
Optimal Investment for Worst-Case Crash Scenarios
A Martingale Approach

Frank Thomas Seifried

Department of Mathematics, University of Kaiserslautern

June 23, 2010 (Bachelier 2010) Worst-Case Portfolio Optimization 1



Outline

1 Optimal Investment in a Black-Scholes Market

2 Standard Crash Modeling vs. Knightian Uncertainty

3 Worst-Case Optimal Investment

4 Martingale Approach

5 Extensions

June 23, 2010 (Bachelier 2010) Worst-Case Portfolio Optimization 2



Black-Scholes I: Review

In a Black-Scholes market consisting of a riskless bond

dBt = rBtdt

and a risky asset
dPt = Pt [(r + η)dt + σdWt ]

the classical Merton optimal investment problem is to achieve

max
π

E[u(X π
T )].

Here X = Xπ denotes the wealth process corresponding to the portfolio
strategy π via

dXt = Xt [(r + πtη)dt + πtσdWt ], X0 = x0,

and u is the investor’s utility for terminal wealth, which we assume to be
of the crra form u(x) = 1

ρxρ, x > 0, for some ρ < 1.
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Black-Scholes II: Critique

It is well-known that the optimal strategy is to constantly invest the
fraction

π? ,
η

(1− ρ)σ2

of total wealth into the risky asset.

Phenomenon: “Flight to Riskless Assets”

This strategy is not in line with real-world investor behavior or professional
asset allocation advice: Towards the end of the time horizon, wealth
should be reallocated from risky to riskless investment.
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Black-Scholes III: Crashes

There are two possibilities:

Investors and professional consultants are consistently wrong.

The model fails to capture an important aspect of reality.

What is the rationale for the behavior described above?

Investors are afraid of a large market crash that has the potential to
destroy the value of their stock holdings.
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Crash Modeling II: Jumps in Asset Dynamics

The standard approach to modeling crashes is to add jumps to the
Black-Scholes specification, to use Lévy process dynamics, ...

However, for these models the optimal portfolio strategy remains
independent of the remaining investment time: For instance, if

dPt = Pt [(r + η)dt + σdWt − `dÑt ]

with a compensated Poisson process Ñ, then the optimal strategy is

π? =
η

(1− ρ)σ2
+ constant correction term.

Thus, the effect of a crash is only accounted for ‘in the mean’.

Unless market crashes depend on the investor’s time horizon, a
modification of the asset price dynamics does not resolve the problem.
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Crash Modeling III: Risk and Uncertainty

Recall the intuitive explanation of the phenomenon: Investors are afraid of
a major catastrophic event.

Maybe their attitude towards the threat of a crash is not described
appropriately by standard models?

Following F. Knight (1885-1972), let us distinguish two notions of ‘risk’:

risk: quantifiable, susceptible of measurement, stochastic, statistical,
modeled on (Ω,F,P)

uncertainty: ‘true’/Knightian/pure uncertainty, no distributional
properties, no statistics possible or available
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Crash Modeling V: Crashes and Uncertainty

There is ample time series data on regular fluctuations of asset prices, but
major crashes are largely unique events. Examples include

economic or political crises and wars

natural disasters

bubble markets

... and more.

In particular, investors are not necessarily able to assign numerical
probabilities to such rare disasters.

Thus, while ordinary price movements are a matter of risk, market crashes
are subject to uncertainty.
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Optimal Investment Problem I: Crash Scenarios

We model a financial market crash scenario as a pair

(τ, `)

where the [0,T ] ∪ {∞}-valued stopping time τ represents the time when
the crash occurs, and the [0, `∞]-valued Fτ -measurable random variable `
is the relative crash height:

dPt = Pt [(r + η)dt + σdWt ], Pτ = (1− `)Pτ−.

Here `∞ ∈ [0, 1] is the maximal crash height, and the event τ =∞ is
interpreted as there being no crash at all.
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Optimal Investment Problem II: Portfolio Strategies

The investor chooses a portfolio strategy π to be applied before the
crash, and a strategy π̄ to be applied afterwards.

