Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach

Frank Thomas Seifried

Department of Mathematics, University of Kaiserslautern

 \overline{P}

Outline

- [Optimal Investment in a Black-Scholes Market](#page-2-0)
- [Standard Crash Modeling vs. Knightian Uncertainty](#page-9-0)
- [Worst-Case Optimal Investment](#page-18-0)
- [Martingale Approach](#page-23-0)

Black-Scholes I: Review

In a Black-Scholes market consisting of a riskless bond

 $dB_t = rB_t dt$

and a risky asset

$$
dP_t = P_t[(r + \eta)dt + \sigma dW_t]
$$

the classical Merton optimal investment problem is to achieve

 \max_{π} $\mathbb{E}[u(X_{T}^{\pi})].$

Here $X = X^{\pi}$ denotes the wealth process corresponding to the portfolio strategy π via

$$
dX_t = X_t[(r + \pi_t \eta)dt + \pi_t \sigma dW_t], \quad X_0 = x_0,
$$

and u is the investor's utility for terminal wealth, which we assume to be of the <code>CRRA</code> form $u(x) = \frac{1}{\rho}x^{\rho}$, $x > 0$, for some $\rho < 1$.

Black-Scholes II: Critique

It is well-known that the optimal strategy is to constantly invest the fraction

$$
\pi^{\star} \triangleq \frac{\eta}{(1-\rho)\sigma^2}
$$

of total wealth into the risky asset.

Black-Scholes II: Critique

It is well-known that the optimal strategy is to constantly invest the fraction

$$
\pi^{\star} \triangleq \frac{\eta}{(1-\rho)\sigma^2}
$$

of total wealth into the risky asset.

Phenomenon: "Flight to Riskless Assets"

This strategy is not in line with real-world investor behavior or professional asset allocation advice: Towards the end of the time horizon, wealth should be reallocated from risky to riskless investment.

There are two possibilities:

There are two possibilities:

- Investors and professional consultants are consistently wrong.
- The model fails to capture an important aspect of reality.

There are two possibilities:

- Investors and professional consultants are consistently wrong.
- The model fails to capture an important aspect of reality.

What is the rationale for the behavior described above?

There are two possibilities:

- Investors and professional consultants are consistently wrong.
- The model fails to capture an important aspect of reality.

What is the rationale for the behavior described above?

Investors are afraid of a large **market crash** that has the potential to destroy the value of their stock holdings.

June 23, 2010 (Bachelier 2010) [Worst-Case Portfolio Optimization](#page-0-0) 5

2 [Standard Crash Modeling vs. Knightian Uncertainty](#page-9-0)

- [Worst-Case Optimal Investment](#page-18-0)
- [Martingale Approach](#page-23-0)

[Extensions](#page-39-0)

Crash Modeling II: Jumps in Asset Dynamics

The standard approach to modeling crashes is to add jumps to the Black-Scholes specification, to use Lévy process dynamics, ...

Crash Modeling II: Jumps in Asset Dynamics

The standard approach to modeling crashes is to add jumps to the Black-Scholes specification, to use Lévy process dynamics, ... However, for these models the optimal portfolio strategy remains independent of the remaining investment time: For instance, if

$$
\mathrm{d}P_t = P_t[(r+\eta)\mathrm{d}t + \sigma \mathrm{d}W_t - \ell \mathrm{d}\tilde{N}_t]
$$

with a compensated Poisson process N , then the optimal strategy is

$$
\pi^* = \frac{\eta}{(1-\rho)\sigma^2} + \text{constant correction term}.
$$

Thus, the effect of a crash is only accounted for 'in the mean'.

Crash Modeling II: Jumps in Asset Dynamics

The standard approach to modeling crashes is to add jumps to the Black-Scholes specification, to use Lévy process dynamics, ... However, for these models the optimal portfolio strategy remains independent of the remaining investment time: For instance, if

$$
\mathrm{d}P_t = P_t[(r+\eta)\mathrm{d}t + \sigma \mathrm{d}W_t - \ell \mathrm{d}\tilde{N}_t]
$$

with a compensated Poisson process N , then the optimal strategy is

$$
\pi^* = \frac{\eta}{(1-\rho)\sigma^2} + \text{constant correction term}.
$$

Thus, the effect of a crash is only accounted for 'in the mean'.

