Optimal Stopping for Non-linear Expectations

Song Yao Department of Mathematics, University of Michigan

A joint work with Erhan Bayraktar, University of Michigan

6th World Congress of the Bachelier Finance Society Toronto, Canada 6/23/2010

Introduction

- **P**-Expectations and Their Properties
- Ollections of F-Expectations
- Optimal Stopping with Multiple Priors

< ロ > < 同 > < 三 > < 三

Given a *B.M.* **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T].$$
 (1)

g-expectation via BSDE (Peng '93)

• Assume that the generator g is Lipschitz in (y, z). For any $\xi \in L^2(\mathcal{F}^B_T)$, (1) admits a unique solution (Y^{ξ}, Z^{ξ}) .

The solution mapping *E_g* : ξ → Y₀^ξ is called a *g*-expectation; And ∀ t ∈ [0, T], the conditional *g*-expectation of ξ w.r.t. *F_t^B* is defined by *E_g*[ξ|*F_t^B*] [△]= Y_t^ξ.

Note:

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}_T^B)$.

Given a *B.M.* **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T].$$
 (1)

g-expectation via BSDE (Peng '93)

- Assume that the generator g is Lipschitz in (y, z). For any $\xi \in L^2(\mathcal{F}_T^B)$, (1) admits a unique solution (Y^{ξ}, Z^{ξ}) .
- The solution mapping *E_g* : ξ → Y₀^ξ is called a *g*-expectation; And ∀ t ∈ [0, T], the conditional *g*-expectation of ξ w.r.t. *F_t^B* is defined by *E_g*[ξ|*F_t^B*] [△]= Y_t^ξ.

Note:

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}_T^B)$.

Given a *B.M.* **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T].$$
 (1)

g-expectation via BSDE (Peng '93)

- Assume that the generator g is Lipschitz in (y, z). For any $\xi \in L^2(\mathcal{F}_T^B)$, (1) admits a unique solution (Y^{ξ}, Z^{ξ}) .
- The solution mapping *E_g* : ξ → Y₀^ξ is called a *g*-expectation; And ∀ t ∈ [0, T], the conditional g-expectation of ξ w.r.t. *F_t^B* is defined by *E_g*[ξ|*F_t^B*] [△]= Y_t^ξ.

Note:

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}_T^B)$.

Given a *B.M.* **B** on a proba. space (Ω, \mathcal{F}, P) , consider the Backward SDE:

$$Y_t = \xi + \int_t^T g(t, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad t \in [0, T].$$
 (1)

g-expectation via BSDE (Peng '93)

- Assume that the generator g is Lipschitz in (y, z). For any $\xi \in L^2(\mathcal{F}^B_T)$, (1) admits a unique solution (Y^{ξ}, Z^{ξ}) .
- The solution mapping *E_g* : ξ → Y₀^ξ is called a *g*-expectation; And ∀ t ∈ [0, T], the conditional g-expectation of ξ w.r.t. *F_t^B* is defined by *E_g*[ξ|*F_t^B*] [△]= Y_t^ξ.

Note:

If g has quadratic growth in z, then one can define (condtional) g-expectation over $L^{\infty}(\mathcal{F}_{T}^{B})$.

Properties of g-Expectations

Assume that $g|_{z=0} = 0$ in (2)-(4) below. For any $\xi, \eta \in L^2(\mathcal{F}_T^B)$

- (Strict) Monotonicity: If $\xi \leq \eta$, then $\mathcal{E}_{g}[\xi|\mathcal{F}_{t}^{B}] \leq \mathcal{E}_{g}[\eta|\mathcal{F}_{t}^{B}]$, $\forall t \in [0, T]$; Moreover, if "=" holds for some t, then $\xi = \eta$;
- **Solution** Constant-preserving: $\mathcal{E}_{g}[\xi|\mathcal{F}_{t}^{B}] = \xi$, if $\xi \in L^{2}(\mathcal{F}_{t}^{B})$;
- **3** Time-consistency: $\mathcal{E}_{g}\left[\mathcal{E}_{g}\left[\xi|\mathcal{F}_{t}^{B}\right]|\mathcal{F}_{s}\right] = \mathcal{E}_{g}\left[\xi|\mathcal{F}_{t\wedge s}^{B}\right];$
- Translation invariance: If g is independent of y, then $\mathcal{E}_{g}[\xi + \eta | \mathcal{F}_{t}^{B}] = \mathcal{E}_{g}[\xi | \mathcal{F}_{t}^{B}] + \eta, \quad \text{if } \eta \in L^{2}(\mathcal{F}_{t}^{B}).$

