Optimal Stopping for Non-linear Expectations

Song Yao

Department of Mathematics, University of Michigan

A joint work with Erhan Bayraktar, University of Michigan

6th World Congress of the Bachelier Finance Society Toronto, Canada 6/23/2010

メロト メ都 トメ ヨ トメ ヨ

4 Introduction

- **2 F-Expectations and Their Properties**
- Collections of F-Expectations
- ⁴ Optimal Stopping with Multiple Priors

 Ω

メロト メ都 トメ ヨ トメ ヨ

Given a B.M. **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$
Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T]. \tag{1}
$$

• Assume that the generator g is Lipschitz in (y, z) . For any $\xi \in L^2(\mathcal{F}^B_T)$, (1) admits a unique solution (Y^{ξ}, Z^{ξ}) .

The solution mapping $\mathcal{E}_{\mathcal{g}}:\xi\mapsto Y_0^\xi$ \int_{0}^{ς} is called a *g-expectation*; And \forall $t \in [0,\, T]$, the *conditional g-expectation* of ξ w.r.t. \mathcal{F}^{B}_{t} is defined by $\mathcal{E}_{g}[\xi|\mathcal{F}^{B}_{t}] \stackrel{\triangle}{=} Y^{\xi}_{t}.$

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}^{B}_{T}).$

Given a B.M. **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$
Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T]. \tag{1}
$$

g-expectation via BSDE (Peng '93)

- Assume that the generator g is Lipschitz in (y, z) . For any $\xi \in L^2({\mathcal F}^B_T)$, (1) admits a unique solution (Y^ξ,Z^ξ) .
- The solution mapping $\mathcal{E}_{\mathcal{g}}:\xi\mapsto Y_0^\xi$ \int_{0}^{ς} is called a *g-expectation*; And \forall $t \in [0,\, T]$, the *conditional g-expectation* of ξ w.r.t. \mathcal{F}^{B}_{t} is defined by $\mathcal{E}_{g}[\xi|\mathcal{F}^{B}_{t}] \stackrel{\triangle}{=} Y^{\xi}_{t}.$

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}^{B}_{T}).$

Given a B.M. **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$
Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T]. \tag{1}
$$

g-expectation via BSDE (Peng '93)

- Assume that the generator g is Lipschitz in (y, z) . For any $\xi \in L^2({\mathcal F}^B_T)$, (1) admits a unique solution (Y^ξ,Z^ξ) .
- The solution mapping $\mathcal{E}_{\mathcal{g}}:\xi\mapsto\mathcal{Y}^{\xi}_{0}$ \int_{0}^{ζ} is called a g -expectation; And \forall $t\in[0,\,T]$, the *conditional g-expectation* of ξ w.r.t. \mathcal{F}^{B}_{t} is defined by $\mathcal{E}_{g}[\xi|\mathcal{F}_{t}^{B}] \stackrel{\triangle}{=} Y_{t}^{\xi}$.

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}^{B}_{T}).$

Given a B.M. **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$
Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T]. \tag{1}
$$

g-expectation via BSDE (Peng '93)

- Assume that the generator g is Lipschitz in (y, z) . For any $\xi \in L^2({\mathcal F}^B_T)$, (1) admits a unique solution (Y^ξ,Z^ξ) .
- The solution mapping $\mathcal{E}_{\mathcal{g}}:\xi\mapsto\mathcal{Y}^{\xi}_{0}$ \int_{0}^{ζ} is called a g -expectation; And \forall $t\in[0,\,T]$, the *conditional g-expectation* of ξ w.r.t. \mathcal{F}^{B}_{t} is defined by $\mathcal{E}_{g}[\xi|\mathcal{F}_{t}^{B}] \stackrel{\triangle}{=} Y_{t}^{\xi}$.

Note:

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}^{B}_{\mathcal{T}})$.

Properties of g-Expectations

Assume that $g|_{z=0}=0$ in (2)-(4) below. For any $\xi,\eta\in L^2({\mathcal F}^B_{\mathcal T})$

- **9** (Strict) Monotonicity: If $\xi \leq \eta$, then $\mathcal{E}_{g}\big[\xi|\mathcal{F}^{B}_{t}\big] \leq \mathcal{E}_{g}\big[\eta|\mathcal{F}^{B}_{t}\big],$ $\forall t \in [0, T]$; Moreover, if "=" holds for some t, then $\xi = \eta$;
- **2** Constant-preserving: $\mathcal{E}_{g} \big[\xi | \mathcal{F}_{t}^{B}\big] = \xi$, if $\xi \in L^{2}(\mathcal{F}_{t}^{B})$;
- **3** Time-consistency: $\mathcal{E}_{g}\Big[\mathcal{E}_{g}\big[\xi|\mathcal{F}^{B}_{t}\big]|\mathcal{F}_{s}\Big]=\mathcal{E}_{g}\big[\xi|\mathcal{F}^{B}_{t\wedge s}\big];$
- \bullet "Zero-one law": $\mathcal{E}_{\mathcal{g}}[\mathbf{1}_\mathcal{A}\xi|\mathcal{F}^\mathcal{B}_t]=\mathbf{1}_\mathcal{A}\mathcal{E}_{\mathcal{g}}\big[\xi|\mathcal{F}^\mathcal{B}_t\big],\ \ \forall\,\mathcal{A}\in\mathcal{F}^\mathcal{B}_t;$
- **Translation invariance:** If g is independent of y , then $\mathcal{E}_{g}[\xi + \eta | \mathcal{F}_{t}^{B}] = \mathcal{E}_{g}[\xi | \mathcal{F}_{t}^{B}] + \eta, \quad \text{if } \eta \in L^{2}(\mathcal{F}_{t}^{B}).$

 Ω

イロト イ押ト イヨト イヨト

Motivation: Optimal Stopping for g-expectations

Given a stopping time ν and an appropriate reward process Y, we are interested in finding a moment $\tau_*(\nu)\in\mathcal{S}^{\mathcal{B}}_{\nu,\mathcal{T}}$ such that

$$
\mathcal{E}_{g}\left[Y_{\tau_{*}(\nu)}|\mathcal{F}_{\nu}\right] = \underset{\gamma \in \mathcal{S}_{\nu,\mathcal{T}}^{\mathcal{B}}}{\text{essup }} \mathcal{E}_{g}\left[Y_{\gamma}|\mathcal{F}_{\nu}\right],
$$

where $\mathcal{S}^B_{\nu, \mathcal{T}}$ $\stackrel{\triangle}{=} \{\mathsf{F}^{\mathcal{B}}\textrm{-stopping times}\ \gamma:\ \nu\leq\gamma\leq\mathcal{T}\}.$

