Behavioural Portfolio Selection with Loss Control

Dr. Hanqing Jin

Mathematical Institute, University of OxfordOxford-Man Institute of Quantitative Finance

A joint work with Xun Yu Zhou and Song Zhang

 6^{th} World Congress, Bachelier Finance Society 23^{rd} June, 2010, $\qquad \qquad$ Toronto, Canada

- Financial market: complete market with time horizon $T<\infty$
	- $\, \circ \,$ Pricing density ρ : price of a contingent claim ξ is $E[\rho \xi]$

- Financial market: complete market with time horizon $T<\infty$
	- \circ $\circ~$ Pricing density ρ : price of a contingent claim ξ is $E[\rho \xi]$
- Investor: with behavioral preference

- Financial market: complete market with time horizon $T<\infty$
	- \circ $\circ~$ Pricing density ρ : price of a contingent claim ξ is $E[\rho \xi]$
- Investor: with behavioral preference
	- \circ Compare terminal gain/loss against ^a givenreference level ^B

- Financial market: complete market with time horizon $T<\infty$
	- \circ $\circ~$ Pricing density ρ : price of a contingent claim ξ is $E[\rho \xi]$
- Investor: with behavioral preference
	- \circ Compare terminal gain/loss against ^a givenreference level ^B
	- S-shaped utility $u(x) = u_+(x^+) u_-(x^-)$
		- $u_{\pm}(\cdot)$ are concave, \uparrow

- Financial market: complete market with time horizon $T<\infty$
	- $\, \circ \,$ Pricing density ρ : price of a contingent claim ξ is $E[\rho \xi]$
- Investor: with behavioral preference
	- ◦ Compare terminal gain/loss against ^a givenreference level ^B
	- S-shaped utility $u(x) = u_+(x^+) u_-(x^-)$
		- $u_{\pm}(\cdot)$ are concave, \uparrow
	- ◦ $\,\circ\,$ Probability distortions $T_{\pm}(\cdot):[0,1]\mapsto [0,1]$
		- $T_{\pm} \uparrow$, $T_{\pm}(0) = 0, T_{\pm}(1) = 1$
		- $\bullet\,$ $T_\pm(p)>p$ for small p

• Behavioral criterion: for a r.v. Y ,

$$
V(Y) = \int_0^{+\infty} u(y)d[-T_+(P(Y \ge y))] + \int_{-\infty}^0 u(y)d[T_-(P(Y \le y))]
$$

• Behavioral criterion: for a r.v. Y ,

$$
V(Y) = \int_0^{+\infty} u(y)d[-T_+(P(Y \ge y))] + \int_{-\infty}^0 u(y)d[T_-(P(Y \le y))]
$$

=
$$
\int_0^{+\infty} T_+(P(u_+(Y^+) \ge y))dy - \int_0^{+\infty} T_-(P(u_-(Y^-) \ge y))dy
$$

• Behavioral criterion: for a r.v. Y ,

$$
V(Y) = \int_0^{+\infty} T_+(P(u_+(Y^+) \ge y)) dy - \int_0^{+\infty} T_-(P(u_-(Y^-) \ge y)) dy
$$

= $V_+(Y^+) - V_-(Y^-)$

• Behavioral criterion: for a r.v. Y ,

$$
V(Y) = \int_0^{+\infty} T_+(P(u_+(Y^+) \ge y)) dy - \int_0^{+\infty} T_-(P(u_-(Y^-) \ge y)) dy
$$

= $V_+(Y^+) - V_-(Y^-)$

• Investor's problem

Maximize
$$
V(X - B)
$$

\n
$$
\begin{cases}\nX \in \mathcal{A} \\
E[X\rho] = x_0\n\end{cases}
$$

where ${\cal A}$ is the set of admissible terminal wealths.