Motivation: Optimal Stopping for g-expectations

Given a stopping time ν and an appropriate reward process Y, we are interested in finding a moment $\tau_*(\nu) \in S^B_{\nu,T}$ such that

$$\mathcal{E}_{g}\left[Y_{\tau_{*}(\nu)}\big|\mathcal{F}_{\nu}\right] = \operatorname*{essup}_{\gamma \in \mathcal{S}_{\nu, T}^{\mathcal{B}}} \mathcal{E}_{g}\left[Y_{\gamma}\big|\mathcal{F}_{\nu}\right],$$

where $\mathcal{S}_{\nu,T}^{B} \stackrel{\triangle}{=} \{ \mathbf{F}^{B} \text{-stopping times } \gamma : \nu \leq \gamma \leq T \}.$

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト 二 ヨー わえの

Motivation: Optimal Stopping for g-expectations

Given a stopping time ν and an appropriate reward process Y, we are interested in finding a moment $\tau_*(\nu) \in S^B_{\nu,T}$ such that

$$\mathcal{E}_{g}\left[Y_{ au_{*}(
u)}\Big|\mathcal{F}_{
u}
ight] = \operatorname*{essup}_{\gamma\in\mathcal{S}^{\mathcal{B}}_{
u, au}} \mathcal{E}_{g}\left[Y_{\gamma}\Big|\mathcal{F}_{
u}
ight],$$

where $\mathcal{S}_{\nu,T}^{B} \stackrel{\triangle}{=} \{\mathbf{F}^{B}\text{-stopping times } \gamma : \nu \leq \gamma \leq T\}.$

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト 二 ヨー わえの

Filtration-Consistent Nonlinear Expectations

• $\mathbf{F} = \{\mathcal{F}_t\}_{t \ge 0}$ — a generic right-continuous filtration on (Ω, \mathcal{F}, P) ; • $S_{\nu, \gamma} \stackrel{\triangle}{=} \{\mathbf{F}\text{-stopping times } \sigma : \nu \le \sigma \le \gamma\}.$

An **F**-consistent non-linear expectation (**F**-expectation for short) with domain $Dom(\mathcal{E}) = \Lambda \subset L^0(\mathcal{F}_T)$ is a family of operators $\{\mathcal{E}[\cdot|\mathcal{F}_\nu] : \Lambda \mapsto \Lambda_\nu \stackrel{\triangle}{=} \Lambda \cap L^0(\mathcal{F}_\nu)\}_{\nu \in S_{0,T}}$ such that for any $\forall \xi, \eta \in \Lambda$

- (A1) (Strict) Monotonicity: If $\xi \leq \eta$, then $\mathcal{E}[\xi|\mathcal{F}_{\nu}] \leq \mathcal{E}[\eta|\mathcal{F}_{\nu}]$, $\forall \nu \in \mathcal{S}_{0,T}$; Moreover, if "=" holds for some $\nu \in \mathcal{S}_{0,T}$, then $\xi = \eta$
- (A2) Time Consistency: $\mathcal{E}\big[\mathcal{E}[\xi|\mathcal{F}_{\nu}]\big|\mathcal{F}_{\gamma}\big] = \mathcal{E}[\xi|\mathcal{F}_{\nu\wedge\gamma}], \ \forall \gamma \in \mathcal{S}_{0,T};$
- (A3) "Zero-one Law": $\mathcal{E}[\mathbf{1}_{A}\xi|\mathcal{F}_{\nu}] = \mathbf{1}_{A}\mathcal{E}[\xi|\mathcal{F}_{\nu}], \ \forall A \in \mathcal{F}_{\nu};$
- (A4) Translation Invariance : $\mathcal{E}[\xi + \eta | \mathcal{F}_{\nu}] = \mathcal{E}[\xi | \mathcal{F}_{\nu}] + \eta$, if $\eta \in \Lambda_{\nu}$.

