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Problem setting

• Financial market: complete market with time horizon T < ∞
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Problem setting

• Financial market: complete market with time horizon T < ∞

◦ Pricing density ρ: price of a contingent claim ξ is E[ρξ]

• Investor: with behavioral preference

◦ Compare terminal gain/loss against a given

reference level B

◦ S-shaped utility u(x) = u+(x+) − u−(x−)

• u±(·) are concave, ↑

◦ Probability distortions T±(·) : [0, 1] 7→ [0, 1]

• T± ↑, T±(0) = 0, T±(1) = 1

• T±(p) > p for small p
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Distortion on probability
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Problem setting

• Behavioral criterion: for a r.v. Y ,

V (Y )=

∫ +∞

0

u(y)d[−T+(P (Y ≥ y))] +

∫ 0

−∞

u(y)d[T−(P (Y ≤ y))]
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u(y)d[−T+(P (Y ≥ y))] +

∫ 0

−∞
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=
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T+(P (u+(Y +) ≥ y))dy −
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Problem setting

• Behavioral criterion: for a r.v. Y ,

V (Y ) =

∫ +∞

0

T+(P (u+(Y +) ≥ y))dy −

∫ +∞

0

T−(P (u−(Y −) ≥ y))dy

= V+(Y +) − V−(Y −)

• Investor’s problem

Maximize V (X − B)

s.t.







X ∈ A

E[Xρ] = x0

where A is the set of admissible terminal wealths.
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What is done

• Without probability distortions, the problem was widely

studied, like Berkelaar, Kouwenberg and Post (2004)
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What is done

• Without probability distortions, the problem was widely

studied, like Berkelaar, Kouwenberg and Post (2004)

• With probability distortion, the problem is much more difficult

◦ Jin and Zhou (2008) solved the problem with

A = {X : X is lower bounded}

◦ Optimal investment in Jin and Zhou has a deterministic

loss in a bad market situation

◦ But the loss can be large enough to intrigue disasters,

like bankruptcy.
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What will we do

• Bankruptcy is not allowed in most market

• Investors may cut loss at some big loss
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What will we do

• Bankruptcy is not allowed in most market

• Investors may cut loss at some big loss

• In our problem,

◦ Investor are risk seeking for loss

◦ Motivate the investor to borrow money for risky investor

◦ Heavy loss may happen

◦ Bankruptcy probability is higher when the investor is

more aggressive

• To prevent disaster, a constraint on loss is necessary
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Problem with bounded loss

Maximize V (X − B)

s.t.







X ≥ B − L

E[Xρ] = x0

where L is an upper bound of loss.
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Problem with bounded loss

Maximize V (X − B)

s.t.







X ≥ B − L

E[Xρ] = x0

where L is an upper bound of loss.

Suppose the reference is bounded. Rewrite the problem by

changing variable X̃ = X − B,

Maximize V+(X̃+) − V−(X̃−)

s.t.







X̃ ≥ −L

E[X̃ρ] = x̃0 := x0 − E[ρB]

where V±(Y ) =
∫ +∞

0 T±(P (u±(y) ≥ y))dy.
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Splitting of the problem

• We use the same splitting from Jin and Zhou (2008)

• For any c ∈ (essinfρ, esssupρ), x̃+ ≥ x̃+
0 , solve the following

problems to get their value function v±(c, x̃+)
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• We use the same splitting from Jin and Zhou (2008)

• For any c ∈ (essinfρ, esssupρ), x̃+ ≥ x̃+
0 , solve the following

problems to get their value function v±(c, x̃+)

max V+(X̃+)

s.t.















X̃+ ≥ 0

X̃ = 0 when ρ > c

E[X̃+ρ] = x̃+

(Positive Part Problem)
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• We use the same splitting from Jin and Zhou (2008)

• For any c ∈ (essinfρ, esssupρ), x̃+ ≥ x̃+
0 , solve the following

problems to get their value function v±(c, x̃+)

max V+(X̃+)

s.t.















X̃+ ≥ 0

X̃ = 0 when ρ > c

E[X̃+ρ] = x̃+

(Positive Part Problem)

min V−(X̃−)

s.t.















X̃− ∈ [0, L]

X̃− = 0 when ρ < c

E[X̃−ρ] = x̃+ − x̃0

(Negative Part Problem)
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Splitting of the problem

• We use the same splitting from Jin and Zhou (2008)

• For any c ∈ (essinfρ, esssupρ), x̃+ ≥ x̃+
0 , solve the following

problems to get their value function v±(c, x̃+)

max V+(X̃+)

s.t.