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 글 │ K) Q Q Q

Motivation: Optimal Stopping for g-expectations

Given a stopping time ν and an appropriate reward process Y, we are interested in finding a moment $\tau_*(\nu)\in\mathcal{S}^{\mathcal{B}}_{\nu,\mathcal{T}}$ such that

$$
\mathcal{E}_{g}\left[Y_{\tau_{*}(\nu)}|\mathcal{F}_{\nu}\right] = \operatorname*{ess\,}_{\gamma \in \mathcal{S}_{\nu,\mathcal{T}}^{\mathcal{B}}} \mathcal{E}_{g}\left[Y_{\gamma}|\mathcal{F}_{\nu}\right],
$$

where $\mathcal{S}^{\mathcal{B}}_{\nu, \mathcal{T}}$ $\stackrel{\triangle}{=} \{\mathsf{F}^{\mathcal{B}}\textrm{-stopping times}\ \gamma:\ \nu\leq\gamma\leq\mathcal{T}\}.$

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 글 │ K) Q Q Q

Filtration-Consistent Nonlinear Expectations

 \bullet **F** = { \mathcal{F}_t }_{t>0} — a generic right-continuous filtration on (Ω, \mathcal{F}, P) ; $\mathcal{S}_{\nu, \gamma} \stackrel{\triangle}{=} \big\{ \mathsf{F}\text{-stopping times }\sigma: \, \nu \leq \sigma \leq \gamma \big\}.$

An F-consistent non-linear expectation (F-expectation for short) with domain $\mathit{Dom}(\mathcal{E})=\Lambda\subset L^0(\mathcal{F}_\mathcal{T})$ is a family of operators $\big\{\mathcal{E}[\cdot|\mathcal{F}_\nu]$: $\Lambda\mapsto \Lambda_\nu\stackrel{\triangle}{=} \Lambda\cap L^0(\mathcal{F}_\nu)\big\}_{\nu\in\mathcal{S}_{0,\mathcal{T}}}$ such that for any $\,\forall\,\xi,\eta\in\Lambda$

- **(A1) (Strict) Monotonicity:** If $\xi \leq \eta$, then $\mathcal{E}[\xi|\mathcal{F}_\nu] \leq \mathcal{E}[\eta|\mathcal{F}_\nu]$, $\forall v \in S_0$ τ ; Moreover, if "=" holds for some $v \in S_0$ τ , then $\xi = \eta$;
- (A2) Time Consistency: $\mathcal{E}\big[\mathcal{E}[\xi|\mathcal{F}_\nu]\big|\mathcal{F}_\gamma\big]=\mathcal{E}[\xi|\mathcal{F}_{\nu\wedge\gamma}],\,\,\forall\,\gamma\in\mathcal{S}_{0,\mathcal{T}};$
- (A3) "Zero-one Law": $\mathcal{E}[1_A \xi | \mathcal{F}_\nu] = 1_A \mathcal{E}[\xi | \mathcal{F}_\nu], \ \forall A \in \mathcal{F}_\nu;$
- (A4) Translation Invariance : $\mathcal{E}[\xi + \eta | \mathcal{F}_\nu] = \mathcal{E}[\xi | \mathcal{F}_\nu] + \eta$, if $\eta \in \Lambda_\nu$.

イロト 不優 ト 不差 ト 不差 トー 差

 QQ

Note: $(A3)+(A4) \implies$ "Constant-preserving".

Filtration-Consistent Nonlinear Expectations

 \bullet **F** = { \mathcal{F}_t }_{t>0} — a generic right-continuous filtration on (Ω, \mathcal{F}, P) ; $\mathcal{S}_{\nu, \gamma} \stackrel{\triangle}{=} \big\{ \mathsf{F}\text{-stopping times }\sigma: \, \nu \leq \sigma \leq \gamma \big\}.$

An F-consistent non-linear expectation (F-expectation for short) with domain $\mathit{Dom}(\mathcal{E})=\Lambda\subset L^0(\mathcal{F}_\mathcal{T})$ is a family of operators $\big\{\mathcal{E}[\cdot|\mathcal{F}_\nu]$: $\Lambda\mapsto \Lambda_\nu\stackrel{\triangle}{=} \Lambda\cap L^0(\mathcal{F}_\nu)\big\}_{\nu\in\mathcal{S}_{0,\mathcal{T}}}$ such that for any $\,\forall\,\xi,\eta\in\Lambda$

- (A1) (Strict) Monotonicity: If $\xi \leq \eta$, then $\mathcal{E}[\xi|\mathcal{F}_\nu] \leq \mathcal{E}[\eta|\mathcal{F}_\nu]$, $\forall v \in S_{0,T}$; Moreover, if "=" holds for some $v \in S_{0,T}$, then $\xi = \eta$;
- (A2) Time Consistency: $\mathcal{E}\big[\mathcal{E}[\xi|\mathcal{F}_\nu]\big|\mathcal{F}_\gamma\big]=\mathcal{E}[\xi|\mathcal{F}_{\nu\wedge\gamma}],\ \forall \gamma\in\mathcal{S}_{0,\mathcal{T}};$
- (A3) "Zero-one Law": $\mathcal{E}[\mathbf{1}_A \xi | \mathcal{F}_\nu] = \mathbf{1}_A \mathcal{E}[\xi | \mathcal{F}_\nu], \ \forall A \in \mathcal{F}_\nu;$
- (A4) Translation Invariance : $\mathcal{E}[\xi + \eta | \mathcal{F}_\nu] = \mathcal{E}[\xi | \mathcal{F}_\nu] + \eta$, if $\eta \in \Lambda_\nu$.

K ロ X K (日) X X 정 X X 정 X X 정 ...

 QQQ

Note: $(A3)+(A4) \implies$ "Constant-preserving".

Filtration-Consistent Nonlinear Expectations

 \bullet **F** = { \mathcal{F}_t }_{t>0} — a generic right-continuous filtration on (Ω, \mathcal{F}, P) ; $\mathcal{S}_{\nu, \gamma} \stackrel{\triangle}{=} \big\{ \mathsf{F}\text{-stopping times }\sigma: \, \nu \leq \sigma \leq \gamma \big\}.$

An F-consistent non-linear expectation (F-expectation for short) with domain $\mathit{Dom}(\mathcal{E})=\Lambda\subset L^0(\mathcal{F}_\mathcal{T})$ is a family of operators $\big\{\mathcal{E}[\cdot|\mathcal{F}_\nu]$: $\Lambda\mapsto \Lambda_\nu\stackrel{\triangle}{=} \Lambda\cap L^0(\mathcal{F}_\nu)\big\}_{\nu\in\mathcal{S}_{0,\mathcal{T}}}$ such that for any $\,\forall\,\xi,\eta\in\Lambda$