Note: $(A3)+(A4) \implies$ "Constant-preserving".

(日) (四) (三) (三) (三)

Filtration-Consistent Nonlinear Expectations

• $\mathbf{F} = \{\mathcal{F}_t\}_{t \ge 0}$ — a generic right-continuous filtration on (Ω, \mathcal{F}, P) ; • $S_{\nu, \gamma} \stackrel{\triangle}{=} \{\mathbf{F}\text{-stopping times } \sigma : \nu \le \sigma \le \gamma\}.$

An **F**-consistent non-linear expectation (**F**-expectation for short) with domain $Dom(\mathcal{E}) = \Lambda \subset L^0(\mathcal{F}_T)$ is a family of operators $\{\mathcal{E}[\cdot|\mathcal{F}_\nu] : \Lambda \mapsto \Lambda_\nu \stackrel{\triangle}{=} \Lambda \cap L^0(\mathcal{F}_\nu)\}_{\nu \in S_{0,T}}$ such that for any $\forall \xi, \eta \in \Lambda$

- (A1) (Strict) Monotonicity: If $\xi \leq \eta$, then $\mathcal{E}[\xi|\mathcal{F}_{\nu}] \leq \mathcal{E}[\eta|\mathcal{F}_{\nu}]$, $\forall \nu \in \mathcal{S}_{0,T}$; Moreover, if "=" holds for some $\nu \in \mathcal{S}_{0,T}$, then $\xi = \eta$;
- (A2) Time Consistency: $\mathcal{E}[\mathcal{E}[\xi|\mathcal{F}_{\nu}]|\mathcal{F}_{\gamma}] = \mathcal{E}[\xi|\mathcal{F}_{\nu\wedge\gamma}], \ \forall \gamma \in \mathcal{S}_{0,T};$
- (A3) "Zero-one Law": $\mathcal{E}[\mathbf{1}_{A}\xi|\mathcal{F}_{\nu}] = \mathbf{1}_{A}\mathcal{E}[\xi|\mathcal{F}_{\nu}], \ \forall A \in \mathcal{F}_{\nu};$
- (A4) Translation Invariance : $\mathcal{E}[\xi + \eta | \mathcal{F}_{\nu}] = \mathcal{E}[\xi | \mathcal{F}_{\nu}] + \eta$, if $\eta \in \Lambda_{\nu}$.

Note: $(A3)+(A4) \implies$ "Constant-preserving".

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Filtration-Consistent Nonlinear Expectations

• $\mathbf{F} = \{\mathcal{F}_t\}_{t \ge 0}$ — a generic right-continuous filtration on (Ω, \mathcal{F}, P) ; • $S_{\nu, \gamma} \stackrel{\triangle}{=} \{\mathbf{F}\text{-stopping times } \sigma : \nu \le \sigma \le \gamma\}.$

An **F**-consistent non-linear expectation (**F**-expectation for short) with domain $Dom(\mathcal{E}) = \Lambda \subset L^0(\mathcal{F}_T)$ is a family of operators $\{\mathcal{E}[\cdot|\mathcal{F}_\nu] : \Lambda \mapsto \Lambda_\nu \stackrel{\triangle}{=} \Lambda \cap L^0(\mathcal{F}_\nu)\}_{\nu \in S_{0,T}}$ such that for any $\forall \xi, \eta \in \Lambda$

- (A1) (Strict) Monotonicity: If $\xi \leq \eta$, then $\mathcal{E}[\xi|\mathcal{F}_{\nu}] \leq \mathcal{E}[\eta|\mathcal{F}_{\nu}]$, $\forall \nu \in \mathcal{S}_{0,T}$; Moreover, if "=" holds for some $\nu \in \mathcal{S}_{0,T}$, then $\xi = \eta$;
- (A2) Time Consistency: $\mathcal{E}[\mathcal{E}[\xi|\mathcal{F}_{\nu}]|\mathcal{F}_{\gamma}] = \mathcal{E}[\xi|\mathcal{F}_{\nu\wedge\gamma}], \ \forall \gamma \in \mathcal{S}_{0,T};$
- (A3) "Zero-one Law": $\mathcal{E}[\mathbf{1}_{A}\xi|\mathcal{F}_{\nu}] = \mathbf{1}_{A}\mathcal{E}[\xi|\mathcal{F}_{\nu}], \ \forall A \in \mathcal{F}_{\nu};$
- (A4) Translation Invariance : $\mathcal{E}[\xi + \eta | \mathcal{F}_{\nu}] = \mathcal{E}[\xi | \mathcal{F}_{\nu}] + \eta$, if $\eta \in \Lambda_{\nu}$.

