6th World Congress of the Bachelier Finance Society 2010

Duality for set-valued measures of risk

Andreas H. Hamel

Princeton University & Yeshiva University New York

ahamel@princeton.edu, hamel@yu.edu

With: F. Heyde (Halle), B. Rudloff & M. Yankova (Princeton)

$\|$ Basic question.

How to evaluate the risk of $X\in L_d^0=L^0\left(\Omega,\mathcal{F},P; \mathbb{R}^d\right)$?

$\| \triangleright$ Basic question.

How to evaluate the risk of $X\in L_d^0=L^0\left(\Omega,\mathcal{F},P; \mathbb{R}^d\right)$?

$\|$ Basic problems.

 (1) $u^{1}, u^{2} \in \mathbb{R}^{d}$ compensate for the risk of X , but might not be comparable.

$\| \triangleright$ Basic question.

How to evaluate the risk of $X\in L_d^0=L^0\left(\Omega,\mathcal{F},P; \mathbb{R}^d\right)$?

$\|$ Basic problems.

 (1) $u^{1}, u^{2} \in \mathbb{R}^{d}$ compensate for the risk of X , but might not be comparable.

Example. 1-1 exchange rate, 10% transaction costs: neither of

$$
u^{1} = \left(\begin{array}{c} 1000\\0 \end{array}\right), \quad u^{2} = \left(\begin{array}{c} 0\\1000 \end{array}\right)
$$

is "better".

$\| \triangleright$ Basic question.

How to evaluate the risk of $X\in L_d^0=L^0\left(\Omega,\mathcal{F},P; \mathbb{R}^d\right)$?

$\| \triangleright$ Basic problems.

 (1) $u^{1}, u^{2} \in \mathbb{R}^{d}$ compensate for the risk of X , but might not be comparable.

 (2) $u^1 \in \mathbb{R}^d$ does not compensate for the risk of X , but can be exchanged at initial time into $u^2 \in \mathbb{R}^d$ which does.

(3) $u \in \mathbb{R}^d$ does not compensate for the risk of X^1 , but X^1 can be exchanged at terminal time into X^2 such that u compensates for X^2 .

$\|$ Basic idea.

 $A\subseteq L_d^{\mathsf{O}}$ set of acceptable payoffs: The mapping

$$
X \mapsto R_A(X) = \left\{ u \in \mathbb{R}^d \colon X + u\mathbb{1} \in A \right\} \subseteq \mathcal{P}\left(\mathbb{R}^d\right)
$$

is understood as a set-valued risk measure $R_A\colon L^0_d\to \mathcal{P}\left(\mathbb{R}^d\right)$.

$\| \triangleright$ Basic idea.

 $A\subseteq L_d^{\mathsf{O}}$ set of acceptable payoffs: The mapping

$$
X \mapsto R_A(X) = \left\{ u \in \mathbb{R}^d \colon X + u\mathbb{1} \in A \right\} \subseteq \mathcal{P}\left(\mathbb{R}^d\right)
$$

is understood as a set-valued risk measure $R_A\colon L^0_d\to \mathcal{P}\left(\mathbb{R}^d\right)$.

$\| \triangleright$ References.

Superhedging theorems for markets with transaction costs (Kabanov 99, Schachermayer 04, Pennanen/Penner 10 ...) Set-valued risk measure ad hoc: Jouini/Touzi/Meddeb 04 Complete theory, constant cone: Hamel/Heyde 10 Complete theory, random cone: Hamel/Heyde/Rudloff $10+$

$\| \triangleright$ Rest of the talk.

- Formal definitions and primal representation
- Dual representation and dual variables
- Super-hedging price as a coherent SRM
- A set-valued AV@R: definition and computation

$\| \triangleright$ Formal definitions.

Space of eligible portfolios.

 \bullet $M\subseteq \mathbb{R}^d$ linear subspace, e.g. $M=\mathbb{R}^m\times \{0\}^{d-m}$

$\| \triangleright$ Formal definitions.

Space of eligible portfolios.