Unless market crashes depend on the investor's time horizon, a modification of the asset price dynamics does not resolve the problem.

Crash Modeling III: Risk and Uncertainty

Recall the intuitive explanation of the phenomenon: Investors are afraid of a major catastrophic event.

Crash Modeling III: Risk and Uncertainty

Recall the intuitive explanation of the phenomenon: Investors are afraid of a major catastrophic event.

Maybe their attitude towards the threat of a crash is not described appropriately by standard models?

Crash Modeling III: Risk and Uncertainty

Recall the intuitive explanation of the phenomenon: Investors are afraid of a major catastrophic event.

Maybe their attitude towards the threat of a crash is not described appropriately by standard models?

Following F. KNIGHT (1885-1972), let us distinguish two notions of 'risk':

- risk: quantifiable, susceptible of measurement, stochastic, statistical, modeled on $(\Omega, \mathfrak{F}, \mathbb{P})$
- **uncertainty**: 'true'/Knightian/pure uncertainty, no distributional properties, no statistics possible or available

Crash Modeling V: Crashes and Uncertainty

There is ample time series data on regular fluctuations of asset prices, but major crashes are largely unique events. Examples include

- **•** economic or political crises and wars
- natural disasters
- **o** bubble markets
- ... and more.

In particular, investors are not necessarily able to assign numerical probabilities to such rare disasters.

Crash Modeling V: Crashes and Uncertainty

There is ample time series data on regular fluctuations of asset prices, but major crashes are largely unique events. Examples include

- economic or political crises and wars
- natural disasters
- **o** bubble markets
- \bullet ... and more.

In particular, investors are not necessarily able to assign numerical probabilities to such rare disasters.

Thus, while ordinary price movements are a matter of **risk**, market crashes are subject to **uncertainty**.

1 [Optimal Investment in a Black-Scholes Market](#page-2-0)

3 [Worst-Case Optimal Investment](#page-18-0)

[Martingale Approach](#page-23-0)

[Extensions](#page-39-0)

We model a financial market crash scenario as a pair

$$
(\tau,\ell)
$$

where the [0, T] \cup { ∞ }-valued stopping time τ represents the time when the crash occurs, and the [0, ℓ^{∞}]-valued \mathfrak{F}_{τ} -measurable random variable ℓ is the relative crash height:

$$
dP_t = P_t[(r + \eta)dt + \sigma dW_t], \quad P_\tau = (1 - \ell)P_{\tau-}.
$$

Here $\ell^{\infty} \in [0, 1]$ is the maximal crash height, and the event $\tau = \infty$ is interpreted as there being no crash at all.

Optimal Investment Problem II: Portfolio Strategies

The investor chooses a **portfolio strategy** π to be applied before the crash, and a strategy $\bar{\pi}$ to be applied afterwards.

Given the crash scenario (τ, ℓ) , the dynamics of the investor's wealth $\mathsf{process}\ X=X^{\pi,\bar{\pi},\tau,\ell}$ are given by

$$
dX_t = X_{t-}[(r + \pi_t \eta)dt + \pi_t \sigma dW_t] \text{ on } [0, \tau), \quad X_0 = x_0,
$$

\n
$$
dX_t = X_{t-}[(r + \bar{\pi}_t \eta)dt + \bar{\pi}_t \sigma dW_t] \text{ on } (\tau, T],
$$

\n
$$
X_{\tau} = (1 - \pi_{\tau})X_{\tau-} + (1 - \ell)\pi_{\tau}X_{\tau-} = (1 - \pi_{\tau}\ell)X_{\tau-}.
$$

Optimal Investment Problem II: Portfolio Strategies

The investor chooses a **portfolio strategy** π to be applied before the crash, and a strategy $\bar{\pi}$ to be applied afterwards.