Note: $(A3)+(A4) \implies$ "Constant-preserving".

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Algebraic requirements on domain $Dom(\mathcal{E}) = \Lambda$

Obviously, (A3) and (A4) entail that

• For any $\xi, \eta \in \Lambda$ and $A \in \mathcal{F}_T$, both $\xi + \eta$ and $\mathbf{1}_A \xi$ belong to Λ ,

which implies that $\xi \lor \eta = \xi \mathbf{1}_{\{\xi > \eta\}} + \eta \mathbf{1}_{\{\xi \le \eta\}} \in \Lambda$, similarly, $\xi \land \eta \in \Lambda$;

Moreover, we assume that $\mathbb{R} \subset \Lambda$ and that

• Λ is positively solid : For any $\xi, \eta \in L^0(\mathcal{F}_T)$ with $0 \le \xi \le \eta$, if $\eta \in \Lambda$, then $\xi \in \Lambda$ as well.

Example

 $L^{p}(\mathcal{F}_{T})$, $0 \leq p \leq \infty$, are candidates for Λ described above.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Algebraic requirements on domain $Dom(\mathcal{E}) = \Lambda$

Obviously, (A3) and (A4) entail that

• For any $\xi, \eta \in \Lambda$ and $A \in \mathcal{F}_T$, both $\xi + \eta$ and $\mathbf{1}_A \xi$ belong to Λ ,

which implies that $\xi \lor \eta = \xi \mathbf{1}_{\{\xi > \eta\}} + \eta \mathbf{1}_{\{\xi \le \eta\}} \in \Lambda$, similarly, $\xi \land \eta \in \Lambda$;

Moreover, we assume that $\mathbb{R}\subset\Lambda$ and that

• Λ is positively solid : For any $\xi, \eta \in L^0(\mathcal{F}_T)$ with $0 \le \xi \le \eta$, if $\eta \in \Lambda$, then $\xi \in \Lambda$ as well.

Example

 $L^{p}(\mathcal{F}_{T})$, $0 \leq p \leq \infty$, are candidates for Λ described above.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Algebraic requirements on domain $Dom(\mathcal{E}) = \Lambda$

Obviously, (A3) and (A4) entail that

• For any $\xi, \eta \in \Lambda$ and $A \in \mathcal{F}_T$, both $\xi + \eta$ and $\mathbf{1}_A \xi$ belong to Λ ,

which implies that $\xi \lor \eta = \xi \mathbf{1}_{\{\xi > \eta\}} + \eta \mathbf{1}_{\{\xi \le \eta\}} \in \Lambda$, similarly, $\xi \land \eta \in \Lambda$;

Moreover, we assume that $\mathbb{R}\subset\Lambda$ and that

• Λ is positively solid : For any $\xi, \eta \in L^0(\mathcal{F}_T)$ with $0 \le \xi \le \eta$, if $\eta \in \Lambda$, then $\xi \in \Lambda$ as well.

Example

 $L^{p}(\mathcal{F}_{T})$, $0 \leq p \leq \infty$, are candidates for Λ described above.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Assumptions on **F**-expectations

To extend Fatou's lemma, the Dominated Convergence Theorem and etc. to the $\textbf{F}\text{-expectation}~\mathcal{E},$ we assume

one has
$$\lim_{n\to\infty} \downarrow \mathcal{E}[\xi + \mathbf{1}_{A_n}\eta] = \mathcal{E}[\xi];$$

where $Dom^+(\mathcal{E}) \stackrel{\triangle}{=} \{\xi \in Dom(\mathcal{E}) : \xi \ge 0\}.$

Note:

(H0)-(H2) are satisfied by the linear expectation E, Lipschitz and quadratic g-expectations.