- (A1) (Strict) Monotonicity: If $\xi \leq \eta$, then $\mathcal{E}[\xi|\mathcal{F}_\nu] \leq \mathcal{E}[\eta|\mathcal{F}_\nu]$, $\forall v \in S_{0,T}$; Moreover, if "=" holds for some $v \in S_{0,T}$, then $\xi = \eta$;
- (A2) Time Consistency: $\mathcal{E}\big[\mathcal{E}[\xi|\mathcal{F}_\nu]\big|\mathcal{F}_\gamma\big]=\mathcal{E}[\xi|\mathcal{F}_{\nu\wedge\gamma}],\ \forall \gamma\in\mathcal{S}_{0,\mathcal{T}};$
- (A3) "Zero-one Law": $\mathcal{E}[\mathbf{1}_A \mathcal{E} | \mathcal{F}_v] = \mathbf{1}_A \mathcal{E}[\mathcal{E} | \mathcal{F}_v], \ \forall A \in \mathcal{F}_v;$
- (A4) Translation Invariance : $\mathcal{E}[\xi + \eta | \mathcal{F}_\nu] = \mathcal{E}[\xi | \mathcal{F}_\nu] + \eta$, if $\eta \in \Lambda_\nu$.

K ロ X K (日) X X 정 X X 정 X X 정 ...

 QQQ

Note: $(A3)+(A4) \implies$ "Constant-preserving".

Algebraic requirements on domain $Dom(\mathcal{E}) = \Lambda$

Obviously, (A3) and (A4) entail that

• For any $\xi, \eta \in \Lambda$ and $A \in \mathcal{F}_T$, both $\xi + \eta$ and $\mathbf{1}_A \xi$ belong to Λ ,

which implies that $\xi \vee \eta = \xi \mathbf{1}_{\{\xi > \eta\}} + \eta \mathbf{1}_{\{\xi < \eta\}} \in \Lambda$, similarly, $\xi \wedge \eta \in \Lambda$;

Moreover, we assume that $\mathbb{R} \subset \Lambda$ and that

 Λ is positively solid : For any $\xi,\eta\in L^0({\cal F}_{{\cal T}})$ with $0\le\xi\le\eta,$ if $\eta\in\Lambda,$ then $\xi \in \Lambda$ as well.

イロメ 不優 メイ君メ 不屈 メー 君

 QQQ

 $L^p(\mathcal{F}_T)$, $0 \leq p \leq \infty$, are candidates for Λ described above.

Algebraic requirements on domain $Dom(\mathcal{E}) = \Lambda$

Obviously, (A3) and (A4) entail that

• For any $\xi, \eta \in \Lambda$ and $A \in \mathcal{F}_T$, both $\xi + \eta$ and $\mathbf{1}_A \xi$ belong to Λ ,

which implies that $\xi \vee \eta = \xi \mathbf{1}_{\{\xi > \eta\}} + \eta \mathbf{1}_{\{\xi < \eta\}} \in \Lambda$, similarly, $\xi \wedge \eta \in \Lambda$;

Moreover, we assume that $\mathbb{R} \subset \Lambda$ and that

 Λ is positively solid : For any $\xi,\eta\in L^0({\cal F}_{{\cal T}})$ with $0\le\xi\le\eta,$ if $\eta\in\Lambda,$ then $\xi \in \Lambda$ as well.

イロト イ母 トイミト イミト ニヨー りんぴ

 $L^p(\mathcal{F}_T)$, $0 \leq p \leq \infty$, are candidates for Λ described above.

Algebraic requirements on domain $Dom(\mathcal{E}) = \Lambda$

Obviously, (A3) and (A4) entail that

• For any $\xi, \eta \in \Lambda$ and $A \in \mathcal{F}_T$, both $\xi + \eta$ and $\mathbf{1}_A \xi$ belong to Λ ,

which implies that $\xi \vee \eta = \xi \mathbf{1}_{\{\xi > \eta\}} + \eta \mathbf{1}_{\{\xi < \eta\}} \in \Lambda$, similarly, $\xi \wedge \eta \in \Lambda$;

Moreover, we assume that $\mathbb{R} \subset \Lambda$ and that

 Λ is positively solid : For any $\xi,\eta\in L^0({\cal F}_{{\cal T}})$ with $0\le\xi\le\eta,$ if $\eta\in\Lambda,$ then $\xi \in \Lambda$ as well.

イロト イ母 トイミト イミト ニヨー りんぴ

Example

 $L^p(\mathcal{F}_\mathcal{T})$, $0 \leq p \leq \infty$, are candidates for Λ described above.

Assumptions on F-expectations

To extend Fatou's lemma, the Dominated Convergence Theorem and etc. to the **F**-expectation \mathcal{E} , we assume

\n- (H0) For any
$$
A \in \mathcal{F}_T
$$
 with $P(A) > 0$, one has $\lim_{n \to \infty} \mathcal{E}[n\mathbf{1}_A] = \infty$;
\n- (H1) For any $\xi \in Dom^+(\mathcal{E})$ and any $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}_T$ with $\lim_{n \to \infty} \uparrow \mathbf{1}_{A_n} = 1$, one has $\lim_{n \to \infty} \uparrow \mathcal{E}[\mathbf{1}_{A_n}\xi] = \mathcal{E}[\xi]$;
\n- (H2) For any $\xi, \eta \in Dom^+(\mathcal{E})$ and any $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}_T$ with $\lim_{n \to \infty} \downarrow \mathbf{1}_{A_n} = 0$, one has $\lim_{n \to \infty} \downarrow \mathcal{E}[\xi + \mathbf{1}_{A_n}\eta] = \mathcal{E}[\xi]$;
\n- where $Dom^+(\mathcal{E}) \stackrel{\triangle}{=} \{f \in Dom(\mathcal{E}) : f > 0\}$.
\n

where $\mathit{Dom}^+(\mathcal{E})\stackrel{\triangle}{=}\{\xi\in\mathit{Dom}(\mathcal{E}):\,\xi\geq 0\}.$

 $(H0)-(H2)$ are satisfied by the linear expectation E, Lipschitz and quadratic g-expectations.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

STEP

Assumptions on F-expectations

To extend Fatou's lemma, the Dominated Convergence Theorem and etc. to the **F**-expectation \mathcal{E} , we assume

(H0) For any
$$
A \in \mathcal{F}_T
$$
 with $P(A) > 0$, one has $\lim_{n \to \infty} \mathcal{E}[n1_A] = \infty$;

(H1) For any $\xi \in Dom^+(\mathcal{E})$ and any $\{A_n\}_{n\in\mathbb{N}} \subset \mathcal{F}_{\mathcal{T}}$ with $\lim_{n\to\infty} \uparrow \mathbf{1}_{A_n} = 1$, one has $\lim_{n\to\infty}$ \upbeta $\mathcal{E}[\mathbf{1}_{A_n} \xi] = \mathcal{E}[\xi]$;

(H2) For any $\xi, \eta \in Dom^+(\mathcal{E})$ and any $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}_{\mathcal{T}}$ with $\lim_{n \to \infty} \downarrow \mathbf{1}_{A_n} = 0$, one has $\lim_{n\to\infty} \downarrow \mathcal{E}[\xi + \mathbf{1}_{A_n} \eta] = \mathcal{E}[\xi];$

イロト イ部 トイヨ トイヨト

 \Rightarrow

 QQQ

where $\mathit{Dom}^+(\mathcal{E})\stackrel{\triangle}{=}\{\xi\in\mathit{Dom}(\mathcal{E}):\,\xi\geq 0\}.$

Note:

 $(H0)-(H2)$ are satisfied by the linear expectation E, Lipschitz and quadratic g-expectations.