Given the crash scenario (τ, ℓ) , the dynamics of the investor's wealth $\mathsf{process}\ X=X^{\pi,\bar{\pi},\tau,\ell}$ are given by

$$
dX_t = X_{t-}[(r + \pi_t \eta)dt + \pi_t \sigma dW_t] \text{ on } [0, \tau), \quad X_0 = x_0,
$$

\n
$$
dX_t = X_{t-}[(r + \bar{\pi}_t \eta)dt + \bar{\pi}_t \sigma dW_t] \text{ on } (\tau, T],
$$

\n
$$
X_{\tau} = (1 - \pi_{\tau})X_{\tau-} + (1 - \ell)\pi_{\tau}X_{\tau-} = (1 - \pi_{\tau}\ell)X_{\tau-}.
$$

'High' values of π lead to a high final wealth in the no-crash scenario, but also to a large loss in the event of a crash — 'low' values of π lead to small or no losses in a crash, but also to a low terminal wealth if no crash occurs.

Optimal Investment Problem III: Formulation

As above, the investor's attitude towards (measurable, stochastic) risk is modeled by a CRRA utility function

$$
u(x) = \frac{1}{\rho}x^{\rho}, \ x > 0, \text{ for some } \rho < 1.
$$

By contrast, he takes a worst-case attitude towards the (Knightian, 'true') **uncertainty** concerning the financial market crash, and thus faces the

Worst-Case Optimal Investment Problem

$$
\max_{\pi,\bar{\pi}} \min_{\tau,\ell} \mathbb{E}[u(X_{\tau}^{\pi,\bar{\pi},\tau,\ell})]. \tag{P}
$$

Problem [\(P\)](#page-22-0) reflects an extraordinarily cautious attitude towards the threat of a crash. Note that there are no distributional assumptions on the crash time and height. Observe also that portfolio strategies are not compared scenario-wise.

1 [Optimal Investment in a Black-Scholes Market](#page-2-0)

[Worst-Case Optimal Investment](#page-18-0)

4 [Martingale Approach](#page-23-0)

[Extensions](#page-39-0)

Martingale Approach I: Idea and Motivation

The fundamental ideas underlying the martingale approach to worst-case optimal investment are:

- The worst-case investment problem can be regarded as a **game** between the investor and the market.
- The notion of *indifference* plays a fundamental role in this game.

Martingale Approach I: Idea and Motivation

The fundamental ideas underlying the martingale approach to worst-case optimal investment are:

- The worst-case investment problem can be regarded as a **game** between the investor and the market.
- The notion of *indifference* plays a fundamental role in this game.

The martingale approach consists of 3 main components:

- the Change-of-Measure Device,
- o the Indifference-Optimality Principle, and
- **o** the Indifference Frontier.

Post-Crash Problem I: Change-of-Measure Device

To solve the post-crash portfolio problem, we use a well-known trick:

Theorem (Change-of-Measure Device)

Consider the classical optimal portfolio problem with random initial time τ and time- τ initial wealth ξ .

$$
\max_{\bar{\pi}} \mathbb{E}[u(X_T^{\bar{\pi}}) | X_T^{\bar{\pi}} = \xi]. \tag{P}_{\text{post}}
$$

Then for any strategy $\bar{\pi}$ we have

$$
u(X_{T}^{\bar{\pi}}) = u(\xi) \exp \left\{ \rho \int_{\tau}^{T} \Phi(\bar{\pi}_{s}) \mathrm{d} s \right\} M_{T}^{\bar{\pi}}
$$

with $\Phi(y) \triangleq r + \eta y - \frac{1}{2}$ $\frac{1}{2}(1-\rho)\sigma^2y^2$ and a martingale $M^{\bar{\pi}}$ satisfying $M^{\bar{\pi}}_{\tau}=1.$ Thus the solution to (P_{post}) (P_{post}) (P_{post}) is the Merton strategy $\pi^{\sf M}.$