6/23/2010

Assumptions on **F**-expectations

To extend Fatou's lemma, the Dominated Convergence Theorem and etc. to the $\textbf{F}\text{-expectation}~\mathcal{E},$ we assume

(H0) For any
$$A \in \mathcal{F}_T$$
 with $P(A) > 0$, one has $\lim_{n \to \infty} \mathcal{E}[n\mathbf{1}_A] = \infty$;

(H1) For any
$$\xi \in Dom^+(\mathcal{E})$$
 and any $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}_T$ with $\lim_{n \to \infty} \uparrow \mathbf{1}_{A_n} = 1$,
one has $\lim_{n \to \infty} \uparrow \mathcal{E}[\mathbf{1}_{A_n}\xi] = \mathcal{E}[\xi];$
(H2) For any $\xi, \eta \in Dom^+(\mathcal{E})$ and any $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}_T$ with $\lim_{n \to \infty} \downarrow \mathbf{1}_{A_n} = 0$,
one has $\lim_{n \to \infty} \downarrow \mathcal{E}[\xi + \mathbf{1}_{A_n}\eta] = \mathcal{E}[\xi];$

where $Dom^+(\mathcal{E}) \stackrel{\triangle}{=} \{\xi \in Dom(\mathcal{E}) : \xi \ge 0\}.$

Note:

(H0)-(H2) are satisfied by the linear expectation E, Lipschitz and quadratic g-expectations.

(日)

Basic Properties

Fatou's Lemma

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some $\xi \in Dom^+(\mathcal{E})$, then for any $\nu \in S_{0,T}$

$$\mathcal{E}[\xi|\mathcal{F}_{\nu}] \leq \underline{\lim}_{n \to \infty} \mathcal{E}[\xi_n|\mathcal{F}_{\nu}].$$

Dominated Convergence Theorem

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some ξ . If there is an $\eta \in Dom^+(\mathcal{E})$ such that $\xi_n \leq \eta$, $\forall n \in \mathbb{N}$, then $\xi \in Dom^+(\mathcal{E})$ and for any $\nu \in S_{0,T}$

$$\lim_{n\to\infty} \mathcal{E}[\xi_n|\mathcal{F}_\nu] = \mathcal{E}[\xi|\mathcal{F}_\nu].$$

< ロ > < 同 > < 三 > < 三

Basic Properties

Fatou's Lemma

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some $\xi \in Dom^+(\mathcal{E})$, then for any $\nu \in S_{0,T}$

$$\mathcal{E}[\xi|\mathcal{F}_{\nu}] \leq \underline{\lim_{n \to \infty}} \mathcal{E}[\xi_n|\mathcal{F}_{\nu}].$$

Dominated Convergence Theorem

Let $\{\xi_n\}_{n\in\mathbb{N}}$ be a sequence in $Dom^+(\mathcal{E})$ that converges a.s. to some ξ . If there is an $\eta \in Dom^+(\mathcal{E})$ such that $\xi_n \leq \eta$, $\forall n \in \mathbb{N}$, then $\xi \in Dom^+(\mathcal{E})$ and for any $\nu \in S_{0,T}$

$$\lim_{n\to\infty} \mathcal{E}[\xi_n|\mathcal{F}_\nu] = \mathcal{E}[\xi|\mathcal{F}_\nu].$$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• An **F**-adapted process X is said to be an \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale) if for any $0 \le s < t \le T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \le$ (resp. \ge) X_s .

Proposition

Let X be a non-negative \mathcal{E} -supermartingale.

(1) $P\left(X_t^+ \stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r \text{ exists } \forall t \in [0, T]\right) = 1$. To wit, X^+ defines an RCLL F-adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X_t^+ \leq X_t$, $\forall t \in [0, T]$. Moreover, if the function $t \mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Optional Sampling Theorem

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale). If $X_{\nu} \in Dom^+(\mathcal{E}), \forall \nu \in S_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq (\text{resp.} \geq) X_{\nu \wedge \sigma}, \quad \forall \nu, \sigma \in \mathcal{S}_{0,T}.$

(日)

• An **F**-adapted process X is said to be an \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale) if for any $0 \le s < t \le T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \le (\text{resp.} \ge) X_s$.

Proposition

Let X be a non-negative \mathcal{E} -supermartingale.