X̃+ ≥ 0

X̃ = 0 when ρ > c

E[X̃+ρ] = x̃+

(Positive Part Problem)

min V−(X̃−)

s.t.















X̃− ∈ [0, L]

X̃− = 0 when ρ < c

E[X̃−ρ] = x̃+ − x̃0

(Negative Part Problem)

• Then find the optimal splitting c∗ and x̃∗
+ by solving

Maximizec∈(essinfρ,esssupρ),x̃+≥x+
0
v+(c, x̃+) − v−(c, x̃+).
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Recovery of optimal contingent claim

• If

◦ c∗, x̃∗
+ is an optimal splitting

◦ X̃∗
+, X̃∗

− are optimal for the two subproblems respectively

with parameters c∗, x̃∗
+,

then X = X̃∗
+1ρ≤c∗ − X̃∗

−1ρ>c∗ + B is optimal
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Recovery of optimal contingent claim

• If

◦ c∗, x̃∗
+ is an optimal splitting

◦ X̃∗
+, X̃∗

− are optimal for the two subproblems respectively

with parameters c∗, x̃∗
+,

then X = X̃∗
+1ρ≤c∗ − X̃∗

−1ρ>c∗ + B is optimal

• If any of them fails to exist, then there is no optimal

contingent claim
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Positive part problem solution

The positive part problem is the same as in Jin and Zhou (2008)
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Positive part problem solution

• Denote Fρ(·) as the CDF of ρ. Suppose it is continuous.

• Suppose (1)
F−1

ρ
(·)

T ′
+(·) is ↑ on [0, 1]; (2) lim inf

x→+∞

−xu′′
+(x)

u′
+(x) > 0; (3)

E[u+((u′
+)−1( ρ

T ′
+(Fρ(ρ))))T

′
+(Fρ(ρ))]< +∞.
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Positive part problem solution

• Denote Fρ(·) as the CDF of ρ. Suppose it is continuous.

• Suppose (1)
F−1

ρ
(·)

T ′
+(·) is ↑ on [0, 1]; (2) lim inf

x→+∞

−xu′′
+(x)

u′
+(x) > 0; (3)

E[u+((u′
+)−1( ρ

T ′
+(Fρ(ρ))))T

′
+(Fρ(ρ))]< +∞.

Theorem 1 For any c ∈ (essinfρ, esssupρ] and x̃+ ≥ x̃+
0 , the optimal

solution for the positive part problem is

X̃∗
+ = (u′

+)−1(λ
ρ

T ′
+(F (ρ))

)1ρ≤c.

The optimal value is

v+(c, x̃+) = E[u+((u′
+)−1(λ

ρ

T ′
+(F (ρ))

))T ′
+(F (ρ))1ρ≤c],

where λ is the unique one making X̃∗
+ feasible.
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Negative part problem

Consider the problem minY ∈[0,L],E[Y ρ]=a V−(Y )
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Negative part problem

Consider the problem minY ∈[0,L],E[Y ρ]=a V−(Y )

• Notice V−(Y ) only depends on the distribution of Y

• If Y ∼ F , then E[Y ρ] ≤ E[F−1(Fρ(ρ))]

• Y ∗ must be Y ∗ = F−1(Fρ(ρ)) with some CDF F

• Denote Z = Fρ(ρ), Γ = {F−1(·) : F is a CDF} be the set of

quantile functions. Then the problem is equivalent to

min v̄2(g(·)) := E[u−(g(Z))T ′
−(1 − Z)]

s.t.











g(·) ∈ Γ, g(·) ∈ [0, L] on [0, 1)

E[g(Z)F−1
ρ (Z)] = a.
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Optimal quantile function

• If g∗(·) is optimal quantile function, then Y ∗ = g(1− Fρ(ρ)) is

the optimal random variable.
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Optimal quantile function

• If g∗(·) is optimal quantile function, then Y ∗ = g(1− Fρ(ρ)) is

the optimal random variable.

• The constraint g(·) ≤ L is due to the bounded loss

◦ v̄2(g(·)) is concave w.r.t. g(·)

◦ g∗ must be on the boundary of the feasible set

◦ Without L, Jin and Zhou (2008) shows that the boundary

consists of g∗(z; c) := q(c)1z≥c with proper function q(·)

and c ∈ (0, 1]
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Optimal quantile function

• If g∗(·) is optimal quantile function, then Y ∗ = g(1− Fρ(ρ)) is

the optimal random variable.