Post-Crash Problem II: Reformulation

The Change-of-Measure Device allows us to reformulate the worst-case investment problem [\(P\)](#page-22-0)

$$
\max_{\pi,\bar{\pi}} \min_{\tau,\ell} \ \mathbb{E}[u(X_{\mathcal{T}}^{\pi,\bar{\pi},\tau,\ell})]
$$

as the

Pre-Crash Investment Problem

$$
\max_{\pi} \min_{\tau} \mathbb{E}[V(\tau, (1 - \pi_{\tau} \ell^{\infty}) X_{\tau}^{\pi})]. \tag{Ppre}
$$

Here V is the value function of the post-crash problem,

$$
V(t,x) = \exp{\{\rho \Phi(\pi^M)(T-t)\} u(x)}.
$$

Controller-vs-Stopper I: Abstract Formulation

The formulation (P_{pre}) (P_{pre}) takes the form of the abstract

Controller-vs-Stopper Game [KARATZAS and SUDDERTH (2001)]

Consider a zero-sum stochastic game between player A (the controller) and player B (the stopper). Player A controls a stochastic process

 $W = W^{\lambda}$ on the time horizon [0, T]

by choosing λ , and player B decides on the duration of the game by choosing a $[0, T] \cup \{\infty\}$ -valued stopping time τ . The terminal payoff is W_{τ}^{λ} . Thus player A faces the problem

$$
\max_{\lambda} \min_{\tau} \mathbb{E}[W_{\tau}^{\lambda}]. \tag{Pabstract}
$$

Controller-vs-Stopper I: Abstract Formulation

The formulation (P_{pre}) (P_{pre}) takes the form of the abstract

Controller-vs-Stopper Game [KARATZAS and SUDDERTH (2001)]

Consider a zero-sum stochastic game between player A (the controller) and player B (the stopper). Player A controls a stochastic process

 $W = W^{\lambda}$ on the time horizon [0, T]

by choosing λ , and player B decides on the duration of the game by choosing a $[0, T] \cup \{\infty\}$ -valued stopping time τ . The terminal payoff is W_{τ}^{λ} . Thus player A faces the problem

$$
\max_{\lambda} \min_{\tau} \mathbb{E}[W_{\tau}^{\lambda}]. \tag{Pabstract}
$$

In the worst-case investment problem,

$$
W_t^{\lambda} = V(t, (1 - \pi_t \ell^{\infty}) X_t^{\pi}), \ t \in [0, T], \quad W_{\infty}^{\lambda} = V(T, X_T^{\pi}) = u(X_T^{\pi}).
$$

Controller-vs-Stopper II: Indifference-Optimality Principle

If player A can choose his strategy $\hat{\lambda}$ in such a way that $W^{\hat{\lambda}}$ is a **martingale**, then player B 's actions become irrelevant to him:

 $\mathbb{E}[W_\sigma^{\hat{\lambda}}]=\mathbb{E}[W_\tau^{\hat{\lambda}}]$ for all stopping times $\sigma,\tau.$

Hence, we say that $\hat{\lambda}$ is an (abstract) **indifference strategy**.

Controller-vs-Stopper II: Indifference-Optimality Principle

If player A can choose his strategy $\hat{\lambda}$ in such a way that $W^{\hat{\lambda}}$ is a **martingale**, then player B 's actions become irrelevant to him:

$$
\mathbb{E}[W_{\sigma}^{\hat{\lambda}}] = \mathbb{E}[W_{\tau}^{\hat{\lambda}}] \text{ for all stopping times } \sigma, \tau.
$$

Hence, we say that $\hat{\lambda}$ is an (abstract) **indifference strategy**.

Proposition (Indifference-Optimality Principle)

If $\hat{\lambda}$ is an indifference strategy, and for all λ we have

 $\mathbb{E}[W^{\hat{\lambda}}_{\tau}]\geq \mathbb{E}[W^{\lambda}_{\tau}]$ for just one stopping time $\tau,$

then $\hat{\lambda}$ is optimal for player A in ($P_{abstract}$ $P_{abstract}$ $P_{abstract}$).