 \bullet $M\subseteq \mathbb{R}^d$ linear subspace, e.g. $M=\mathbb{R}^m\times \{0\}^{d-m}$

Acceptance sets. $A \subseteq L^p_d$ $_{d}^{p},\ 0\leq p\leq \infty$, with $(A1)$ $M1 \cap A \neq \emptyset$, $M1 \cap (L_d^p)$ $\binom{p}{d}\lambda \neq \emptyset$ (A2) $A + (L_d^p)$ \overline{d} \setminus $+$ $\subseteq A$.

$\| \triangleright$ Formal definitions.

Space of eligible portfolios.

 \bullet $M\subseteq \mathbb{R}^d$ linear subspace, e.g. $M=\mathbb{R}^m\times \{0\}^{d-m}$

Acceptance sets. $A \subseteq L^p_d$ $_{d}^{p},\ 0\leq p\leq \infty$, with $(A1)$ $M1 \cap A \neq \emptyset$, $M1 \cap (L_d^p)$ $\binom{p}{d}\lambda \neq \emptyset$ (A2) $A + (L_d^p)$ \overline{d} \setminus $+$ $\subseteq A$.

Risk measures. $R_A: L_d^p \to \mathcal{P}(M)$ defined by $R_A(X) = \{u \in M : X + u \mathbb{1} \in A\}, \quad X \in L_d^p$ $l\llap{d}$

Note. Set-valuedness solves the problem of incomparableness!

Result. The set-valued function $X \mapsto R_A(X)$ is (RO) *M*-translative, i.e.

 $\forall X \in L^p_d$ $d_{d}^{p}, \ \forall u \in M : R(X + uI\!\!I) = R(X) - u.$ **(R1)** finite at zero: $R(0) \neq \emptyset$ and $R(0) \neq M$. $(R2)$ (L_d^p) \overline{d} \setminus $+$ -monotone, i.e. $X^2 - X^1 \in (L_d^p)$ \overline{d} \setminus $+$ $\Rightarrow R(X^2) \supseteq R(X^1).$ **Result.** The set-valued function $X \mapsto R_A(X)$ is (RO) *M*-translative, i.e.

$$
\forall X \in L_d^p, \ \forall u \in M : R(X + u\mathbb{I}) = R(X) - u.
$$

(R1) finite at zero: $R(0) \neq \emptyset$ **and** $R(0) \neq M$ **.**
(R2) $(L_d^p)_+$ **-monotone, i.e.**
 $X^2 - X^1 \in (L_d^p)_+ \implies R(X^2) \supseteq R(X^1)$.

M-translative functions and some subsets of L^p_d $_d^p$ are one–to–one via

 $A_R = \left\{ X \in L_d^p \right\}$ $d_i^p: 0 \in R(X)$, $R_A(X) = \{u \in M: X + u\mathbb{I} \in A\}$ Conical market models with one period.

At Initial Time.

- \bullet $K_I \subseteq \mathbb{R}^d$ a solvency cone: closed convex cone with $\mathbb{R}^d_+ \subseteq K_I \neq \mathbb{R}^d$
- \bullet $K_I^M = K_I \cap M$ solvency cone restricted to eligible portfolios

 K_I -compatible: $X \in A$, $u \in K_I^M \Rightarrow X + u \mathbb{I} \in A$.

Conical market models with one period.

At Initial Time.

- \bullet $K_I \subseteq \mathbb{R}^d$ a solvency cone: closed convex cone with $\mathbb{R}^d_+ \subseteq K_I \neq \mathbb{R}^d$
- \bullet $K_I^M = K_I \cap M$ solvency cone restricted to eligible portfolios

 K_I -compatible: $X \in A$, $u \in K_I^M \Rightarrow X + u \mathbb{I} \in A$.

At Terminal Time.

 \bullet $K_T \colon \Omega \to \mathcal{P}\left(\mathbb{R}^d\right)$ (measurable) solvency cone mapping

 K_T -compatible: $X \in A$, $X' \in K_T$ a.s. $\Rightarrow X + X' \in A$.

One-to-one properties for M-translative functions R and $A \subseteq L^p_d$ $\frac{p}{d}$:

 $A_R = \left\{ X \in L_d^p \right\}$ $\{u : 0 \in R(X)\}, \quad R_A(X) = \{u \in M : X + u\mathbb{1} \in A\}$

$\|$ Duality.