• The constraint g(·) ≤ L is due to the bounded loss

◦ v̄2(g(·)) is concave w.r.t. g(·)

◦ g∗ must be on the boundary of the feasible set

◦ Without L, Jin and Zhou (2008) shows that the boundary

consists of g∗(z; c) := q(c)1z≥c with proper function q(·)

and c ∈ (0, 1]

• We need to find out the boundary with the bound L
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Optimal quantile

Theorem 2 If there are optimal g(·), then one of them is in the

form g(x; c1, c2) = q(c1, c2; a)1x∈[Fρ(c1),Fρ(c2)) + L1x≥Fρ(c2), where

q(c1, c2; a) =
a−LE[ρ1ρ≥c2 ]
E[ρ1ρ∈[c1,c2)]

.

Fρ(c1) Fρ(c2)

q

L
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Optimal quantile

Theorem 2 If there are optimal g(·), then one of them is in the

form g(x; c1, c2) = q(c1, c2; a)1x∈[Fρ(c1),Fρ(c2)) + L1x≥Fρ(c2), where

q(c1, c2; a) =
a−LE[ρ1ρ≥c2 ]
E[ρ1ρ∈[c1,c2)]

.

Fρ(c1) Fρ(c2)

q

L

• Only need to solve the problem

min v̄2(g(·; c1, c2))

s.t. essinfρ ≤ c1 < c2 ≤ esssupρ
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Optimal negative part

Theorem 3 For any c ∈ [essinfρ, esssupρ), x̃+ > x̃+
0 , the optimal

value of the negative part problem is

v−(c, x̃+) = inf
c≤c1<c2≤esssupρ)

v3(c1, c2; c, x̃+),
where

v3(· · · ) = u−(q(c1, c2, x̃+ − x̃0))(T−(P (ρ ≥ c2)) − T−(P (ρ ≥ c1)))

+u−(L)T−(P (ρ ≥ c2)).
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Optimal negative part

Theorem 3 For any c ∈ [essinfρ, esssupρ), x̃+ > x̃+
0 , the optimal

value of the negative part problem is

v−(c, x̃+) = inf
c≤c1<c2≤esssupρ)

v3(c1, c2; c, x̃+),
where

v3(· · · ) = u−(q(c1, c2, x̃+ − x̃0))(T−(P (ρ ≥ c2)) − T−(P (ρ ≥ c1)))

+u−(L)T−(P (ρ ≥ c2)).

Furthermore, if v−(c, x+) is obtained at (c∗1, c
∗
2), then

X̃∗
− = q(c∗1, c

∗
2; x̃

∗
+ − x̃0)1ρ∈[c∗1 ,c∗2) + L1ρ≥c∗2

is an optimal solution for the negative part problem .
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Optimal terminal wealth

The optimal splitting c∗, x̃∗
+ can be determined by

max v+(c, x̃+) − v3(c, c2; c, x̃+)

s.t. x̃+ ≥ x̃0, essinfρ ≤ c < c2 ≤ esssupρ
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Optimal terminal wealth

The optimal splitting c∗, x̃∗
+ can be determined by

max v+(c, x̃+) − v3(c, c2; c, x̃+)

s.t. x̃+ ≥ x̃0, essinfρ ≤ c < c2 ≤ esssupρ

Theorem 4 Under the assumption made for positive part problem,

(i) If (c∗, c∗2, x̃
∗
+) is an optimal splitting, then

X∗ = (u′
+)−1(λ

ρ

T ′
+(F (ρ))

)1ρ≤c∗−q(c∗, c∗2; x̃
∗
+ − x̃0)1ρ∈[c∗,c∗2)−L1ρ≥c∗2+B

is an optimal terminal wealth.
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Optimal terminal wealth

The optimal splitting c∗, x̃∗
+ can be determined by

max v+(c, x̃+) − v3(c, c2; c, x̃+)

s.t. x̃+ ≥ x̃0, essinfρ ≤ c < c2 ≤ esssupρ

Theorem 4 Under the assumption made for positive part problem,

(i) If (c∗, c∗2, x̃
∗
+) is an optimal splitting, then

X∗ = (u′
+)−1(λ

ρ

T ′
+(F (ρ))

)1ρ≤c∗−q(c∗, c∗2; x̃
∗
+ − x̃0)1ρ∈[c∗,c∗2)−L1ρ≥c∗2+B

is an optimal terminal wealth.