• Without probability distortions, the problem was widelystudied, like Berkelaar, Kouwenberg and Post (2004)

- Without probability distortions, the problem was widelystudied, like Berkelaar, Kouwenberg and Post (2004)
- With probability distortion, the problem is much more difficult

- Without probability distortions, the problem was widelystudied, like Berkelaar, Kouwenberg and Post (2004)
- With probability distortion, the problem is much more difficult
	- \bigcirc Jin and Zhou (2008) solved the problem with

 $\mathcal{A} = \{X: X \text{ is lower bounded}\}$

- Without probability distortions, the problem was widelystudied, like Berkelaar, Kouwenberg and Post (2004)
- With probability distortion, the problem is much more difficult
	- \circ Jin and Zhou (2008) solved the problem with

 $\mathcal{A} = \{X: X \text{ is lower bounded}\}$

 \circ Optimal investment in Jin and Zhou has ^a deterministicloss in ^a bad market situation

- Without probability distortions, the problem was widelystudied, like Berkelaar, Kouwenberg and Post (2004)
- With probability distortion, the problem is much more difficult
	- ◦Jin and Zhou (2008) solved the problem with

 $\mathcal{A} = \{X: X \text{ is lower bounded}\}$

- \circ Optimal investment in Jin and Zhou has ^a deterministicloss in ^a bad market situation
- \circ But the loss can be large enough to intrigue disasters, like bankruptcy.

- Bankruptcy is not allowed in most market
- Investors may cut loss at some big loss

- Bankruptcy is not allowed in most market
- Investors may cut loss at some big loss
- In our problem,
	- \circ Investor are risk seeking for loss
	- \circ Motivate the investor to borrow money for risky investor

- Bankruptcy is not allowed in most market
- Investors may cut loss at some big loss
- In our problem,
	- \circ Investor are risk seeking for loss
	- \circ Motivate the investor to borrow money for risky investor
	- \circ Heavy loss may happen
	- \circ Bankruptcy probability is higher when the investor ismore aggressive

- Bankruptcy is not allowed in most market
- Investors may cut loss at some big loss
- In our problem,
	- \circ Investor are risk seeking for loss
	- \circ Motivate the investor to borrow money for risky investor
	- ◦Heavy loss may happen
	- \circ Bankruptcy probability is higher when the investor ismore aggressive
- To prevent disaster, ^a constraint on loss is necessary

Problem with bounded loss

Maximize
$$
V(X - B)
$$

\n
$$
\begin{cases}\nX \ge B - L \\
E[X\rho] = x_0\n\end{cases}
$$

where L is an upper bound of loss.

Problem with bounded loss

Maximize
$$
V(X - B)
$$

s.t.

$$
\begin{cases}\nX \ge B - L \\
E[X\rho] = x_0\n\end{cases}
$$

where L is an upper bound of loss.

Suppose the reference is bounded. Rewrite the problem bychanging variable $\tilde{X}=X-\,$ $B, \;$

Maximize
$$
V_{+}(\tilde{X}^{+}) - V_{-}(\tilde{X}^{-})
$$

\n
$$
\begin{cases}\n\tilde{X} \ge -L \\
E[\tilde{X}\rho] = \tilde{x}_{0} := x_{0} - E[\rho B]\n\end{cases}
$$

where $V_{\pm}(Y) = \int_0^+$ ∞ $\int_0^{+\infty} T_{\pm}(P(u_{\pm}(y) \geq y))dy.$

- We use the same splitting from Jin and Zhou (2008)
- For any $c \in (\operatorname{essinf} \rho, \operatorname{esssup} \rho)$, $\tilde{x}_+ \geq \tilde{x}_0^+$, solve the following problems to get their value function $v_{\pm}(c,\tilde{x}_{+})$

- We use the same splitting from Jin and Zhou (2008)
- For any $c \in (\operatorname{essinf} \rho, \operatorname{esssup} \rho)$, $\tilde{x}_+ \geq \tilde{x}_0^+$, solve the following problems to get their value function $v_{\pm}(c,\tilde{x}_{+})$

max $X \quad V_+(\tilde{X}_+)$ $s.t.$ $\begin{cases} \tilde{X}_{+} \geq 0 \\ \tilde{X} = 0 \text{ when } \rho > c \\ E[\tilde{X}_{+}\rho] = \tilde{x}_{+} \end{cases}$ $=\tilde{x}_+$ (Positive Part Problem)

- We use the same splitting from Jin and Zhou (2008)
- For any $c \in (\operatorname{essinf} \rho, \operatorname{esssup} \rho)$, $\tilde{x}_+ \geq \tilde{x}_0^+$, solve the following problems to get their value function $v_{\pm}(c,\tilde{x}_{+})$

max
$$
V_{+}(\tilde{X}_{+})
$$

\n
$$
\tilde{X}_{+} \ge 0
$$
\ns.t. $\tilde{X} = 0$ when $\rho > c$
\n
$$
E[\tilde{X}_{+}\rho] = \tilde{x}_{+}
$$
\n(Positive Part Problem)

min $V_-(\tilde{X}_-)$ $s.t.$ $\left\{ \begin{array}{l} \tilde{X}_{-}\in[0,L] \ \tilde{X}_{-}=0 \text{ when } \rho < c \ E[\tilde{X}_{-}\rho]=\tilde{x}_{+}-\tilde{x}_{0} \end{array} \right.$ $=\tilde{x}_+ - \tilde{x}_0$