Indifference I: Indifference Strategy

The indifference strategy $\hat{\pi}$ for worst-case investment is given by the o.d.e.

$$
\dot{\hat{\pi}}_t = -\frac{\sigma^2}{2\ell^\infty} (1-\rho)[1-\hat{\pi}_t\ell^\infty][\hat{\pi}_t - \pi^M]^2, \quad \hat{\pi}_T = 0.
$$
 (1)

The indifference strategy is below the Merton line and satisfies $\hat{\pi}_t\ell^{\infty} \leq 1$. It converges towards the Merton strategy if $\pi^{\textit{M}}\ell^{\infty}\leq1.$ Γ

June 23, 2010 (Bachelier 2010) [Worst-Case Portfolio Optimization](#page-0-0) 20

Indifference II: Indifference Frontier

The indifference strategy represents a **frontier** which rules out too naïve investment.

Lemma (Indifference Frontier)

Let $\hat{\pi}$ be determined from [\(I\)](#page-32-0), and let π be any portfolio strategy. Then the worst-case bound attained by the strategy $\tilde{\pi}$,

$$
\tilde{\pi}_t \triangleq \pi_t \text{ if } t < \sigma, \quad \tilde{\pi}_t \triangleq \hat{\pi}_t \text{ if } t \geq \sigma,
$$

where $\sigma \triangleq \inf\{t : \pi_t > \hat{\pi}_t\}$, is at least as big as that achieved by π .

Indifference II: Indifference Frontier

The indifference strategy represents a **frontier** which rules out too naïve investment.

Lemma (Indifference Frontier)

Let $\hat{\pi}$ be determined from [\(I\)](#page-32-0), and let π be any portfolio strategy. Then the worst-case bound attained by the strategy $\tilde{\pi}$,

$$
\tilde{\pi}_t \triangleq \pi_t \text{ if } t < \sigma, \quad \tilde{\pi}_t \triangleq \hat{\pi}_t \text{ if } t \geq \sigma,
$$

where $\sigma \triangleq \inf\{t : \pi_t > \hat{\pi}_t\}$, is at least as big as that achieved by π .

Proof.

Since
$$
W_t^{\tilde{\pi}} = W_t^{\hat{\pi}}
$$
 is a martingale for $t > \sigma$ and $W_t^{\tilde{\pi}} = W_t^{\pi}$ for $t \leq \sigma$,
\n
$$
\mathbb{E}[W_{\tau}^{\tilde{\pi}}] = \mathbb{E}[W_{\tau \wedge \sigma}^{\tilde{\pi}}] = \mathbb{E}[W_{\tau \wedge \sigma}^{\pi}] \geq \min_{\tau'} \mathbb{E}[W_{\tau'}^{\pi}]
$$

for an arbitrary stopping time τ .

Solution I: Worst-Case Optimal Strategy

Combining the previous results, we arrive at the following

Theorem (Solution of the Worst-Case Investment Problem) For the worst-case portfolio problem

$$
\max_{\pi,\bar{\pi}} \min_{\tau,\ell} \mathbb{E}[u(X^{\pi,\bar{\pi},\tau,\ell}_T)] \tag{P}
$$

the optimal strategy in the pre-crash market is given by the indifference strategy $\hat{\pi}$. After the crash, the Merton strategy π^M is optimal.

Solution I: Worst-Case Optimal Strategy

Combining the previous results, we arrive at the following

Theorem (Solution of the Worst-Case Investment Problem) For the worst-case portfolio problem

$$
\max_{\pi,\bar{\pi}} \min_{\tau,\ell} \mathbb{E}[u(X_{\tau}^{\pi,\bar{\pi},\tau,\ell})] \tag{P}
$$

the optimal strategy in the pre-crash market is given by the indifference strategy $\hat{\pi}$. After the crash, the Merton strategy π^M is optimal.