Basic Properties

Fatou's Lemma

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some $\xi \in Dom^+(\mathcal{E})$, then for any $\nu \in \mathcal{S}_{0,T}$

$$
\mathcal{E}[\xi|\mathcal{F}_\nu] \leq \lim_{n \to \infty} \mathcal{E}[\xi_n|\mathcal{F}_\nu].
$$

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some ξ . If there is an $\eta \in Dom^+(\mathcal{E})$ such that $\xi_n \leq \eta$, $\forall n \in \mathbb{N}$, then $\xi \in Dom^+(\mathcal{E})$ and for any $\nu \in \mathcal{S}_0$ τ

$$
\lim_{n\to\infty}\mathcal{E}[\xi_n|\mathcal{F}_\nu]=\mathcal{E}[\xi|\mathcal{F}_\nu].
$$

 200

メロト メ都 トメ ヨ トメ ヨ

Basic Properties

Fatou's Lemma

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some $\xi \in Dom^+(\mathcal{E})$, then for any $\nu \in \mathcal{S}_{0,T}$

$$
\mathcal{E}[\xi|\mathcal{F}_\nu] \leq \lim_{n \to \infty} \mathcal{E}[\xi_n|\mathcal{F}_\nu].
$$

Dominated Convergence Theorem

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some ξ . If there is an $\eta \in Dom^+(\mathcal{E})$ such that $\xi_n \leq \eta$, $\forall n \in \mathbb{N}$, then $\xi \in Dom^+(\mathcal{E})$ and for any $\nu \in \mathcal{S}_{0,T}$

$$
\lim_{n\to\infty}\mathcal{E}[\xi_n|\mathcal{F}_\nu]=\mathcal{E}[\xi|\mathcal{F}_\nu].
$$

 200

K ロ ト K 何 ト K ヨ ト K

• An F-adapted process X is said to be an \mathcal{E} -supermartingale (resp. E-submartingale) if for any $0 \le s \le t \le T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \leq$ (resp. \geq) X_s .

Let X be a non-negative $\mathcal E$ -supermartingale.

(1) $P(X_t^+)$ $\stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r$ exists ∀ t ∈ [0, T] $\Big) = 1$. To wit, X⁺ defines an RCLL F-adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X_t^+\leq X_t$, \forall t \in [0, T]. Moreover, if the function $t\mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. E-submartingale). If $X_{\nu} \in Dom^+(\mathcal{E})$, $\forall \nu \in \mathcal{S}_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq$ (resp. \geq) $X_{\nu \wedge \sigma}$, $\forall \nu, \sigma \in \mathcal{S}_{0,T}$.

イロン イ部ン イミン イミン

B

 QQ

• An F-adapted process X is said to be an \mathcal{E} -supermartingale (resp. E-submartingale) if for any $0 \leq s < t \leq T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \leq$ (resp. \geq) X_s .

Proposition

Let X be a non-negative $\mathcal E$ -supermartingale.

(1) $P(X_t^+)$ $\stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r$ exists $\forall t \in [0, T] \Big) = 1$. To wit, X^+ defines an RCLL F -adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X_t^+\leq X_t$, \forall t \in [0, T]. Moreover, if the function $t\mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. E-submartingale). If $X_{\nu} \in Dom^+(\mathcal{E})$, $\forall \nu \in \mathcal{S}_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq (resp. \geq) X_{\nu \wedge \sigma}, \quad \forall \nu, \sigma \in \mathcal{S}_{0,T}.$

 QQ

イロン イ部ン イミン イミン

• An F-adapted process X is said to be an \mathcal{E} -supermartingale (resp. E-submartingale) if for any $0 \le s \le t \le T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \leq$ (resp. \geq) X_s .

Proposition

Let X be a non-negative $\mathcal E$ -supermartingale.

(1) $P(X_t^+)$ $\stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r$ exists $\forall t \in [0, T] \Big) = 1$. To wit, X^+ defines an RCLL F -adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X^+_t \leq X_t$, \forall $t \in [0,T]$. Moreover, if the function $t \mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. E-submartingale). If $X_{\nu} \in Dom^+(\mathcal{E})$, $\forall \nu \in \mathcal{S}_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq (resp. \geq) X_{\nu \wedge \sigma}, \quad \forall \nu, \sigma \in \mathcal{S}_{0,T}.$

 QQ

K ロ > K 個 > K 差 > K 差 > 一差

• An F-adapted process X is said to be an \mathcal{E} -supermartingale (resp. E-submartingale) if for any $0 \le s \le t \le T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \leq$ (resp. \geq) X_s .

Proposition

Let X be a non-negative $\mathcal E$ -supermartingale.

(1) $P(X_t^+)$ $\stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r$ exists $\forall t \in [0, T] \Big) = 1$. To wit, X^+ defines an RCLL F -adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X^+_t \leq X_t$, \forall $t \in [0,T]$. Moreover, if the function $t \mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Optional Sampling Theorem

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. E-submartingale). If $X_{\nu} \in Dom^{+}(\mathcal{E})$, $\forall \nu \in \mathcal{S}_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq$ (resp. \geq) $X_{\nu \wedge \sigma}$, $\forall \nu, \sigma \in \mathcal{S}_{0,T}$.