(1) $P\left(X_t^+ \stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r \text{ exists } \forall t \in [0, T]\right) = 1$. To wit, X^+ defines an RCLL F-adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X_t^+ \leq X_t$, $\forall t \in [0, T]$. Moreover, if the function $t \mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Optional Sampling Theorem

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale). If $X_{\nu} \in Dom^+(\mathcal{E}), \forall \nu \in S_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq (\text{resp.} \geq) X_{\nu \wedge \sigma}, \quad \forall \nu, \sigma \in \mathcal{S}_{0,T}.$

イロン 不通 と 不良 と 不良 とう 語

• An **F**-adapted process X is said to be an \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale) if for any $0 \le s < t \le T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \le (\text{resp.} \ge) X_s$.

Proposition

Let X be a non-negative \mathcal{E} -supermartingale.

(1) $P\left(X_t^+ \stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r \text{ exists } \forall t \in [0, T]\right) = 1$. To wit, X^+ defines an RCLL F-adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X_t^+ \leq X_t$, $\forall t \in [0, T]$. Moreover, if the function $t \mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Optional Sampling Theorem

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale). If $X_{\nu} \in Dom^+(\mathcal{E}), \forall \nu \in S_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq (\text{resp.} \geq) X_{\nu \wedge \sigma}, \quad \forall \nu, \sigma \in \mathcal{S}_{0,T}.$

イロン 不聞 と 不良 と 不良 とう ほ

• An **F**-adapted process X is said to be an \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale) if for any $0 \le s < t \le T$, $X_t \in Dom(\mathcal{E})$ and $\mathcal{E}[X_t|\mathcal{F}_s] \le (\text{resp.} \ge) X_s$.

Proposition

Let X be a non-negative \mathcal{E} -supermartingale.

(1) $P\left(X_t^+ \stackrel{\triangle}{=} \lim_{r \in \mathbb{Q}, r \downarrow t} X_r \text{ exists } \forall t \in [0, T]\right) = 1$. To wit, X^+ defines an RCLL F-adapted process.

(2) If $X_t^+ \in Dom^+(\mathcal{E})$, $\forall t \in [0, T]$, then X^+ is an \mathcal{E} -supermartingale such that $X_t^+ \leq X_t$, $\forall t \in [0, T]$. Moreover, if the function $t \mapsto \mathcal{E}[X_t]$ is right continuous, then X^+ is an RCLL modification of X.

Optional Sampling Theorem

Let X be a non-negative right-continuous \mathcal{E} -supermartingale (resp. \mathcal{E} -submartingale). If $X_{\nu} \in Dom^+(\mathcal{E}), \forall \nu \in S_{0,T}$, then

 $\mathcal{E}[X_{\nu}|\mathcal{F}_{\sigma}] \leq (\text{resp.} \geq) X_{\nu \wedge \sigma}, \quad \forall \nu, \sigma \in \mathcal{S}_{0,T}.$

イロン 不通 と イヨン イヨン

• Let $\mathcal{E}_i, \mathcal{E}_j$ be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu \in S_{0,T}$, the pasting of $\mathcal{E}_i, \mathcal{E}_j$ at ν is defined by the following RCLL **F**-adapted process

 $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i\big[\mathcal{E}_j[\xi|\mathcal{F}_\nu]\big|\mathcal{F}_t\big], \quad t \in [0,T]$

for any $\xi \in \Lambda^+$. Then $\mathcal{E}_{i,j}^{\nu}$ is an **F**-expectation with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_j are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

- For any $\xi \in \Lambda^+$ and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu \lor \sigma}]|\mathcal{F}_{\sigma}]$.
- Pasting may not preserve (H0). But, positive-convexity implies (H0).

(日) (周) (三) (三)

Let *E_i*, *E_j* be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu \in S_{0,T}$, the pasting of $\mathcal{E}_i, \mathcal{E}_j$ at ν is defined by the following RCLL **F**-adapted process

$$\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu}] | \mathcal{F}_t], \quad t \in [0, T]$$

for any $\xi \in \Lambda^+$. Then $\mathcal{E}_{i,j}^{\nu}$ is an **F**-expectation with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_j are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

- For any $\xi \in \Lambda^+$ and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu \lor \sigma}]|\mathcal{F}_{\sigma}].$
- Pasting may not preserve (H0). But, positive-convexity implies (H0).