Result. If a function $R: L_d^p \to \mathcal{P}(M)$ is convex (closed), then $R(X)$ is convex (closed) for all $X \stackrel{a}{\in} L^p_d$ $\frac{p}{d}$. A closed convex K_{I} -compatible risk measure R maps into

$$
\mathbb{G}(M) = \left\{ D \subseteq \mathbb{R}^d \colon D = \text{cloc}\left(D + K_I^M\right) \right\}.
$$

Here: convexity, closedness in terms of the graph

$$
\operatorname{gr} R = \left\{ (X, u) \in L_d^p \times M : u \in R(X) \right\}.
$$

Dual representation theorem. $R: L_d^p \to \mathbb{G}(M)$ is a closed convex market-compatible risk measure if and only if there is a penalty function $-\alpha\colon {\mathcal W}^q \to \mathbb{G}\,(M)$ such that for all $X\in L^p_{d}$ \overline{d}

 $R(X) = \bigcap \{-\alpha (Q, w) + (E^Q [-X] + G(w)) \cap M\}.$ $(Q,w) \in \mathcal{W}^q$

Dual representation theorem. $R: L_d^p \to \mathbb{G}(M)$ is a closed convex market-compatible risk measure if and only if there is a penalty function $-\alpha\colon {\mathcal W}^q\to \mathbb{G}\left(M\right)$ such that for all $X\in L^p_d$ \overline{d}

$$
R(X) = \bigcap_{(Q,w)\in\mathcal{W}^q} \left\{-\alpha(Q,w) + \left(E^Q[-X] + G(w)\right) \cap M\right\}.
$$

In this case,

$$
-\alpha(Q, w) \subseteq \text{cl} \bigcup_{X' \in A_R} \left(E^Q \left[X' \right] + G(w) \right) \cap M
$$

with $G(w) = \left\{ x \in \mathbb{R}^d : 0 \le w^T x \right\}$ and

$$
\mathcal{W}^q = \left\{ (Q, w) \in \mathcal{M}_{1,d}^P \times \left(K_I^+ \backslash M^\perp + M^\perp \right) : \text{diag}(w) \frac{dQ}{dP} \in L_d^q \left(K_I^+ \right) \right\}.
$$

A note about the proof. Fenchel-Moreau theorem for set-valued functions, Hamel 09.

A note about the proof. Fenchel-Moreau theorem for set-valued functions, Hamel 09.

A note about dual variables. Assume $M = \mathbb{R}^d$. Then $\mathcal{W}^q=\left\{(Q,w)\in \mathcal{M}_{1,d}^P\times K_I^+\right\}$ $\mathcal{I}^+ \backslash \left\{ 0 \right\}$: diag (w) dQ dP $\in L_d^q$ \overline{d} (K_T^+) \overline{T} $\big)$. A note about the proof. Fenchel-Moreau theorem for set-valued functions, Hamel 09.

A note about dual variables. Assume $M = \mathbb{R}^d$. Then $\mathcal{W}^q=\left\{(Q,w)\in \mathcal{M}_{1,d}^P\times K_I^+\right\}$ $\mathcal{I}^+ \backslash \left\{ 0 \right\}$: diag (w) dQ dP $\in L_d^q$ \overline{d} (K_T^+) \overline{T} $\big)$.

Transformation of variables. $Y =$ diag $(w) \frac{dQ}{dP}$, $E[Y] = w \in K_I^+$ $\overline{I} \setminus \{0\}.$

This gives: The pair (Y, w) is a consistent pricing process for the one-period market $(K_I, K_T = K_T(\omega))$.