(ii) If there is no optimal (c, c2, x̃+), then there is no optimal

terminal wealth.
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Example: power value function

• Generally, X∗ is a three-piece function of ρ
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Example: power value function

• Generally, X∗ is a three-piece function of ρ

• Consider the example with u+(x) = xα, u−(x) = kxα for

some k > 1 and α ∈ (0, 1)

◦ In this example, optimal solution always exists
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Example: power value function

• Generally, X∗ is a three-piece function of ρ

• Consider the example with u+(x) = xα, u−(x) = kxα for

some k > 1 and α ∈ (0, 1)

◦ In this example, optimal solution always exists

• Define f1 = 1 − Fρ, f2(x) = E[ρ1ρ≥x], f(x) = f2(f
−1
1 (x))
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Example: power value function

• Generally, X∗ is a three-piece function of ρ

• Consider the example with u+(x) = xα, u−(x) = kxα for

some k > 1 and α ∈ (0, 1)

◦ In this example, optimal solution always exists

• Define f1 = 1 − Fρ, f2(x) = E[ρ1ρ≥x], f(x) = f2(f
−1
1 (x))

Theorem 5 If h(x) = T−(f−1(x))) is a convex function, then the

optimal splitting (c∗, c∗2, x
∗
+) satisfies c∗ = c∗2. Hence the optimal

contingent claim is

X∗ = (u′
+)−1(λ

ρ

T ′
+(F (ρ))

)1ρ≤c∗2 − L1ρ≥c∗2 + B.
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Example: power value function

• Consider the case h(x) = xβ with β > 0

• If β < 1, Theorem 5 does not apply
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Example: power value function

• Consider the case h(x) = xβ with β > 0

• If β < 1, Theorem 5 does not apply

Theorem 6 Given h(x) = xβ for some β > 0. Then

• If β ≥ α, then c∗2 = c∗, and

X∗ = (u′
+)−1(λ ρ

T ′
+(F (ρ)))1ρ≤c∗2 − L1ρ≥c∗2 + B.
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Example: power value function

• Consider the case h(x) = xβ with β > 0

• If β < 1, Theorem 5 does not apply

Theorem 6 Given h(x) = xβ for some β > 0. Then

• If β ≥ α, then c∗2 = c∗, and

X∗ = (u′
+)−1(λ ρ

T ′
+(F (ρ)))1ρ≤c∗2 − L1ρ≥c∗2 + B.

• If β < α, then c∗2 = +∞, and

X∗ = (u′
+)−1(λ ρ

T ′
+(F (ρ)))1ρ≤c∗ −

x̃∗
+−x̃0

Eρ1ρ≥c∗
1ρ≥c∗ + B.
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Example: power value function

• Consider the case h(x) = xβ with β > 0

• If β < 1, Theorem 5 does not apply

Theorem 6 Given h(x) = xβ for some β > 0. Then

• If β ≥ α, then c∗2 = c∗, and

X∗ = (u′
+)−1(λ ρ

T ′
+(F (ρ)))1ρ≤c∗2 − L1ρ≥c∗2 + B.

• If β < α, then c∗2 = +∞, and

X∗ = (u′
+)−1(λ ρ

T ′
+(F (ρ)))1ρ≤c∗ −

x̃∗
+−x̃0

Eρ1ρ≥c∗
1ρ≥c∗ + B.

In any case, X∗ is a two-piece function of ρ.

Behavioural Portfolio Selection with Loss Control – p. 16/19



Example: power value function

• Is the optimal solution always two-piece for power value

function?
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Example: power value function

• Is the optimal solution always two-piece for power value

function?

• A three-piece example:

◦ L = 10, x̃0 = −1, β = 0.85, α = 0.88, k = 2.25,

ρ ∼ Lognormal(−0.045, 0.09)

◦ h(x) =


























0.5x x ∈ [0, 0.05]

20 ∗ 0.1β(x − 0.05) + 0.025(0.1 − x) x ∈ [0.05, 0.1]

xβ x ∈ [0.1, 1]

◦ The optimal solution X̃∗ = X∗ −B is as in the next figure
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Example: power value function

0.5 1.0 1.5 2.0 2.5 3.0
rho

-10

-5

5

10

x
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Thank you very much!
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