 QQ

 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

Let $\mathcal{E}_{i},\mathcal{E}_{j}$ be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu\in\mathcal{S}_{0,\mathcal{T}},$ the pasting of $\mathcal{E}_{i},\mathcal{E}_{j}$ at ν is defined by the following RCLL F-adapted process

 $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{t}]\stackrel{\triangle}{=} \mathbf{1}_{\{\nu\leq t\}}\mathcal{E}_{j}[\xi|\mathcal{F}_{t}]+\mathbf{1}_{\{\nu>t\}}\mathcal{E}_{i}[\xi|\mathcal{F}_{\nu}]\big|\mathcal{F}_{t}],\quad t\in[0,T]$

for any $\xi\in \Lambda^+$. Then $\mathcal{E}_{i,j}^\nu$ is an **F**-expectation with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_i are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

- For any $\xi \in \Lambda^+$ and $\sigma \in \mathcal{S}_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i\big[\mathcal{E}_j[\xi|\mathcal{F}_{\nu\vee\sigma}]\big|\mathcal{F}_{\sigma}\big].$
- Pasting may not preserve (H0). But, positive-convexity implies (H0).

イロト イ部 トイヨ トイヨト

 200

÷

Let $\mathcal{E}_{i},\mathcal{E}_{j}$ be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu\in\mathcal{S}_{0,\mathcal{T}}$, the pasting of $\mathcal{E}_{i},\mathcal{E}_{j}$ at ν is defined by the following RCLL F-adapted process

$$
\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_\nu]|\mathcal{F}_t], \quad t \in [0, T]
$$

for any $\xi\in \Lambda^+$. Then $\mathcal{E}_{i,j}^\nu$ is an $\textsf{F-expectation}$ with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_i are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

- For any $\xi \in \Lambda^+$ and $\sigma \in \mathcal{S}_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i\big[\mathcal{E}_j[\xi|\mathcal{F}_{\nu\vee\sigma}]\big|\mathcal{F}_{\sigma}\big].$
- Pasting may not preserve (H0). But, positive-convexity implies (H0).

イロト イ母 トイヨ トイヨト

Let $\mathcal{E}_{i},\mathcal{E}_{j}$ be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu\in\mathcal{S}_{0,\mathcal{T}}$, the pasting of $\mathcal{E}_{i},\mathcal{E}_{j}$ at ν is defined by the following RCLL F-adapted process

$$
\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_\nu]|\mathcal{F}_t], \quad t \in [0, T]
$$

for any $\xi\in \Lambda^+$. Then $\mathcal{E}_{i,j}^\nu$ is an $\textsf{F-expectation}$ with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_i are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

• For any
$$
\xi \in \Lambda^+
$$
 and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu \vee \sigma}]\mathcal{F}_{\sigma}].$

• Pasting may not preserve (H0). But, positive-convexity implies (H0).

イロト イ部 トメ ヨ トメ ヨト

Let $\mathcal{E}_{i},\mathcal{E}_{j}$ be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu\in\mathcal{S}_{0,\mathcal{T}}$, the pasting of $\mathcal{E}_{i},\mathcal{E}_{j}$ at ν is defined by the following RCLL F-adapted process

$$
\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_\nu]|\mathcal{F}_t], \quad t \in [0, T]
$$

for any $\xi\in \Lambda^+$. Then $\mathcal{E}_{i,j}^\nu$ is an $\textsf{F-expectation}$ with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_i are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

• For any
$$
\xi \in \Lambda^+
$$
 and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu \vee \sigma}]\mathcal{F}_{\sigma}].$

• Pasting may not preserve (H0). But, positive-convexity implies (H0).

イロト イ部 トメ ヨ トメ ヨト

Let $\mathcal{E}_{i},\mathcal{E}_{j}$ be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu\in\mathcal{S}_{0,\mathcal{T}}$, the pasting of $\mathcal{E}_{i},\mathcal{E}_{j}$ at ν is defined by the following RCLL F-adapted process

$$
\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_\nu]|\mathcal{F}_t], \quad t \in [0, T]
$$

for any $\xi\in \Lambda^+$. Then $\mathcal{E}_{i,j}^\nu$ is an $\textsf{F-expectation}$ with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_i are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

• For any
$$
\xi \in \Lambda^+
$$
 and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu \vee \sigma}]\mathcal{F}_{\sigma}].$

Pasting may not preserve (H0). But, positive-convexity implies (H0).

イロト イ母 トイヨ トイヨト

Stable Classes

A class $\mathscr{E} = {\{\mathcal{E}_i\}}_{i \in \mathcal{I}}$ of **F**-expectations is said to be *stable* if

(1) All $\mathcal{E}_i,\,i\in\mathcal{I}$ are positively-convex **F**-expectations with the same domain $Λ$ and satisfying $(H1)$, $(H2)$;

(2) $\mathscr E$ is closed under pasting: namely, for any $i, j \in \mathcal I$ and $\nu \in \mathcal S_{0,T}$, there exists a $k = k(i,j,\nu) \in \mathcal{I}$ such that $\mathcal{E}^{\nu}_{i,j} = \mathcal{E}_k$ over $\mathsf{\Lambda}^{+}.$

We shall denote $\mathit{Dom}(\mathscr{E})\stackrel{\triangle}{=} \Lambda^+=\mathit{Dom}^+(\mathcal{E}_i),\,\,\forall\,i\in\mathcal{I}.$

 Ω

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Stable Classes

A class $\mathscr{E} = {\{\mathcal{E}_i\}}_{i \in \mathcal{I}}$ of **F**-expectations is said to be *stable* if (1) All $\mathcal{E}_i,\,i\in\mathcal{I}$ are positively-convex **F**-expectations with the same domain $Λ$ and satisfying $(H1)$, $(H2)$;

(2) $\mathscr E$ is closed under pasting: namely, for any $i, j \in \mathcal I$ and $\nu \in \mathcal S_{0,T}$, there exists a $k = k(i,j,\nu) \in \mathcal{I}$ such that $\mathcal{E}^{\nu}_{i,j} = \mathcal{E}_k$ over $\mathsf{\Lambda}^{+}.$

() 6/23/2010 12 / 17

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

 Ω

We shall denote $\mathit{Dom}(\mathscr{E})\stackrel{\triangle}{=} \Lambda^+=\mathit{Dom}^+(\mathcal{E}_i),\,\,\forall\,i\in\mathcal{I}.$

Optimal Stopping with Multiple Priors

The stopper aims to find an optimal moment in a situation of multiple priors and the *Nature* is in cooperation with the stopper. More precisely, the stopper finds an optimal stopping time τ^* that satisfies

$$
\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,T}}\mathcal{E}_i\left[Y_{\gamma}^i\right]=\sup_{i\in\mathcal{I}}\mathcal{E}_i\left[Y_{\tau^*}^i\right],\tag{2}
$$

◆ Construc

 Ω

イロト 不優 ト 不差 ト 不差 トー 差

where

- \bullet $\mathscr{E} = {\{\mathcal{E}_i\}_{i \in \mathcal{I}}}$ is a stable class of **F**-expectations,
- Y_t^i $\stackrel{\triangle}{=} Y_t + \int_0^t h^j_s ds, \,\, \forall \ t \in [0,\, \mathcal{T}]\colon\, Y$ is a primary reward process, and h^i is a *model*-dependent cumulative reward process.