The coherent case. R additionally positively homogeneous:

$$
\forall X \in L_d^p: R(X) = \bigcap_{(Q,w) \in \mathcal{W}_R^q} \left(E^Q \left[-X \right] + G \left(w \right) \right) \cap M.
$$

with

$$
\mathcal{W}_R^q \subseteq \left\{ (Q, w) \in \mathcal{M}_{1,d}^P \times \left(K_I^+ \backslash M^\perp + M^\perp \right) : \text{diag}(w) \frac{dQ}{dP} \in A_R^+ \right\}.
$$

The coherent case. R additionally positively homogeneous:

$$
\forall X \in L_d^p \colon R(X) = \bigcap_{(Q,w) \in \mathcal{W}_R^q} \left(E^Q \left[-X \right] + G \left(w \right) \right) \cap M.
$$

with

$$
\mathcal{W}_{R}^{q} \subseteq \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times \left(K_{I}^{+} \backslash M^{\perp} + M^{\perp} \right) : \text{diag}(w) \frac{dQ}{dP} \in A_{R}^{+} \right\}.
$$

The coherent case with $M = \mathbb{R}^d$.

$$
\mathcal{W}_{R}^{q} \subseteq \left\{ (Q, w) \in \mathcal{M}_{1, d}^{P} \times K_{I}^{+} \backslash \{0\} : \text{diag}(w) \frac{dQ}{dP} \in A_{R}^{+} \right\}.
$$

$\| \triangleright$ Super-hedging price.

$$
\bullet \Theta = \{t_0 = 0, t_1, \ldots, t_N = T\}, \ (\Omega, (\mathcal{F}_t)_{t \in \Theta}, \mathcal{F}, P), \ \mathcal{F}_T = \mathcal{F};
$$

- \bullet $(K_t(\omega))_{t\in\Theta}$ cone-valued process with $\mathbb{R}^d_+\subseteq K_t(\omega)\subseteq \mathbb{R}^d$, $K_t(\omega) \neq \mathbb{R}^d$ closed convex *P*-a.s. for all $t \in \Theta$;
- Self-financing portfolio process: adapted \mathbb{R}^d -valued process $V = (V_t)_{t \in \Theta}$ with $(V_{t-1} = 0)$

$$
V_{t_n} - V_{t_{n-1}} \in -K_{t_n} \quad \text{a.s., } n = 1, \dots, N-1
$$

• The attainable set

 $A_t = \{V_t: V$ is a self-financing portfolio process}, $t \in \Theta$ is a convex cone in $L^{\mathsf{O}}\left(\Omega, \mathcal{F}_t, P; \mathbb{R}^d\right)$.

Result. Assume (NA^r). Then $X \mapsto \left\{ u \in \mathbb{R}^d \colon X + u \mathbf{I} \in -A_T \right\}$ is a closed coherent market-compatible risk measure with $K_I = K_0$.

Note. $-A_T = K_0 \mathbb{1} + L_d^0$ $(K_{t_1}) + \ldots + L_d^0(K_T).$

Result. Assume (NA^r). Then $X \mapsto \left\{ u \in \mathbb{R}^d \colon X + u \mathbf{I} \in -A_T \right\}$ is a closed coherent market-compatible risk measure with $K_I = K_0$.

Note. $-A_T = K_0 \mathbb{1} + L_d^0$ $(K_{t_1}) + \ldots + L_d^0(K_T).$

Super-hedging theorem. $X \in L^1_d, \; v \in \mathbb{R}^d$

$$
X - v\mathbb{1} \in A_T \quad \Leftrightarrow \quad \forall Z \in \text{SCPP} \colon E\left[X^T Z_T\right] \le v^T Z_0.
$$

This produces the dual representation of the super-hedging price in terms of (Q, w) via the following transformation of variables.

Transformation of variables. Set $w = E\left[Z_T\right] = Z_0 \in K_0^+$ $\mathcal{O}^+ \setminus \{0\}$ and

$$
\frac{dQ_i}{dP} = \frac{1}{w_i} (Z_T)_i \quad \text{if } w_i > 0,
$$

and choose $\frac{dQ_i}{dP}$ as density in L^{∞}_+ if $w_i=$ 0. Then $(Q, w) \in \mathcal{M}_{1,d}^P \times K_0^+$ $_{0}^{+}\backslash \left\{ 0\right\}$ E \lceil diag (w) dQ $d\bar{P}$ $|\mathcal{F}_t$ 1 $\in L_d^p$ \boldsymbol{d} $(K_t^+$ t), $t \in \Theta$ In particular, diag $(w)\frac{dQ}{dP} \in K_T^+$ $\frac{1}{T}\;P$ -a.s. Moreover, $E\left[X^TZ_T\right] = w^TE^Q\left[X\right]$

and $Z_0^T u = w^T u$, hence the following result.