Given the crash scenario (τ, `), the dynamics of the investor’s wealth
process X = X π,π̄,τ,` are given by

dXt = Xt−[(r + πtη)dt + πtσdWt ] on [0, τ), X0 = x0,

dXt = Xt−[(r + π̄tη)dt + π̄tσdWt ] on (τ,T ],

Xτ = (1− πτ )Xτ− + (1− `)πτXτ− = (1− πτ `)Xτ−.

‘High’ values of π lead to a high final wealth in the no-crash scenario, but
also to a large loss in the event of a crash — ‘low’ values of π lead to small
or no losses in a crash, but also to a low terminal wealth if no crash occurs.
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Optimal Investment Problem III: Formulation

As above, the investor’s attitude towards (measurable, stochastic) risk is
modeled by a crra utility function

u(x) = 1
ρxρ, x > 0, for some ρ < 1.

By contrast, he takes a worst-case attitude towards the (Knightian, ‘true’)
uncertainty concerning the financial market crash, and thus faces the

Worst-Case Optimal Investment Problem

max
π,π̄

min
τ,`

E[u(X π,π̄,τ,`
T )]. (P)

Problem (P) reflects an extraordinarily cautious attitude towards the
threat of a crash. Note that there are no distributional assumptions on the
crash time and height. Observe also that portfolio strategies are not
compared scenario-wise.
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Martingale Approach I: Idea and Motivation

The fundamental ideas underlying the martingale approach to worst-case
optimal investment are:

The worst-case investment problem can be regarded as a game
between the investor and the market.

The notion of indifference plays a fundamental role in this game.

The martingale approach consists of 3 main components:

the Change-of-Measure Device,

the Indifference-Optimality Principle, and

the Indifference Frontier.
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Post-Crash Problem I: Change-of-Measure Device

To solve the post-crash portfolio problem, we use a well-known trick:

Theorem (Change-of-Measure Device)

Consider the classical optimal portfolio problem with random initial time τ
and time-τ initial wealth ξ,

max
π̄

E[u(X π̄
T ) |X π̄

τ = ξ]. (Ppost)

Then for any strategy π̄ we have

u(X π̄
T ) = u(ξ) exp

{
ρ
∫ T
τ Φ(π̄s)ds

}
M π̄

T

with Φ(y) , r + ηy − 1
2 (1− ρ)σ2y 2 and a martingale M π̄ satisfying

M π̄
τ = 1. Thus the solution to (Ppost) is the Merton strategy πM .
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Post-Crash Problem II: Reformulation

The Change-of-Measure Device allows us to reformulate the worst-case
investment problem (P)

max
π,π̄

min
τ,`

E[u(X π,π̄,τ,`
T )]

as the

Pre-Crash Investment Problem

max
π

min
τ

E[V (τ, (1− πτ `∞)X π
τ )]. (Ppre)

Here V is the value function of the post-crash problem,

V (t, x) = exp{ρΦ(πM)(T − t)}u(x).
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Controller-vs-Stopper I: Abstract Formulation

The formulation (Ppre) takes the form of the abstract

Controller-vs-Stopper Game [Karatzas and Sudderth (2001)]

Consider a zero-sum stochastic game between player A (the controller)
and player B (the stopper). Player A controls a stochastic process

W = W λ on the time horizon [0,T ]

by choosing λ, and player B decides on the duration of the game by
choosing a [0,T ] ∪ {∞}-valued stopping time τ . The terminal payoff is
W λ
τ . Thus player A faces the problem

max
λ

min
τ

E[W λ
τ ]. (Pabstract)

In the worst-case investment problem,

W λ
t = V (t, (1− πt`∞)X π

t ), t ∈ [0,T ], W λ
∞ = V (T ,Xπ

T ) = u(X π
T ).
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Controller-vs-Stopper II: Indifference-Optimality Principle

If player A can choose his strategy λ̂ in such a way that W λ̂ is a
martingale, then player B’s actions become irrelevant to him:

E[W λ̂
σ ] = E[W λ̂

τ ] for all stopping times σ, τ.