Optimal Stopping with Multiple Priors

The stopper aims to find an optimal moment in a situation of multiple priors and the *Nature* is in cooperation with the stopper. More precisely, the stopper finds an optimal stopping time τ^* that satisfies

$$
\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,T}}\mathcal{E}_i\left[Y_{\gamma}^i\right]=\sup_{i\in\mathcal{I}}\mathcal{E}_i\left[Y_{\tau^*}^i\right],\tag{2}
$$

◆ Construc

イロト イ母 トイミト イミト ニヨー りんぴ

where

- \bullet $\mathscr{E} = {\mathcal{E}_i}_{i \in \mathcal{I}}$ is a stable class of **F**-expectations,
- Y_t^i $\stackrel{\triangle}{=} Y_t + \int_0^t h^j_s ds, \,\, \forall \ t \in [0,\, \mathcal{T}]\colon\, Y$ is a primary reward process, and h^i is a *model*-dependent cumulative reward process.

Optimal Stopping with Multiple Priors

The stopper aims to find an optimal moment in a situation of multiple priors and the *Nature* is in cooperation with the stopper. More precisely, the stopper finds an optimal stopping time τ^* that satisfies

$$
\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,T}}\mathcal{E}_i\left[Y_{\gamma}^i\right]=\sup_{i\in\mathcal{I}}\mathcal{E}_i\left[Y_{\tau^*}^i\right],\tag{2}
$$

◆ Construc

イロト イ母 トイミト イミト ニヨー りんぴ

where

- \bullet $\mathscr{E} = {\mathcal{E}_i}_{i \in \mathcal{I}}$ is a stable class of **F**-expectations,
- Y_t^i $\stackrel{\triangle}{=} Y_t + \int_0^t h^i_s ds, \,\, \forall \ t \in [0,\, \mathcal{T}]\: : \: Y$ is a primary reward process, and hⁱ is a *model*-dependent cumulative reward process.

- \bullet Y a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in \mathcal{S}_0$ τ .
- $\{h^{i}\}_{i\in\mathcal{I}}$ a family of non-negative progressive processes such that (1) For any $i \in \mathcal{I}$, $\int_0^T h_t^i dt \in Dom(\mathscr{E})$; (2) For any $i, j \in \mathcal{I}$, $\nu \in \mathcal{S}_{0,\mathcal{T}}$ and $t \in [0, \mathcal{T}]$

$$
h_t^k = \mathbf{1}_{\{\nu \leq t\}} h_t^j + \mathbf{1}_{\{\nu > t\}} h_t^j, \quad dt \times dP\text{-a.s.},
$$

where $k=k(i,j,\nu)$ is the index in the definition of stable class.

Moreover, we assume that $\sup \quad \mathcal{E}_i\left[Y^i_{\gamma}\right]<\infty.$

In light of (A4), instead of non-negativity, it suffices to assume that $Y \ge c$ for some $c < 0$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- \bullet Y a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in \mathcal{S}_0$ τ .
- $\{h^{i}\}_{i\in\mathcal{I}}$ a family of non-negative progressive processes such that (1) For any $i \in \mathcal{I}$, $\int_0^T h_t^i dt \in Dom(\mathscr{E})$; (2) For any $i, j \in \mathcal{I}$, $\nu \in \mathcal{S}_{0,\mathcal{T}}$ and $t \in [0, \mathcal{T}]$ $h_t^k = \mathbf{1}_{\{\nu \leq t\}} h_t^j + \mathbf{1}_{\{\nu > t\}} h_t^i, \quad dt \times dP$ -a.s., where $k = k(i,j,\nu)$ is the index in the definition of stable class.

Moreover, we assume that $\sup \quad \mathcal{E}_i\left[Y^i_{\gamma}\right]<\infty.$

In light of (A4), instead of non-negativity, it suffices to assume that $Y > c$ for some $c < 0$.

イロン イ部ン イヨン イヨン 一番

- \bullet Y a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in \mathcal{S}_0$ τ .
- $\{h^{i}\}_{i\in\mathcal{I}}$ a family of non-negative progressive processes such that (1) For any $i \in \mathcal{I}$, $\int_0^T h_t^i dt \in Dom(\mathscr{E})$; (2) For any $i, j \in \mathcal{I}$, $\nu \in \mathcal{S}_{0,\mathcal{T}}$ and $t \in [0, \mathcal{T}]$ $h_t^k = \mathbf{1}_{\{\nu \leq t\}} h_t^j + \mathbf{1}_{\{\nu > t\}} h_t^i, \quad dt \times dP$ -a.s., where $k = k(i,j,\nu)$ is the index in the definition of stable class. Moreover, we assume that $\sup\quad \mathcal{E}_i\left[Y^i_{\gamma}\right]<\infty.$ $(i,\gamma) \in \mathcal{I} \times \mathcal{S}_0$ τ

In light of (A4), instead of non-negativity, it suffices to assume that $Y > c$ for some $c < 0$.

イロメ 不優 メイ君メ 不屈 メー 君

- \bullet Y a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in \mathcal{S}_0$ τ .
- $\{h^{i}\}_{i\in\mathcal{I}}$ a family of non-negative progressive processes such that (1) For any $i \in \mathcal{I}$, $\int_0^T h_t^i dt \in Dom(\mathscr{E})$; (2) For any $i, j \in \mathcal{I}$, $\nu \in \mathcal{S}_{0,\mathcal{T}}$ and $t \in [0, \mathcal{T}]$ $h_t^k = \mathbf{1}_{\{\nu \leq t\}} h_t^j + \mathbf{1}_{\{\nu > t\}} h_t^i, \quad dt \times dP$ -a.s., where $k = k(i,j,\nu)$ is the index in the definition of stable class. Moreover, we assume that $\sup\quad \mathcal{E}_i\left[Y^i_{\gamma}\right]<\infty.$ $(i,\gamma) \in \mathcal{I} \times \mathcal{S}_0$ T

Note:

In light of (A4), instead of non-negativity, it suffices to assume that $Y \geq c$ for some $c < 0$.

KOD KARD KED KED E VAN

 $\forall \, \nu \in \mathcal{S}_{0,\mathcal{T}}$, we define $Z(\nu) \stackrel{\triangle}{=} \operatorname*{esssup}_{(i,\gamma) \in \mathcal{T} \times \mathcal{S}} \,\, \mathcal{E}_i \left[Y_\gamma + \int_\nu^\gamma h_t^j dt \big| \mathcal{F}_\nu \right] \geq Y_\nu.$ $(i,\gamma) \in \mathcal{I} \times \mathcal{S}_{\nu}$ T

 $\forall i \in \mathcal{I}$ and $\forall \nu \in \mathcal{S}_{0,\mathcal{T}}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_0^{\nu} h^i_t dt$.

