
⋃

X ′∈AR

(
EQ

[
X ′
]
+ G (w)

)
∩M

with G (w) =
{
x ∈ Rd : 0 ≤ wTx

}
and

Wq =
{
(Q, w) ∈MP

1,d ×
(
K+

I \M
⊥+ M⊥

)
: diag (w)

dQ

dP
∈ L

q
d

(
K+

T

)}
.
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A note about the proof. Fenchel-Moreau theorem for set-valued

functions, Hamel 09.

A note about dual variables. Assume M = Rd. Then

Wq =
{
(Q, w) ∈MP

1,d ×K+
I \ {0} : diag (w)

dQ

dP
∈ L

q
d

(
K+

T

)}
.

Transformation of variables. Y = diag (w) dQ
dP , E [Y ] = w ∈ K+

I \ {0}.

This gives: The pair (Y, w) is a consistent pricing process for the

one-period market (KI , KT = KT (ω)).
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The coherent case. R additionally positively homogeneous:

∀X ∈ L
p
d : R (X) =

⋂
(Q,w)∈Wq

R

(
EQ [−X] + G (w)

)
∩M.

with

Wq
R ⊆

{
(Q, w) ∈MP

1,d ×
(
K+

I \M
⊥+ M⊥

)
: diag (w)

dQ

dP
∈ A+

R

}
.

The coherent case with M = Rd.

Wq
R ⊆

{
(Q, w) ∈MP

1,d ×K+
I \ {0} : diag (w)

dQ

dP
∈ A+

R

}
.
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‖I Super-hedging price.

• Θ = {t0 = 0, t1, . . . , tN = T},
(
Ω, (Ft)t∈Θ ,F , P

)
, FT = F;

• (Kt (ω))t∈Θ cone-valued process with Rd
+ ⊆ Kt (ω) ⊆ Rd,

• Kt (ω) 6= Rd closed convex P -a.s. for all t ∈ Θ;

• Self–financing portfolio process: adapted Rd–valued process

• V = (Vt)t∈Θ with (Vt−1 = 0)

Vtn − Vtn−1 ∈ −Ktn a.s., n = 1, . . . , N − 1

• The attainable set

At = {Vt : V is a self-financing portfolio process} , t ∈ Θ

• is a convex cone in L0
(
Ω,Ft, P ;Rd

)
.



Result. Assume (NAr). Then X 7→
{
u ∈ Rd : X + u1I ∈ −AT

}
is a

closed coherent market-compatible risk measure with KI = K0.

Note. −AT = K01I + L0
d

(
Kt1

)
+ . . . + L0

d (KT ).

Super-hedging theorem. X ∈ L1
d, v ∈ Rd

X − v1I ∈ AT ⇔ ∀Z ∈ SCPP : E
[
XTZT

]
≤ vTZ0.

This produces the dual representation of the super-hedging price in

terms of (Q, w) via the following transformation of variables.
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Transformation of variables. Set w = E [ZT ] = Z0 ∈ K+
0 \ {0} and

dQi

dP
=

1

wi
(ZT )i if wi > 0,

and choose dQi
dP as density in L∞+ if wi = 0. Then

(Q, w) ∈MP
1,d ×K+

0 \ {0}

E

[
diag (w)

dQ

dP
|Ft

]
∈ L

p
d

(
K+

t

)
, t ∈ Θ

In particular, diag (w) dQ
dP ∈ K+

T P -a.s. Moreover, E
[
XTZT

]
= wTEQ [X]

and ZT
0 u = wTu, hence the following result.



Result. X ∈ L1
d. Then,

R−AT
(−X) =

⋂
(Q,w)∈W∞

SCPP

(
EQ [X] + G (w)

)

with

W∞
SCPP =

{
(Q, w) ∈MP

1,d ×K+
0 \ {0} :

∀t ∈ Θ: E

[
diag (w)

dQ

dP
|Ft

]
∈ L

p
d

(
K+

t

)}
.

Summary. Set-valued duality covers both super-hedging theorems

and dual representation of risk measures in conical market models.



‖I AV@R.

Recall (from dual representation theorem for q = ∞)

W∞ =

{
(Q, w) ∈MP

1,d ×
(
K+

I \M
⊥ + M⊥

)
: diag (w)

dQ

dP
∈ L∞d

(
K+

T

)}
.

If α ∈ (0,1]d,

W∞
α =

{
(Q, w) ∈ W∞ : diag (w)

(
α1I−

dQ

dP

)
∈ L∞d

(
K+

T

)}
then

AV @Rα (X) =
⋂

(Q,w)∈W∞
α

(
EQ [−X] + G (w)

)
∩M

defines a market-compatible sublinear (coherent) risk measure on L1
d.

Note. This is a ”dual-way” definition! And a new one, by the way.



Questions.

1. Computing values AV @Rα (X)?

2. Minimizing AV @Rα (X) over X ∈ C ⊆ L1
d?



‖I Computing the value AV @Rα (X).

Fact 1.