(Negative Part Problem)

- We use the same splitting from Jin and Zhou (2008)
- For any $c \in (\operatorname{essinf} \rho, \operatorname{esssup} \rho)$, $\tilde{x}_+ \geq \tilde{x}_0^+$, solve the following problems to get their value function $v_{\pm}(c,\tilde{x}_{+})$

max
$$
V_{+}(\tilde{X}_{+})
$$

\n $s.t.$ $\begin{cases} \tilde{X}_{+} \geq 0 \\ \tilde{X} = 0 \text{ when } \rho > c \end{cases}$
\n $E[\tilde{X}_{+}\rho] = \tilde{x}_{+}$
\n(Positive Part Problem)

$$
\min V_{-}(\tilde{X}_{-})
$$
\n
$$
s.t. \begin{cases} \tilde{X}_{-} \in [0, L] \\ \tilde{X}_{-} = 0 \text{ when } \rho < c \\ E[\tilde{X}_{-}\rho] = \tilde{x}_{+} - \tilde{x}_{0} \end{cases}
$$

- (Negative Part Problem)
- Then find the optimal splitting c^* and \tilde{x}_+^* by solving

 $\mathrm{Maximize}_{c\in(\mathrm{essinf}\rho,\mathrm{esssup}\rho),\tilde{x}_{+}\geq x_{0}^{+}}v_{+}(c,\tilde{x}_{+})-v_{-}(c,\tilde{x}_{+}).$

Recovery of optimal contingent claim

• If

- $^{\circ}\;c^{*}$ $^*,\tilde{x}^*_+$ $^{+}$ $_{+}^{\ast}$ is an optimal splitting
- $\,\circ\,$ \tilde{X} ∗ $_{+}^{\ast},\tilde{X}_{-}^{\ast}$ $*$ are optimal for the two subproblems respectively with parameters c^{\ast} $^*,\tilde{x}^*_+$ $+$,

then $X=\tilde{X}_+^*$ $_{+}^{\ast}1_{\rho \leq c^{\ast }}-\tilde{X}_{-}^{\ast }$ $^*1_{\rho>c}$ * $+$ B is optimal

Recovery of optimal contingent claim

• If

- $^{\circ}\;c^{*}$ $^*,\tilde{x}^*_+$ $^{+}$ $_{+}^{\ast}$ is an optimal splitting
- $\,\circ\,$ \tilde{X} ∗ $_{+}^{\ast},\tilde{X}_{-}^{\ast}$ $*$ are optimal for the two subproblems respectively with parameters c^{\ast} $^*,\tilde{x}^*_+$ $+$,

then $X=\tilde{X}_+^*$ $_{+}^{\ast}1_{\rho \leq c^{\ast }}-\tilde{X}_{-}^{\ast }$ $^*1_{\rho>c}$ * $+$ B is optimal

• If any of them fails to exist, then there is no optimal contingent claim

Positive part problem solution

The positive part problem is the same as in Jin and Zhou (2008)

Positive part problem solution

- Denote $F_\rho(\cdot)$ as the CDF of $\rho.$ Suppose it is continuous.
- Suppose (1) \boldsymbol{F} −1 $\frac{\rho}{\Gamma}$ $\frac{T_{\rho}^{-1}(\cdot)}{T_+'(\cdot)}$ is \uparrow on $[0,1]$; (2) $\liminf\limits_{x\rightarrow+\infty}$ $E[u_{+}((u'_{+})^{-1}(\frac{\rho}{T'_{+}(F_o(\rho))}))T'_{+}(F_{\rho}(\rho))]$ < $+\infty$ $\frac{-xu''_+(x)}{u'_+(x)}>0;$ (3) $u'_+)$ 1 $\frac{1}{\sqrt{2}}$ $\frac{\rho}{T'_+(F_{\rho}(\rho))}))T'_+(F_{\rho}(\rho))]<+\infty.$

Positive part problem solution

• Denote $F_\rho(\cdot)$ as the CDF of $\rho.$ Suppose it is continuous.

