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Asset price models

Mathematical Finance:

I price dynamics exogenous:
semimartingale models

I stochastic analysis

+ mathematically tractable

+ dynamic model: hedging

+ ‘easy’ to calibrate: volatility

– only suitable for (very) liquid
markets or small investors

Economics:

I prices endogeneous: demand
matches supply

I equilibrium theory

+ undeniably reasonable
explanation for price formation

+ excellent qualitative properties

– difficult to calibrate:
preferences, endowments

– quantitative accuracy?

Our goal:

Bridge the gap between these price formation principles!
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Utility based prices

Goal:
Derive dependence of prices on demand.

I Certainty equivalent (modulo initial endowment):

Eu(α) = Eu(α + x(q)− qψ)

I Utility indifference price:

sup
Q∈A

Eu(α + VT (Q)) = sup
Q∈A

Eu(α + VT (Q) + x(q)− qψ)

I Davis price or marginal utility indifference price:

p =
∂

∂q

∣∣∣∣
q=0

x(q) =
Eu′(α + VT (Q0))ψ

Eu′(α + VT (Q0))
= E0ψ
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Market indifference prices

I We need to be able to analyze quoted prices in a dynamic
setting:

I α 6= 0, q 6= 0 in general: indifference prices hard to compute
I work conditionally on Ft (0 ≤ t ≤ T )
I formidable technical difficulties: optimal investment strategies

have to be determined, processes such as conditional indirect
utilities must be shown to have good versions and we need to
understand the dependence of their martingale characteristics
on q . . .

I Market indifference prices address these issues:
I (almost) as easy to compute as certainty equivalents: convex

duality of saddle functions
I hedging replaced by formation of Pareto allocation for market

makers’ endowments
I no more optimal control, static concept
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General setting

Financial model

I beliefs and information flow described by stochastic basis
(Ω,FT , (Ft)0≤t≤T ,P)

I marketed claims: European with payoff profiles
ψi ∈ L0(FT ) (i = 1, . . . , I ) possessing all exponential
moments

I utility functions um : R→ R (m = 1, . . . ,M) with bounded
absoulte risk aversion:

0 < c∗ ≤ −
u′′m(x)

u′m(x)
≤ c∗ <∞

; similar to exponential utilities

I initial endowments αm
0 ∈ L0(FT ) (m = 1, . . . ,M) have finite

exponential moments and form a Pareto-optimal allocation



Pareto-optimal allocations

Recall:

I α = (αm) ∈ L0(FT ,RM) is Pareto-optimal if Σ = Σmα
m

cannot be re-distributed to form a better allocation α̃ = (α̃m):

Eum(α̃m) ≥ Eum(αm) with ‘>’ for some m ∈ {1, . . . ,M} .

I Pareto-optimal allocations realized through trades among
market makers ; complete OTC-market



Characterizations of Pareto optima

Lemma
Equivalent for an allocation (αm) with Σ =

∑
m αm:

(i) (αm) is Pareto optimal.

(ii) Given the respective endowments ẽa (a ∈ A ) all agents will
quote the same marginal indifference prices:

Π(X ) =
Eu′m(αm)X

Eu′m(αm)
=

Eu′m̃(αm̃)X

Eu′m̃(αm̃)
(X ∈ L∞) for any m, m̃ .

(iii) (αm) is the solution to a social welfare problem:∑
m

wmEum(αm)→ max subject to Σ =
∑
m

αm

for suitable weights wm > 0 with
∑

m wm = 1.

There are 1-1 correspondences: w ↔ Π↔ α



A single transaction

I pre-transaction endowment of market makers: α = (αm) with
total endowment Σ =

∑
m α

m

I investor submits passes q = (q1, . . . , qI ) claims on to the
market makers along with a cash transfer of size x

I total endowment of market makers after transaction

Σ̃ = Σ + (x + 〈q, ψ〉)

is redistributed among the market makers to form a new
Pareto optimal allocation of endowments α̃ = (α̃m)

Obvious question:

How exactly to determine the cash transfer x and the new
allocation α̃?



A single transaction

Theorem
There exists a unique cash transfer x = x(q) and a unique
Pareto-optimal allocation α̃ = (α̃m(q)) of the total endowment
Σ̃(x , q) = Σ + (x + 〈q, ψ〉) such that each market maker is as
well-off after the transaction as he was before:

Eum(α̃m) = Eum(αm) (m = 1, . . . ,M) .

Note:
The cash transfer x can be viewed as the market’s indifference
price for the transaction q: it is the minimal amount for which the
market makers can accommodate the investor’s order without
anyone of them being worse-off.
; most friendly market environment for our investor!
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Basic questions about market indifference prices

I How does the market indifference price depend on the
transaction’s size?

I Under what conditions is there a liquidity premium?

I What are its key determinants?

I How does the market’s pre-transaction exposure affect the
market indifference price?

I How to take into account the market makers’ risk aversion
and ability to hedge?

I Is there a difference between a model with several market
makers and one with a representative market maker?

I . . .