AV @Rα (X) =
⋂

(Q,w)∈W∞
α

(
EQ [−X] + G (w)

)
∩M

=
⋂

(Y,v)∈Yα

{
u ∈ M : E

[
−Y TX

]
≤ vTu

}
with

Yα =

(Y, v) ∈ L∞d ×M\ {0} :

v ∈
(
E [Y ] + M⊥

)
∩
(
K+

I + M⊥
)

Y ∈ K+
T \ {0}

diag (α)E [Y ]− Y ∈ K+
T

 .

Note. Linear in (Y, v).



‖I Computing the value AV @Rα (X).

Fact 2. If M = Rd this simplifies to

AV @Rα (X) =
⋂

(Q,w)∈W∞
α

(
EQ [−X] + G (w)

)
=

⋂
(Y,v)∈Yd

α

{
u ∈ Rd : E

[
−Y TX

]
≤ vTu

}
with

Yd
α =

{
(Y, v) ∈ L∞d

(
K+

T

)
×K+

I \ {0} :

v = E [Y ], diag (α) v − Y ∈ L∞d
(
K+

T

)}
.



‖I Computing the value AV @Rα (X).

Further assumptions.

• |Ω|, M = Rd,

• KI is spanned by h1, . . . , hJI

• KT (ω) is spanned by k1 (ω) , . . . , kJT (ω)

Note.

• Y ∈ K+
T ! Y ≥ 0

• diag (α) v − Y ∈ K+
T P -a.s. ! Y ≤ diag (α) v

•
⋂

! sup

• X 7→
{
u ∈ Rd : E

[
−Y TX

]
≤ vTu

}
”almost linear”



‖I Computing the value AV @Rα (X).

Analyzing the constraints.

• Y ∈ K+
T : yin = Yi (ωn), i = 1, . . . , d, n = 1, . . . , N

∀j = 1, . . . , JT , ∀n = 1, . . . , N :
d∑

i=1

yink
j
in ≥ 0

• with k
j
in = k

j
i (ωn). This gives NJT linear inequality constraints.
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T :

∀j = 1, . . . , JT , ∀n = 1, . . . , N :
d∑
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yink
j
in ≤

d∑
i=1

αik
j
invi.

• This gives another NJT linear inequality constraints.

• v = E [Y ]:

∀i = 1, . . . , d :
N∑

n=1

pnyin = vi.

• This gives d linear equations.
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‖I Computing the value AV @Rα (X).

Analyzing the objective.

•
{
u ∈ Rd : E

[
−Y TX

]
≤ vTu

}
:

E
[
−Y TX

]
= −

d∑
i=1

N∑
n=1

pnxinyin,

• therefore the objective becomes

S(D̂ŷ,−v) (−x̂) =
{
u ∈ Rd : − x̂T D̂ŷ ≤ vTu

}
.

Altogether.

AV @Rα (X) =
⋂{

S(D̂ŷ,−v) (−x̂) : AT
1 ŷ ≤ −CT

1 v, AT
2 ŷ = −CT

2 v, v ∈ K+
I

}
• with suitable matrices A1, A2, C1, C2, D̂, x̂, ŷ.

Reference. Yankova 10, JP, P.U.
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}
.

Altogether.

AV @Rα (X) =
⋂{
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‖I Computing the value AV @Rα (X).

Constructing the primal.

The problem⋂{
S(D̂ŷ,−v) (−x̂) : AT

1 ŷ ≤ −CT
1 v, AT

2 ŷ = −CT
2 v, v ∈ K+

I

}
is the set-valued dual of the following set-valued linear program

inf
G(Rd)

{
C1x1 + C2x2 : A1x1 + A2x2 = −x̂, x1 ≥ 0

}
.

Interpretation as vector optimization problem. Look for minimal
points of{

diag (α)E [Z]− z : Z ∈ L
q
d (KT ) , Z − z1I + X ∈ L

q
d (KT ) , z ∈ Rd

}
with respect to the order relation in Rd generated by KI.

Reference. Hamel 10+
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‖I Computing the value AV @Rα (X).

Under the additional assumptions and M = Rd

AV @Rα (X)

=
{
diag (α)E [Z]− z : Z ∈ Lq

d (KT) , Z − z1I + X ∈ Lq
d (KT) , z ∈ Rd

}
=

⋂
(Y,v)∈Yd

α

{
u ∈ Rd : E

[
−Y TX

]
≤ vTu

}
with

Yd
α =

{
(Y, v) ∈ L∞d

(
K+

T

)
×K+

I \ {0} : v = E [Y ] , diag (α) v − Y ∈ K+
T

}

Good news. There are already efficient algorithms for such (vector)
problems (Benson 1998, Ehrgott/Löhne/Shao 2007).

Summary. Computation of values of a set-valued risk measure is a
vector/set optimization problem. Set-valued duality provides tools.
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‖I What’s next?

• Computing super-hedging prices and values of AV@R.

• Set-valued optimization problems for set-valued risk measures.

• Law invariance of set-valued risk measures.

Thanks for coming.
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