• Suppose (1)
$$
\frac{F_{\rho}^{-1}(\cdot)}{T'_{+}(\cdot)}
$$
 is \uparrow on [0, 1]; (2) $\liminf_{x \to +\infty} \frac{-xu_{+}^{u}(x)}{u'_{+}(x)} > 0$; (3)
 $E[u_{+}((u'_{+})^{-1}(\frac{\rho}{T'_{+}(F_{\rho}(\rho))}))T'_{+}(F_{\rho}(\rho))] < +\infty$.

Theorem 1 For any $c \in (\operatorname{essinf} \rho, \operatorname{esssup} \rho]$ and $\tilde{x}_+ \geq \tilde{x}_0^+$ 0 $_0^+$, the optimal solution for the positive part problem is

$$
\tilde{X}_{+}^{*} = (u'_{+})^{-1} (\lambda \frac{\rho}{T'_{+}(F(\rho))}) \mathbf{1}_{\rho \le c}.
$$

 value is

The optimal value is

$$
v_{+}(c, \tilde{x}_{+}) = E[u_{+}((u'_{+})^{-1}(\lambda \frac{\rho}{T'_{+}(F(\rho))}))T'_{+}(F(\rho))\mathbf{1}_{\rho \leq c}],
$$

where λ is the unique one making \tilde{X}_{+}^{\ast} $\, + \,$ \ddagger feasible.

Consider the problem

 $\min_{Y \in [0,L], E[Y_{\rho}]=a} V_{-}(Y)$

Consider the problem $\min_{Y \in [0,L], E[Y_{\rho}]=a} V_{-}(Y)$

• Notice $V_-(Y)$ only depends on the distribution of Y

Consider the problem $\min_{Y \in [0,L], E[Y_{\rho}]=a} V_{-}(Y)$

- Notice $V_-(Y)$ only depends on the distribution of Y
- If $Y \sim F$, then $E[Y \rho] \leq E[F^{-1}(F_{\rho}(\rho))]$

Consider the problem $\min_{Y \in [0,L], E[Y_{\rho}]=a} V(Y)$

- Notice $V_-(Y)$ only depends on the distribution of Y
- If $Y \sim F$, then $E[Y \rho] \leq E[F^{-1}(F_{\rho}(\rho))]$
- Y^* must be $Y^* = F^{-1}(F_{\rho}(\rho))$ with some CDF F

Consider the problem $\min_{Y \in [0,L], E[Y_{\rho}]=a} V(Y)$

- Notice $V_-(Y)$ only depends on the distribution of Y
- If $Y \sim F$, then $E[Y \rho] \leq E[F^{-1}(F_{\rho}(\rho))]$
- Y^* must be $Y^* = F^{-1}(F_{\rho}(\rho))$ with some CDF F
- Denote $Z = F_{\rho}(\rho)$, $\Gamma = \{F^{-1}(\cdot) : F$ is a CDF} be the set of quantile functions. Then the problem is equivalent to

$$
\begin{aligned}\n\min \quad & \bar{v}_2(g(\cdot)) := E[u_-(g(Z))T_-'(1-Z)] \\
\text{s.t.} \quad & \begin{cases} \quad g(\cdot) \in \Gamma, g(\cdot) \in [0, L] \text{ on } [0, 1) \\ \quad E[g(Z)F_\rho^{-1}(Z)] = a. \end{cases}\n\end{aligned}
$$

 \bullet If g^* $^*(\cdot)$ is optimal quantile function, then Y^* = $g(1$ − $F_{\rho}(\rho))$ is the optimal random variable.

- \bullet If g^* $^*(\cdot)$ is optimal quantile function, then Y^* = $g(1$ − $F_{\rho}(\rho))$ is the optimal random variable.
- The constraint $g(\cdot) \leq L$ is due to the bounded loss

- \bullet If g^* $^*(\cdot)$ is optimal quantile function, then Y^* = $g(1$ − $F_{\rho}(\rho))$ is the optimal random variable.
- The constraint $g(\cdot) \leq L$ is due to the bounded loss

 $\circ~~ \bar{v}_2(g(\cdot))$ is concave w.r.t. $g(\cdot)$

- \bullet If g^* $^*(\cdot)$ is optimal quantile function, then Y^* = $g(1$ − $F_{\rho}(\rho))$ is the optimal random variable.
- The constraint $g(\cdot) \leq L$ is due to the bounded loss
	- $\circ~~ \bar{v}_2(g(\cdot))$ is concave w.r.t. $g(\cdot)$
	- g^* must be on the <code>boundary</code> of the feasible set