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in \mathcal{S}_{0,\mathcal{T}}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_\nu] \leq Z^i(\nu)$, which shows that $\left\{ Z^i(t)\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\left\{ Z(t)\right\} _{t\in\left[0,\mathcal{T}\right] }$ admits an RCLL modification $Z^{0}.$

We call Z^0 the $\mathscr E$ -upper Snell envelope of Y : It is the smallest <code>RCLL</code> **F**-adapted process dominating Y such that $\left\{Z_t^0 + \int_0^t h_s^i ds\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

•
$$
\forall \nu \in S_{0,T}
$$
, we define $Z(\nu) \stackrel{\triangle}{=} \operatorname*{esssup}_{(i,\gamma) \in \mathcal{I} \times S_{\nu,T}} \mathcal{E}_i \left[Y_{\gamma} + \int_{\nu}^{\gamma} h_t^i dt \middle| \mathcal{F}_{\nu} \right] \ge Y_{\nu}$.

 $\forall i \in \mathcal{I}$ and $\forall \nu \in \mathcal{S}_{0,\mathcal{T}}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_0^{\nu} h^i_t dt$.

Proposition

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in \mathcal{S}_{0,\mathcal{T}}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_\nu] \leq Z^i(\nu)$, which shows that $\left\{ Z^i(t)\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\left\{ Z(t)\right\} _{t\in\left[0,\mathcal{T}\right] }$ admits an RCLL modification $Z^{0}.$

We call Z^0 the $\mathscr E$ -upper Snell envelope of Y : It is the smallest <code>RCLL</code> **F**-adapted process dominating Y such that $\left\{Z_t^0 + \int_0^t h_s^i ds\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

KONKAPIK KENYEN E

つへへ

•
$$
\forall \nu \in S_{0,T}
$$
, we define $Z(\nu) \stackrel{\triangle}{=} \underset{(i,\gamma) \in \mathcal{I} \times \mathcal{S}_{\nu,T}}{\text{esssup}} \mathcal{E}_i \left[Y_{\gamma} + \int_{\nu}^{\gamma} h_t^i dt \middle| \mathcal{F}_{\nu} \right] \ge Y_{\nu}$.

 $\forall i \in \mathcal{I}$ and $\forall \nu \in \mathcal{S}_{0,\mathcal{T}}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_0^{\nu} h^i_t dt$.

Proposition

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in \mathcal{S}_{0,\mathcal{T}}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_\nu] \leq Z^i(\nu)$, which shows that $\left\{ Z^i(t)\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\left\{ Z(t)\right\} _{t\in\left[0,T\right] }$ admits an RCLL modification $Z^{0}.$

We call Z^0 the $\mathscr E$ -upper Snell envelope of Y : It is the smallest <code>RCLL</code> **F**-adapted process dominating Y such that $\left\{Z_t^0 + \int_0^t h_s^i ds\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

つへへ

•
$$
\forall \nu \in S_{0,T}
$$
, we define $Z(\nu) \stackrel{\triangle}{=} \underset{(i,\gamma) \in \mathcal{I} \times S_{\nu,T}}{\text{esssup}} \mathcal{E}_i \left[Y_{\gamma} + \int_{\nu}^{\gamma} h_t^i dt \middle| \mathcal{F}_{\nu} \right] \ge Y_{\nu}$.

 $\forall i \in \mathcal{I}$ and $\forall \nu \in \mathcal{S}_{0,\mathcal{T}}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_0^{\nu} h^i_t dt$.

Proposition

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in \mathcal{S}_{0,\mathcal{T}}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_\nu] \leq Z^i(\nu)$, which shows that $\left\{ Z^i(t)\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\left\{ Z(t)\right\} _{t\in\left[0,T\right] }$ admits an RCLL modification $Z^{0}.$

We call Z^0 the $\mathscr E$ -upper Snell envelope of Y : It is the smallest <code>RCLL</code> **F**-adapted process dominating Y such that $\left\{Z_t^0 + \int_0^t h_s^i ds\right\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

KONKAPIK KENYEN E

Constructing an Optimal Stopping Time

• Given $\nu \in \mathcal{S}_{0,T}$, the stopping time $\tau_\delta(\nu) \stackrel{\triangle}{=}$ inf $\big\{\,t\in[\nu,\,T] :\ Y_t \geq \delta Z^0_t\,\big\} \wedge \mathcal{T}$ is increasing in $\delta \in (0,1).$ Set $\overline{\tau}(\nu) \stackrel{\triangle}{=} \lim_{\delta \nearrow 1} \tau_{\delta}(\nu).$ Then $\overline{\tau}(0)$ is an optimal stopping time for [\(2\)](#page-30-0).

The family $\{Y^i\}_{i\in\mathcal{I}}$ is called \mathcal{E} -uniformly-left-continuous if $\forall v, \gamma \in \mathcal{S}_{0, \mathcal{T}}$ with $\nu \leq \gamma$ and for any sequence $\{\gamma_n\}_{n\in\mathbb{N}} \subset \mathcal{S}_{\nu,T}$ with $\gamma_n \nearrow \gamma$

$$
\lim_{n\to\infty}\operatorname*{esssup}_{i\in\mathcal{I}}\left|\mathcal{E}_i\left[\tfrac{n}{n-1}Y_{\gamma_n}+\int_{0}^{\gamma_n}h_t^i dt\big|\mathcal{F}_\nu\right]-\mathcal{E}_i\big[Y_\gamma^i\big|\mathcal{F}_\nu\big]\right|=0.
$$

 Ω

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Constructing an Optimal Stopping Time

\n- Given
$$
\nu \in \mathcal{S}_{0,T}
$$
, the stopping time $\tau_{\delta}(\nu) \stackrel{\triangle}{=} \inf \left\{ t \in [\nu, T] : Y_t \geq \delta Z_t^0 \right\} \wedge T$ is increasing in $\delta \in (0, 1)$.
\n- Set $\overline{\tau}(\nu) \stackrel{\triangle}{=} \lim_{\delta \nearrow 1} \tau_{\delta}(\nu)$. Then $\overline{\tau}(0)$ is an optimal stopping time for (2).
\n

The family $\{Y^i\}_{i\in\mathcal{I}}$ is called \mathcal{E} -uniformly-left-continuous if $\forall v, \gamma \in \mathcal{S}_{0, \mathcal{T}}$ with $\nu \leq \gamma$ and for any sequence $\{\gamma_n\}_{n\in\mathbb{N}} \subset \mathcal{S}_{\nu,T}$ with $\gamma_n \nearrow \gamma$

$$
\lim_{n\to\infty}\operatorname*{esssup}_{i\in\mathcal{I}}\left|\mathcal{E}_i\left[\tfrac{n}{n-1}Y_{\gamma_n}+\int_0^{\gamma_n}h_t^idt\big|\mathcal{F}_\nu\right]-\mathcal{E}_i\big[Y_\gamma^i\big|\mathcal{F}_\nu\big]\right|=0.
$$

 QQ

イロト イ部 トイヨ トイヨト

 Ω . S.