Result. $X \in L_d^1$. Then,

$$
R_{-A_T}(-X) = \bigcap_{(Q,w)\in\mathcal{W}_{SCPP}^{\infty}} \left(E^Q \left[X \right] + G \left(w \right) \right)
$$

with

$$
\mathcal{W}_{SCPP}^{\infty} = \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times K_0^+ \setminus \{0\} : \right.
$$

$$
\forall t \in \Theta : E \left[\text{diag}(w) \frac{dQ}{dP} | \mathcal{F}_t \right] \in L_d^p(K_t^+) \right\}
$$

.

Summary. Set-valued duality covers both super-hedging theorems and dual representation of risk measures in conical market models.

$\| \triangleright$ AV@R.

Recall (from dual representation theorem for $q = \infty$)

$$
\mathcal{W}^{\infty} = \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times \left(K_{I}^{+} \backslash M^{\perp} + M^{\perp} \right) : \text{diag}(w) \frac{dQ}{dP} \in L_{d}^{\infty} \left(K_{T}^{+} \right) \right\}.
$$

If $\alpha\in(0,1]^d$, $\mathcal{W}_{\alpha}^{\infty} =$ $\Big\{(Q, w)\in {\mathcal W}^{\infty}\colon \textsf{diag}\,(w)\,\Big\}.$ α 1 $\left(\frac{dQ}{dP}\right) \in L^\infty_d$ (K_T^+) \overline{T} \setminus

then

$$
AV@R_{\alpha}(X) = \bigcap_{(Q,w)\in\mathcal{W}_{\alpha}^{\infty}} \left(E^{Q} \left[-X \right] + G \left(w \right) \right) \cap M
$$

defines a market-compatible sublinear (coherent) risk measure on $L^1_d.$

Note. This is a "dual-way" definition! And a new one, by the way.

Questions.

- 1. Computing values $AV@R_{\alpha}(X)$?
- 2. Minimizing $AV@R_{\alpha}(X)$ over $X \in C \subseteq L^1_d$?

Fact 1.

$$
AV@R_{\alpha}(X) = \bigcap_{(Q,w)\in\mathcal{W}_{\alpha}^{\infty}} \left(E^{Q}[-X] + G(w) \right) \cap M
$$

=
$$
\bigcap_{(Y,v)\in\mathcal{Y}_{\alpha}} \left\{ u \in M : E\left[-Y^{T}X \right] \leq v^{T}u \right\}
$$

with

$$
\mathcal{Y}_{\alpha} = \left\{ (Y, v) \in L_d^{\infty} \times M \setminus \{0\} : \begin{array}{c} v \in (E[Y] + M^{\perp}) \cap (K_I^+ + M^{\perp}) \\ Y \in K_T^{\perp} \setminus \{0\} \\ \text{diag}(\alpha) E[Y] - Y \in K_T^{\perp} \end{array} \right\}
$$

.

Note. Linear in (Y, v) .

Fact 2. If $M = \mathbb{R}^d$ this simplifies to

$$
AV@R_{\alpha}(X) = \bigcap_{(Q,w)\in\mathcal{W}_{\alpha}^{\infty}} \left(E^{Q}[-X] + G(w) \right)
$$

=
$$
\bigcap_{(Y,v)\in\mathcal{Y}_{\alpha}^{d}} \left\{ u \in \mathbb{R}^{d} : E\left[-Y^{T}X\right] \leq v^{T}u \right\}
$$

with

$$
\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_d^{\infty} \left(K_T^+ \right) \times K_I^+ \setminus \{0\} : \right. \\ v = E[Y], \text{ diag } (\alpha) \, v - Y \in L_d^{\infty} \left(K_T^+ \right) \right\}.
$$

Further assumptions.

- $|\Omega|$, $M = \mathbb{R}^d$,
- \bullet K_I is spanned by h^1,\ldots,h^{J_I}
- \bullet $K_{T}\left(\omega\right)$ is spanned by $k^{1}\left(\omega\right) ,\ldots,k^{J_{T}}\left(\omega\right)$

Note.