Proof.

We need only consider pre-crash strategies below the Indifference Frontier. By the Indifference-Optimality Principle, the indifference strategy is optimal provided it is optimal in the no-crash scenario. This, however, follows immediately from the Change-of-Measure Device.

Solution III: Effective Wealth Loss

To illustrate the difference to traditional portfolio optimization, we determine the effective wealth loss of a Merton investor in his worst-case scenario.

Solution IV: Sensitivity to Crash Size

The solution to the worst-case investment problem is non-zero even for a maximum crash height $\ell^{\infty} = 100\%$.

- [Standard Crash Modeling vs. Knightian Uncertainty](#page-9-0)
- [Worst-Case Optimal Investment](#page-18-0)
- [Martingale Approach](#page-23-0)

Multi-Asset Markets I

The martingale approach generalizes directly to multi-asset markets. In this multi-dimensional setting, the indifference frontier is specified by

$$
\pi.\ell^{\infty} \leq \hat{\beta}_t.
$$

where $\hat{\beta}$ is characterized by a one-dimensional o.d.e.

Multi-Asset Markets I

The martingale approach generalizes directly to multi-asset markets. In this multi-dimensional setting, the indifference frontier is specified by

 $\pi.\ell^{\infty} \leq \hat{\beta}_t.$

where $\hat{\beta}$ is characterized by a one-dimensional o.d.e.

Alternative Dynamics I: Regular Jumps

Regular price jumps can be included in the stock price dynamics; thus the investor distinguishes regular jumps (risky) from crashes (uncertain).

$$
\mathrm{d}P_t = P_{t-}\left[(r+\eta)\mathrm{d}t + \sigma \cdot \mathrm{d}W_t - \int \xi \nu(\mathrm{d}t, \mathrm{d}\xi) \right], \quad P_{\tau} = (1-\ell)P_{\tau-}.
$$

Alternative Dynamics I: Regular Jumps

Regular price jumps can be included in the stock price dynamics; thus the investor distinguishes regular jumps (risky) from crashes (uncertain).

$$
\mathrm{d}P_t = P_{t-}\left[(r+\eta)\mathrm{d}t + \sigma.\mathrm{d}W_t - \int \xi \nu(\mathrm{d}t, \mathrm{d}\xi) \right], \quad P_{\tau} = (1-\ell)P_{\tau-}.
$$

The effects are similar to the Black-Scholes case:

Alternative Dynamics II: Regime Shifts

We can model different market regimes by allowing the market coefficients to change after a possible crash:

$$
dP_t = P_{t-}[(r+\eta)dt + \sigma \cdot dW_t] \text{ on } [0, \tau)
$$

\n
$$
dP_t = P_{t-}[(\bar{r} + \bar{\eta})dt + \bar{\sigma} \cdot d\bar{W}_t] \text{ on } [\tau, T], \quad P_{\tau} = (1 - \ell)P_{\tau}.
$$

Alternative Dynamics II: Regime Shifts

We can model different market regimes by allowing the market coefficients to change after a possible crash:

$$
dP_t = P_{t-}[(r+\eta)dt + \sigma \cdot dW_t] \text{ on } [0, \tau)
$$

\n
$$
dP_t = P_{t-}[(\bar{r} + \bar{\eta})dt + \bar{\sigma} \cdot d\bar{W}_t] \text{ on } [\tau, T], \quad P_{\tau} = (1 - \ell)P_{\tau}.
$$

Now we need to distinguish between bull and bear markets:

If the post-crash market is worse than the pre-crash riskless investment, the investor perceives a **bear market**; in this case, it is optimal not to invest in risky assets.

Alternative Dynamics III: Bull Markets

On the other hand, in a bull market it is optimal to use the indifference strategy as long as it is below the Merton line:

Alternative Dynamics V: Multiple Crashes

Finally the model can be extended to multiple crashes. The worst-case optimal strategy can be determined by backward recursion:

Thank you very much for your attention!