- \bullet If g^* $^*(\cdot)$ is optimal quantile function, then Y^* = $g(1$ − $F_{\rho}(\rho))$ is the optimal random variable.
- The constraint $g(\cdot) \leq L$ is due to the bounded loss
	- $\circ~~ \bar{v}_2(g(\cdot))$ is concave w.r.t. $g(\cdot)$
	- g^* must be on the <code>boundary</code> of the feasible set
	- ◦ $\circ~$ Without $L,$ Jin and Zhou (2008) shows that the boundary consists of g^{\ast} $f^*(z;c) := q(c) \mathbf{1}_{z \geq c}$ with proper function $q(\cdot)$ and $c \in (0,1]$

- \bullet If g^* $^*(\cdot)$ is optimal quantile function, then Y^* = $g(1$ − $F_{\rho}(\rho))$ is the optimal random variable.
- The constraint $g(\cdot) \leq L$ is due to the bounded loss
	- $\circ~~ \bar{v}_2(g(\cdot))$ is concave w.r.t. $g(\cdot)$
	- g^* must be on the <code>boundary</code> of the feasible set
	- ◦ $\circ~$ Without $L,$ Jin and Zhou (2008) shows that the boundary consists of g^{\ast} $f^*(z;c) := q(c) \mathbf{1}_{z \geq c}$ with proper function $q(\cdot)$ and $c \in (0,1]$
- We need to find out the boundary with the bound L

Optimal quantile

Theorem 2 If there are optimal $g(\cdot)$, then one of them is in the form $g(x; c_1, c_2) = q(c_1, c_2; a) \mathbf{1}_{x \in [F_\rho(c_1), F_\rho(c_2))} + L \mathbf{1}_{x \geq F_\rho(c_2)}$, where $q(c_1, c_2; a) = \frac{a - L E[\rho \mathbf{1}_{\rho \geq c_2}]}{E[\rho \mathbf{1}_{\rho \in [c_1, c_2)}]} .$ $F_{\rho}(c_1)$ $F_{\rho}(c_2)$ qL

Optimal quantile

Theorem 2 If there are optimal $g(\cdot)$, then one of them is in the form $g(x; c_1, c_2) = q(c_1, c_2; a) \mathbf{1}_{x \in [F_\rho(c_1), F_\rho(c_2))} + L \mathbf{1}_{x \geq F_\rho(c_2)}$, where $q(c_1, c_2; a) = \frac{a - L E[\rho \mathbf{1}_{\rho \geq c_2}]}{E[\rho \mathbf{1}_{\rho \in [c_1, c_2)}]} .$ $F_\rho(c_1) \hspace{1cm} F_\rho(c_2)$ q L

• Only need to solve the problem

 $\text{min} \quad \bar{v}_2(g(\cdot; c_1, c_2))$

s.t. $\text{essinf}_{\rho} \leq c_1 < c_2 \leq \text{esssup}_{\rho}$

Optimal negative part

Theorem 3 For any $c \in [\operatorname{essinf}\rho, \operatorname{esssup}\rho)$, $\tilde{x}_{+} > \tilde{x}_{0}^{+}$, the optimal value of the negative part problem is

where
\n
$$
v_{-}(c, \tilde{x}_{+}) = \inf_{c \le c_{1} < c_{2} \le \text{esssup}\rho} v_{3}(c_{1}, c_{2}; c, \tilde{x}_{+}),
$$
\n
$$
v_{3}(\cdots) = u_{-}(q(c_{1}, c_{2}, \tilde{x}_{+} - \tilde{x}_{0}))(T_{-}(P(\rho \ge c_{2})) - T_{-}(P(\rho \ge c_{1})))
$$
\n
$$
+ u_{-}(L)T_{-}(P(\rho \ge c_{2})).
$$

Optimal negative part

Theorem 3 For any $c \in [\operatorname{essinf}\rho, \operatorname{esssup}\rho)$, $\tilde{x}_{+} > \tilde{x}_{0}^{+}$, the optimal value of the negative part problem is

where
\n
$$
v_{-}(c, \tilde{x}_{+}) = \inf_{c \le c_{1} < c_{2} \le \text{esssup}\rho} v_{3}(c_{1}, c_{2}; c, \tilde{x}_{+}),
$$
\n
$$
v_{3}(\cdots) = u_{-}(q(c_{1}, c_{2}, \tilde{x}_{+} - \tilde{x}_{0}))(T_{-}(P(\rho \ge c_{2})) - T_{-}(P(\rho \ge c_{1})))
$$
\n
$$
+ u_{-}(L)T_{-}(P(\rho \ge c_{2})).
$$