- $Y \in K_T^+$ \leftrightsquigarrow $Y \ge 0$
- $\bullet \,$ diag $(\alpha)\, v Y \in K_T^+ \,$ P -a.s. $\,\,\leftrightsquigarrow\,\, Y \le$ diag $(\alpha)\, v$
- \bullet \bigcap \leftrightarrow sup
- $\bullet\ X\mapsto \left\{u\in\mathbb{R}^d\colon E\left[-Y^TX\right]\leq v^Tu\right\}$ "almost linear"

$$
\|\blacktriangleright \text{ Computing the value } AV@R_{\alpha}(X).
$$

Analyzing the constraints.

•
$$
Y \in K_T^+
$$
: $y_{in} = Y_i(\omega_n), i = 1, ..., d, n = 1, ..., N$

$$
\forall j=1,\ldots,J_T, \forall n=1,\ldots,N \colon \sum_{i=1}^d y_{in}k_{in}^j \geq 0
$$

with $k_{in}^j = k_i^j$ $i_j^j(\omega_n)$. This gives NJ_T linear inequality constraints.

Analyzing the constraints.

 $\bullet\,$ diag $(\alpha)\,v - Y \in K^+_T$ $\mathop{\text{+}}\limits^{\text{+}}$:

$$
\forall j=1,\ldots,J_T, \forall n=1,\ldots,N \colon \sum_{i=1}^d y_{in} k_{in}^j \leq \sum_{i=1}^d \alpha_i k_{in}^j v_i.
$$

This gives another NJ_T linear inequality constraints.

Analyzing the constraints.

 $\bullet\,$ diag $(\alpha)\,v - Y \in K^+_T$ $\mathop{T}\limits^+:\,$

$$
\forall j=1,\ldots,J_T, \forall n=1,\ldots,N \colon \sum_{i=1}^d y_{in} k_{in}^j \leq \sum_{i=1}^d \alpha_i k_{in}^j v_i.
$$

This gives another NJ_T linear inequality constraints.

• $v = E[Y]$:

$$
\forall i=1,\ldots,d\colon \sum_{n=1}^N p_n y_{in}=v_i.
$$

This gives d linear equations.

Analyzing the objective.

$$
\bullet \ \left\{ u \in \mathbb{R}^d \colon E\left[-Y^T X\right] \leq v^T u \right\}.
$$

$$
E\left[-Y^TX\right] = -\sum_{i=1}^d \sum_{n=1}^N p_n x_{in} y_{in},
$$

therefore the objective becomes

$$
S_{(\hat{D}\hat{y}, -v)}(-\hat{x}) = \left\{ u \in \mathbb{R}^d : -\hat{x}^T \hat{D}\hat{y} \le v^T u \right\}.
$$

Analyzing the objective.

$$
\bullet \ \left\{ u \in \mathbb{R}^d \colon E\left[-Y^T X\right] \leq v^T u \right\}.
$$

$$
E\left[-Y^TX\right] = -\sum_{i=1}^d \sum_{n=1}^N p_n x_{in} y_{in},
$$

therefore the objective becomes

$$
S_{(\hat{D}\hat{y}, -v)}(-\hat{x}) = \left\{ u \in \mathbb{R}^d : -\hat{x}^T \hat{D}\hat{y} \le v^T u \right\}.
$$

Altogether.

 $AV@R_{\alpha}(X) = \bigcap \{$ $S_{\left(\widehat{D}\widehat{y}, -v\right)}\left(-\widehat{x}\right)$: A_1^T $T_1\widehat{y} \leq -C_1^T$ $A_1^T v, A_2^T \hat{y} = -C_2^T$ $T_2^Tv, \; v\in K_I^+$ I \mathcal{L} with suitable matrices A_1 , A_2 , C_1 , C_2 , \hat{D} , \hat{x}, \hat{y} .

Reference. Yankova 10, JP, P.U.

Constructing the primal.