Hence, we say that λ̂ is an (abstract) indifference strategy.

Proposition (Indifference-Optimality Principle)

If λ̂ is an indifference strategy, and for all λ we have

E[W λ̂
τ ] ≥ E[W λ

τ ] for just one stopping time τ,

then λ̂ is optimal for player A in (Pabstract).
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Indifference I: Indifference Strategy

The indifference strategy π̂ for worst-case investment is given by the o.d.e.

˙̂πt = − σ2

2`∞
(1− ρ)[1− π̂t`∞][π̂t − πM ]2, π̂T = 0. (I)

The indifference strategy is below the Merton line and satisfies π̂t`
∞ ≤ 1.

It converges towards the Merton strategy if πM`∞ ≤ 1.
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Indifference II: Indifference Frontier

The indifference strategy represents a frontier which rules out too näıve
investment.

Lemma (Indifference Frontier)

Let π̂ be determined from (I), and let π be any portfolio strategy. Then
the worst-case bound attained by the strategy π̃,

π̃t , πt if t < σ, π̃t , π̂t if t ≥ σ,

where σ , inf{t : πt > π̂t}, is at least as big as that achieved by π.

Proof.

Since W π̃
t = W π̂

t is a martingale for t > σ and W π̃
t = W π

t for t ≤ σ,

E[W π̃
τ ] = E[W π̃

τ∧σ] = E[W π
τ∧σ] ≥ min

τ ′
E[W π

τ ′ ]

for an arbitrary stopping time τ .
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Solution I: Worst-Case Optimal Strategy

Combining the previous results, we arrive at the following

Theorem (Solution of the Worst-Case Investment Problem)

For the worst-case portfolio problem

max
π,π̄

min
τ,`

E[u(X π,π̄,τ,`
T )] (P)

the optimal strategy in the pre-crash market is given by the indifference
strategy π̂. After the crash, the Merton strategy πM is optimal.

Proof.

We need only consider pre-crash strategies below the Indifference Frontier.
By the Indifference-Optimality Principle, the indifference strategy is
optimal provided it is optimal in the no-crash scenario. This, however,
follows immediately from the Change-of-Measure Device.
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Solution III: Effective Wealth Loss

To illustrate the difference to traditional portfolio optimization, we
determine the effective wealth loss of a Merton investor in his worst-case
scenario.
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Solution IV: Sensitivity to Crash Size

The solution to the worst-case investment problem is non-zero even for a
maximum crash height `∞ = 100%.
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Multi-Asset Markets I

The martingale approach generalizes directly to multi-asset markets.
In this multi-dimensional setting, the indifference frontier is specified by

π.`∞ ≤ β̂t .

where β̂ is characterized by a one-dimensional o.d.e.
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Alternative Dynamics I: Regular Jumps

Regular price jumps can be included in the stock price dynamics; thus
the investor distinguishes regular jumps (risky) from crashes (uncertain).

dPt = Pt−
[
(r + η)dt + σ.dWt −

∫
ξν(dt,dξ)

]
, Pτ = (1− `)Pτ−.

The effects are similar to the Black-Scholes case:
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Alternative Dynamics II: Regime Shifts

We can model different market regimes by allowing the market coefficients
to change after a possible crash:

dPt = Pt− [(r + η)dt + σ.dWt ] on [0, τ)

dPt = Pt−
[
(r̄ + η̄)dt + σ̄.dW̄t

]
on [τ,T ], Pτ = (1− `)Pτ .

Now we need to distinguish between bull and bear markets:

If the post-crash market is worse than the pre-crash riskless investment,
the investor perceives a bear market; in this case, it is optimal not to
invest in risky assets.
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Alternative Dynamics III: Bull Markets

On the other hand, in a bull market it is optimal to use the indifference
strategy as long as it is below the Merton line:
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Alternative Dynamics V: Multiple Crashes

Finally the model can be extended to multiple crashes. The worst-case
optimal strategy can be determined by backward recursion:
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Thank you very much for your attention!
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