Furthermore, if $v_-(c,x_+)$ is obtained at $(c_1^\ast,c_2^\ast),$ then

$$
\tilde{X}_{-}^* = q(c_1^*, c_2^*; \tilde{x}_+^* - \tilde{x}_0) \mathbf{1}_{\rho \in [c_1^*, c_2^*)} + L \mathbf{1}_{\rho \ge c_2^*}
$$

is an optimal solution for the negative part problem .

Optimal terminal wealth

The optimal splitting c^*, \tilde{x}_{+}^* can be determined by

max $v_+(c, \tilde{x}_+) - v_3(c, c_2; c, \tilde{x}_+)$

s.t.
$$
\tilde{x}_+ \ge \tilde{x}_0
$$
, $\operatorname{essinf} \rho \le c < c_2 \le \operatorname{esssup} \rho$

Optimal terminal wealth

The optimal splitting c^*, \tilde{x}_{+}^* can be determined by

max $v_+(c, \tilde{x}_+) - v_3(c, c_2; c, \tilde{x}_+)$

s.t.
$$
\tilde{x}_+ \ge \tilde{x}_0
$$
, $\operatorname{essinf} \rho \le c < c_2 \le \operatorname{esssup} \rho$

Theorem 4 Under the assumption made for positive part problem, (i) If $(c^*, c_2^*, \tilde{x}_+^*)$ is an optimal splitting, then $X^{\ast}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/\sqrt{2}g_{\alpha}$ and $=(u'_+)^{-1}(\lambda\frac{\rho}{T'_+(F(\rho))})\mathbf{1}_{\rho\leq c^*} - q(c^*,c_2^*; \tilde{x}_+^*-\tilde{x}_0)\mathbf{1}_{\rho\in [c^*,c_2^*)} -L\mathbf{1}_{\rho\geq c_2^*} +B$

is an optimal terminal wealth.

Optimal terminal wealth

The optimal splitting c^*, \tilde{x}_{+}^* can be determined by

max $v_+(c, \tilde{x}_+) - v_3(c, c_2; c, \tilde{x}_+)$

s.t.
$$
\tilde{x}_+ \ge \tilde{x}_0
$$
, $\operatorname{essinf} \rho \le c < c_2 \le \operatorname{esssup} \rho$

Theorem 4 Under the assumption made for positive part problem, (i) If $(c^*, c_2^*, \tilde{x}_+^*)$ is an optimal splitting, then $X^{\ast}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/\sqrt{2}g_{\alpha}$ and $=(u'_+)^{-1}(\lambda\frac{\rho}{T'_+(F(\rho))})\mathbf{1}_{\rho\leq c^*} - q(c^*,c_2^*; \tilde{x}_+^*-\tilde{x}_0)\mathbf{1}_{\rho\in [c^*,c_2^*)} -L\mathbf{1}_{\rho\geq c_2^*} +B$

is an optimal terminal wealth.

(ii) If there is no optimal (c, c_2, \tilde{x}_+) , then there is no optimal terminal wealth.

• Generally, X^* is a three-piece function of ρ

- Generally, X^* is a three-piece function of ρ
- Consider the example with $u_+(x) = x^{\alpha}, u_-(x) = kx^{\alpha}$ for some $k > 1$ and $\alpha \in (0,1)$

 $\,^{\circ}$ In this example, optimal solution always exists

- Generally, X^* is a three-piece function of ρ
- Consider the example with $u_+(x) = x^{\alpha}, u_-(x) = kx^{\alpha}$ for some $k > 1$ and $\alpha \in (0,1)$

 $\,^{\circ}$ In this example, optimal solution always exists

• Define $f_1 = 1$ $F_{\rho}, f_2(x) = E[\rho \mathbf{1}_{\rho \geq x}], f(x) = f_2(f_1^{-1})$ $\frac{-1}{1}(x))$

- Generally, X^* is a three-piece function of ρ
- Consider the example with $u_+(x) = x^{\alpha}, u_-(x) = kx^{\alpha}$ for some $k > 1$ and $\alpha \in (0,1)$