The problem

$$
\bigcap \left\{ S_{\left(\widehat{D}\widehat{y}, -v\right)} \left(-\widehat{x}\right) : A_1^T \widehat{y} \le -C_1^T v, \ A_2^T \widehat{y} = -C_2^T v, \ v \in K_I^+ \right\}
$$

is the set-valued dual of the following set-valued linear program

$$
\inf_{\mathbb{G}(\mathbb{R}^d)} \left\{ C_1 x^1 + C_2 x^2 : A_1 x^1 + A_2 x^2 = -\hat{x}, \ x^1 \ge 0 \right\}.
$$

Constructing the primal.

The problem

$$
\bigcap \left\{ S_{(\hat{D}\hat{y}, -v)} \left(-\hat{x} \right) : A_1^T \hat{y} \le -C_1^T v, \ A_2^T \hat{y} = -C_2^T v, \ v \in K_I^+ \right\}
$$

is the set-valued dual of the following set-valued linear program

$$
\inf_{\mathbb{G}(\mathbb{R}^d)} \left\{ C_1 x^1 + C_2 x^2 : A_1 x^1 + A_2 x^2 = -\hat{x}, \ x^1 \ge 0 \right\}.
$$

Interpretation as vector optimization problem. Look for minimal points of

$$
\left\{\text{diag}\left(\alpha\right)E\left[Z\right]-z\colon Z\in L_{d}^{q}\left(K_{T}\right),\ Z-z\mathbb{1}+X\in L_{d}^{q}\left(K_{T}\right),\ z\in\mathbb{R}^{d}\right\}
$$

with respect to the order relation in \mathbb{R}^d generated by $K_I.$

Reference. Hamel 10+

Under the additional assumptions and $M = \mathbb{R}^d$

$$
AV@R_{\alpha}(X)
$$

= {diag (\alpha) E [Z] - z: Z \in L_d^q(K_T), Z - zI + X \in L_d^q(K_T), z \in \mathbb{R}^d}
= \bigcap_{(Y,v) \in \mathcal{Y}_{\alpha}^d} \{ u \in \mathbb{R}^d : E [-Y^T X] \le v^T u \}

with

$$
\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \times K_{I}^{+} \backslash \{0\} : v = E\left[Y \right], \text{ diag} \left(\alpha \right) v - Y \in K_{T}^{+} \right\}
$$

Under the additional assumptions and $M = \mathbb{R}^d$

$$
AV@R_{\alpha}(X)
$$

= {diag(\alpha) E[Z] - z: Z \in L_d^q(K_T), Z - zI + X \in L_d^q(K_T), z \in \mathbb{R}^d}
=
$$
\bigcap_{(Y,v)\in\mathcal{Y}_{\alpha}^d} \{u \in \mathbb{R}^d : E\left[-Y^TX\right] \leq v^Tu\}
$$

with

$$
\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \times K_{I}^{+} \backslash \{0\} : v = E\left[Y \right], \text{ diag} \left(\alpha \right) v - Y \in K_{T}^{+} \right\}
$$

Good news. There are already efficient algorithms for such (vector) problems (Benson 1998, Ehrgott/Löhne/Shao 2007).

Under the additional assumptions and $M = \mathbb{R}^d$

$$
AV@R_{\alpha}(X)
$$

= {diag (\alpha) E[Z] - z : Z \in L_d^q(K_T), Z - zI + X \in L_d^q(K_T), z \in \mathbb{R}^d}
= \bigcap_{(Y,v) \in \mathcal{Y}_{\alpha}^d} \{ u \in \mathbb{R}^d : E\left[-Y^T X\right] \le v^T u \}

with

$$
\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \times K_{I}^{+} \backslash \{0\} : v = E\left[Y \right], \text{ diag} \left(\alpha \right) v - Y \in K_{T}^{+} \right\}
$$

Good news. There are already efficient algorithms for such (vector) problems (Benson 1998, Ehrgott/Löhne/Shao 2007).

Summary. Computation of values of a set-valued risk measure is a vector/set optimization problem. Set-valued duality provides tools.

$\| \triangleright$ What's next?

- Computing super-hedging prices and values of AV@R.
- Set-valued optimization problems for set-valued risk measures.
- Law invariance of set-valued risk measures.

$\| \triangleright$ What's next?

- Computing super-hedging prices and values of AV@R.
- Set-valued optimization problems for set-valued risk measures.
- Law invariance of set-valued risk measures.

Thanks for coming.