Constructing an Optimal Stopping Time

\n- Given
$$
\nu \in \mathcal{S}_{0,T}
$$
, the stopping time $\tau_{\delta}(\nu) \stackrel{\triangle}{=} \inf \left\{ t \in [\nu, T] : Y_t \geq \delta Z_t^0 \right\} \wedge T$ is increasing in $\delta \in (0, 1)$.
\n- Set $\overline{\tau}(\nu) \stackrel{\triangle}{=} \lim_{\delta \nearrow 1} \tau_{\delta}(\nu)$. Then $\overline{\tau}(0)$ is an optimal stopping time for (2).
\n

Definition

The family $\{Y^i\}_{i\in\mathcal{I}}$ is called \mathcal{E} -uniformly-left-continuous if $\forall \nu, \gamma \in \mathcal{S}_{0, \mathcal{T}}$ with $\nu \leq \gamma$ and for any sequence $\{\gamma_n\}_{n\in\mathbb{N}} \subset S_{\nu,T}$ with $\gamma_n \nearrow \gamma$

$$
\lim_{n\to\infty}\operatorname*{esssup}_{i\in\mathcal{I}}\Big|\mathcal{E}_i\big[\tfrac{n}{n-1}Y_{\gamma_n}+\int_0^{\gamma_n}h_t^i dt\big|\mathcal{F}_\nu\big]-\mathcal{E}_i\big[Y_\gamma^i\big|\mathcal{F}_\nu\big]\Big|=0.
$$

 Ω

イロト イ何 トイヨト イヨト ニヨー

Assume that $\{Y^i\}_{i\in\mathcal{I}}$ is " $\mathscr{E}\text{-}\mathsf{uniformly}\text{-}\mathsf{left}\text{-}\mathsf{continuous}$ ".

$$
\bullet \ \overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \big\{ t \in [\nu, T] : Z_t^0 = Y_t \big\}.
$$

For any $\nu\in\mathcal{S}_{0,\mathcal{T}}$ and $\gamma\in\mathcal{S}_{\nu,\overline{\tau}(\nu)},$

$$
Z(\nu) = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}]
$$

=
$$
\operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}] = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Z(\gamma) + \int_{\nu}^{\gamma} h_t^i dt | \mathcal{F}_{\nu}].
$$

In particular, when $\nu=0$, $\overline{\tau}(0)=\inf\left\{t\in[0,\,T]:\,Z^0_t=Y_t\right\}$ satisfies

$$
\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,T}}\mathcal{E}_{i}\big[Y_{\gamma}^{i}\big]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_{i}\big[Y_{\overline{\tau}(0)}^{i}\big].
$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time $t = 0$, is an optimal stopping time for [\(2\)](#page-30-0).

イロト イ母 トイヨ トイヨト

 Ω

Assume that $\{Y^i\}_{i\in\mathcal{I}}$ is " $\mathscr{E}\text{-uniformly-left-continuous}$ ".

\n- \n
$$
\overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \left\{ t \in [\nu, T] : Z_t^0 = Y_t \right\}.
$$
\n
\n- \n For any $\nu \in S_{0, T}$ and $\gamma \in S_{\nu, \overline{\tau}(\nu)}$,\n
$$
Z(\nu) = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i \left[Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt \middle| \mathcal{F}_{\nu} \right]
$$
\n
$$
= \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i \left[Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt \middle| \mathcal{F}_{\nu} \right] = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i \left[Z(\gamma) + \int_{\nu}^{\gamma} h_t^i dt \middle| \mathcal{F}_{\nu} \right]
$$
\n
\n

1 .

 Ω

In particular, when $\nu=0$, $\overline{\tau}(0)=\inf\left\{t\in[0,\,T]:\,Z^0_t=Y_t\right\}$ satisfies

$$
\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,T}}\mathcal{E}_i\big[Y^i_{\gamma}\big]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_i\big[Y^i_{\overline{\tau}(0)}\big].
$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time $t = 0$, is an optimal stopping time for [\(2\)](#page-30-0).

 4 ロ } 4 4 9 } 4 \equiv } -4

Assume that $\{Y^i\}_{i\in\mathcal{I}}$ is " $\mathscr{E}\text{-uniformly-left-continuous}$ ".

•
$$
\overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \{ t \in [\nu, T] : Z_t^0 = Y_t \}.
$$

\n• For any $\nu \in S_{0,T}$ and $\gamma \in S_{\nu, \overline{\tau}(\nu)}$,
\n
$$
Z(\nu) = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}]
$$
\n
$$
= \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}] = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Z(\gamma) + \int_{\nu}^{\gamma} h_t^i dt | \mathcal{F}_{\nu}].
$$

In particular, when $\nu=0$, $\overline{\tau}(0)=$ inf $\big\{ t\in [0,\,T]:\, Z^0_t= \overline{Y}_t \big\}$ satisfies

$$
\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,T}}\mathcal{E}_i\big[Y^i_{\gamma}\big]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_i\big[Y^i_{\overline{\tau}(0)}\big].
$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time $t = 0$, is an optimal stopping time for (2) .

 Ω

Assume that $\{Y^i\}_{i\in\mathcal{I}}$ is " $\mathscr{E}\text{-uniformly-left-continuous}$ ".

•
$$
\overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \{ t \in [\nu, T] : Z_t^0 = Y_t \}.
$$

\n• For any $\nu \in S_{0,T}$ and $\gamma \in S_{\nu, \overline{\tau}(\nu)}$,
\n
$$
Z(\nu) = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}]
$$
\n
$$
= \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}] = \operatorname*{esssup}_{i \in \mathcal{I}} \mathcal{E}_i[Z(\gamma) + \int_{\nu}^{\gamma} h_t^i dt | \mathcal{F}_{\nu}].
$$

In particular, when $\nu=0$, $\overline{\tau}(0)=$ inf $\big\{ t\in [0,\,T]:\, Z^0_t= \overline{Y}_t \big\}$ satisfies

$$
\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,T}}\mathcal{E}_i\big[Y^i_{\gamma}\big]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_i\big[Y^i_{\overline{\tau}(0)}\big].
$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time $t = 0$, is an optimal stopping time for [\(2\)](#page-30-0).