 $\,^{\circ}$ In this example, optimal solution always exists

• Define
$$
f_1 = 1 - F_\rho
$$
, $f_2(x) = E[\rho \mathbf{1}_{\rho \ge x}]$, $f(x) = f_2(f_1^{-1}(x))$

Theorem 5 If $h(x) = T_-(f^{-1})$ $f^{\perp}(x))$) is a convex function, then the optimal splitting $(c^*, c_2^*$ $_2^*,x_+^*$ $_{+}^{\ast})$ satisfies c^{\ast} $^* = c_2^*$ $_2^{\ast}.$ Hence the optimal contingent claim is

$$
X^* = (u'_+)^{-1} (\lambda \frac{\rho}{T'_+ (F(\rho))}) \mathbf{1}_{\rho \leq c_2^*} - L \mathbf{1}_{\rho \geq c_2^*} + B.
$$

- Consider the case $h(x) = x^{\beta}$ with $\beta > 0$
- If $\beta < 1$, Theorem 5 does not apply

- Consider the case $h(x) = x^{\beta}$ with $\beta > 0$
- If $\beta < 1$, Theorem 5 does not apply

Theorem 6 Given $h(x) = x^{\beta}$ for some $\beta > 0$. Then

• If
$$
\beta \ge \alpha
$$
, then $c_2^* = c^*$, and
\n
$$
X^* = (u'_+)^{-1} (\lambda \frac{\rho}{T'_+ (F(\rho))}) \mathbf{1}_{\rho \le c_2^*} - L \mathbf{1}_{\rho \ge c_2^*} + B.
$$

- Consider the case $h(x) = x^{\beta}$ with $\beta > 0$
- If $\beta < 1$, Theorem 5 does not apply

Theorem 6 Given $h(x) = x^{\beta}$ for some $\beta > 0$. Then

• If
$$
\beta \ge \alpha
$$
, then $c_2^* = c^*$, and
\n
$$
X^* = (u'_+)^{-1} (\lambda \frac{\rho}{T'_+ (F(\rho))}) \mathbf{1}_{\rho \le c_2^*} - L \mathbf{1}_{\rho \ge c_2^*} + B.
$$

• If
$$
\beta < \alpha
$$
, then $c_2^* = +\infty$, and
\n
$$
X^* = (u'_+)^{-1} (\lambda \frac{\rho}{T'_+ (F(\rho))}) \mathbf{1}_{\rho \le c^*} - \frac{\tilde{x}_+^* - \tilde{x}_0}{E \rho \mathbf{1}_{\rho \ge c^*}} \mathbf{1}_{\rho \ge c^*} + B.
$$

- Consider the case $h(x) = x^{\beta}$ with $\beta > 0$
- If $\beta < 1$, Theorem 5 does not apply

Theorem 6 Given $h(x) = x^{\beta}$ for some $\beta > 0$. Then

\n- If
$$
\beta \geq \alpha
$$
, then $c_2^* = c^*$, and $X^* = (u'_+)^{-1}(\lambda \frac{\rho}{T'_+(F(\rho))})1_{\rho \leq c_2^*} - L1_{\rho \geq c_2^*} + B$.
\n- If $\beta < \alpha$, then $c_2^* = +\infty$, and $X^* = (u'_+)^{-1}(\lambda \frac{\rho}{T'_+(F(\rho))})1_{\rho \leq c^*} - \frac{\tilde{x}_+^* - \tilde{x}_0}{E\rho 1_{\rho \geq c^*}}1_{\rho \geq c^*} + B$.
\n- In any case, X^* is a two-piece function of ρ .
\n

• Is the optimal solution always two-piece for power valuefunction?

- Is the optimal solution always two-piece for power valuefunction?
- A three-piece example:

$$
L = 10, \tilde{x}_0 = -1, \beta = 0.85, \alpha = 0.88, k = 2.25,
$$

\n
$$
\rho \sim \text{Lognormal}(-0.045, 0.09)
$$

\n
$$
h(x) = \begin{cases}\n0.5x & x \in [0, 0.05] \\
20 * 0.1^{\beta}(x - 0.05) + 0.025(0.1 - x) & x \in [0.05, 0.1] \\
x^{\beta} & x \in [0.1, 1]\n\end{cases}
$$

 \circ $^{\circ}$ The optimal solution \tilde{X}^{\ast} $^{\ast }=X^{\ast }$ $^* - B$ is as in the next figure

Thank you very much!