Expansions of market indifference prices

Theorem
The indifference price x = x(q) is C 2 with

x(q + ∆q)− x(q) = −EQ[〈∆q, ψ〉]

+
1

2R0
ER[(〈∆q, ψ〉 − EQ〈∆q, ψ〉)2] +

R0

2
ER

[(
dQ
dR

)2

varρ[Z ∆q]

]
+ o(|∆q|2), ∆q → 0,

where

I Q ∼ P is the equilibrium pricing measure determined by the
market makers’ Pareto allocation

I R0 is the market’s risk tolerance at transaction time

I R ∼ Q is the market’s risk tolerance measure

I ρ is the vector of the market makers’ relative risk tolerances

I Z describes the sensitivities of Pareto weights w.r.t. q



Some observations

x(q + ∆q)− x(q) = −EQ[〈∆q, ψ〉]

+
1

2R0
ER[(〈∆q, ψ〉 − EQ〈∆q, ψ〉)2] +

R0

2
ER

[(
dQ
dR

)2

varρ[Z ∆q]

]
+ o(|∆q|2), ∆q → 0,

I Up to 1st order, the transaction costs are as in a small
investor setting with pricing measure Q.

I The market indifference price is convex in the transaction size.

I The liquidity premium is always nonnegative and vanishes if
and only if we have a pure (and pointless) cash transaction:
〈∆q, ψ〉 ≡ const
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I The liquidity premium splits into an aggregate component and
one featuring the relative risk tolerances ρm = Rm/

∑
l R l .

I Up to 2nd order, there is no difference between our multiple
market maker model and a representative market maker model
if and only if

ERlψ = ERmψ (l ,m = 1, . . . ,M)

where Rm is market maker m’s risk tolerance measure, i.e., if
and only if the extra endowment with any tradable claim has
the same 2nd order impact on every market maker’s expected
utility.



Key tool: Convex duality of saddle functions

Theorem
The representative agent’s utility

r(v , x , q) = max
α :

∑
m α

m=Σ+(x+〈q,ψ〉)

∑
m

vmEum(αm)

has the dual

r̃(u, y , q) = sup
v

inf
x
{〈v , u〉+ xy − r(v , x , q)}

in the sense that

r(v , x , q) = inf
u

sup
y
{〈v , u〉+ xy − r̃(u, y , q)}

and, for fixed q, (v , x) is a saddle point for r̃(u, y , q) if and only if
(u, y) is a saddle point for r(v , x , q).



Implications of duality

I properties of r translate into properties of r̃

I r ∈ C 2 iff r̃ ∈ C 2

I derivatives of r can be computed in terms of derivatives of r̃

I For conjugate saddle points (v , x) and (u, y):

v = ∂u r̃(u, y , q), x = ∂y r̃(u, y , q),

and
u = ∂v r(v , x , q), y = ∂x r(v , x , q) .

; explicit construction of cash transfer x = r̃(u, 1, q) and
Pareto weights w = ∂u r̃(u, 1, q)/|∂u r̃(u, 1, q)|1 for given
utility vector u and transaction q



An SDE for the utility process

We need to understand the martingale dynamics of our market
makers’ expected utilities.

Assumption

I filtration generated by Brownian motion B

I contingent claims ψ and total initial endowment Σ0 Malliavin
differentiable with bounded Malliavin derivatives

I bounded prudence:
∣∣∣−u′′′m (x)

u′′m(x)

∣∣∣ ≤ K < +∞

Notation:

I A(w , x , q) = Pareto allocation of Σ0 + (x + 〈q, ψ〉) with
weights w

I Ut(w , x , q) = (E [um(Am(w , x , q)) |Ft ])m=1,...,M

I dUt(w , x , q) = Ft(w , x , q) dBt



An SDE for the utility process

Theorem
For every simple strategy Q the induced process of expected
utilities for our market makers solves the SDE

dUt = Gt(Ut ,Qt) dBt , U0 = (Eum(αm
0 ))

where
Gt(u, q) = Ft(Wt(u, q),Xt(u, q), q) .

Note:
This SDE makes sense for any predictable (sufficiently integrable)
strategy Q!



Stability theory for SDEs

Corollary

For Qn such that
∫ T

0 (Qn
t − Qt)

2 dt → 0 in probability, the
corresponding solutions Un converge uniformly in probability to the
solution U corresponding to Q.
In particular, we have a consistent and continuous extension of our
terminal wealth mapping Q 7→ VT (Q) from simple strategies to
predictable, a.s. square-integrable strategies.

Sketch of Proof:

I Use Clark-Ocone-Formula to compute Ft .

I Use assumptions on um and bounds on Malliavin derivatives to
control dependence of G on (u, q).

I Get existence, uniqueness, stability of strong solutions to SDE.



Conclusion

I new model for obtaining endogenous price dynamics of illiquid
assets: market indifference pricing

I 2nd order expansions of transaction prices with insights into
the structure of liquidity premia

I nonlinear wealth dynamics accounting for liquidity premia

I consistent and continuous extension from simple to general
predictable strategies via SDE for utility process

I only a model for permanent price impact! market resilience?
lack of counterparties?

I manipulable claims?
. . .
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A.Ma.Me.F. workshop in Berlin

I September 27–30, 2010

I http://sites.google.com/site/amamefberlin2010/

I limited capacity: register soon!
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