(日) (同) (三) (三)

Let *E_i*, *E_j* be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu \in S_{0,T}$, the pasting of $\mathcal{E}_i, \mathcal{E}_j$ at ν is defined by the following RCLL **F**-adapted process

$$\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu}] | \mathcal{F}_t], \quad t \in [0, T]$$

for any $\xi \in \Lambda^+$. Then $\mathcal{E}_{i,j}^{\nu}$ is an **F**-expectation with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_j are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

• For any
$$\xi \in \Lambda^+$$
 and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu \lor \sigma}]|\mathcal{F}_{\sigma}].$

• Pasting may not preserve (H0). But, positive-convexity implies (H0).

Let *E_i*, *E_j* be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu \in S_{0,T}$, the pasting of $\mathcal{E}_i, \mathcal{E}_j$ at ν is defined by the following RCLL **F**-adapted process

$$\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu}] | \mathcal{F}_t], \quad t \in [0, T]$$

for any $\xi \in \Lambda^+$. Then $\mathcal{E}_{i,j}^{\nu}$ is an **F**-expectation with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_j are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

• For any
$$\xi \in \Lambda^+$$
 and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu \lor \sigma}]|\mathcal{F}_{\sigma}].$

• Pasting may not preserve (H0). But, positive-convexity implies (H0).

Let *E_i*, *E_j* be two **F**-expectations with the same domain Λ and satisfying (H1), (H2).

For any $\nu \in S_{0,T}$, the pasting of $\mathcal{E}_i, \mathcal{E}_j$ at ν is defined by the following RCLL **F**-adapted process

$$\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_t] \stackrel{\triangle}{=} \mathbf{1}_{\{\nu \leq t\}} \mathcal{E}_j[\xi|\mathcal{F}_t] + \mathbf{1}_{\{\nu > t\}} \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu}] | \mathcal{F}_t], \quad t \in [0, T]$$

for any $\xi \in \Lambda^+$. Then $\mathcal{E}_{i,j}^{\nu}$ is an **F**-expectation with domain Λ^+ and satisfying (H1), (H2). Moreover, if \mathcal{E}_i and \mathcal{E}_j are both positively-convex, $\mathcal{E}_{i,j}^{\nu}$ is convex.

Note:

• For any
$$\xi \in \Lambda^+$$
 and $\sigma \in S_{0,T}$, $\mathcal{E}_{i,j}^{\nu}[\xi|\mathcal{F}_{\sigma}] = \mathcal{E}_i[\mathcal{E}_j[\xi|\mathcal{F}_{\nu\vee\sigma}]|\mathcal{F}_{\sigma}].$

• Pasting may not preserve (H0). But, positive-convexity implies (H0).

(日) (同) (三) (三)

Stable Classes

A class $\mathscr{E} = {\mathcal{E}_i}_{i \in \mathcal{I}}$ of **F**-expectations is said to be *stable* if (1) All \mathcal{E}_i , $i \in \mathcal{I}$ are positively-convex **F**-expectations with the same domain Λ and satisfying (H1), (H2);

(2) \mathscr{E} is closed under pasting: namely, for any $i, j \in \mathcal{I}$ and $\nu \in S_{0,\mathcal{T}}$, there exists a $k = k(i, j, \nu) \in \mathcal{I}$ such that $\mathcal{E}_{i,j}^{\nu} = \mathcal{E}_k$ over Λ^+ .

• We shall denote $Dom(\mathscr{E}) \stackrel{\bigtriangleup}{=} \Lambda^+ = Dom^+(\mathscr{E}_i), \ \forall i \in \mathcal{I}.$

Stable Classes

A class $\mathscr{E} = {\mathcal{E}_i}_{i \in \mathcal{I}}$ of **F**-expectations is said to be *stable* if (1) All \mathcal{E}_i , $i \in \mathcal{I}$ are positively-convex **F**-expectations with the same domain Λ and satisfying (H1), (H2);

(2) \mathscr{E} is closed under pasting: namely, for any $i, j \in \mathcal{I}$ and $\nu \in S_{0,\mathcal{T}}$, there exists a $k = k(i, j, \nu) \in \mathcal{I}$ such that $\mathcal{E}_{i,j}^{\nu} = \mathcal{E}_k$ over Λ^+ .

• We shall denote
$$Dom(\mathscr{E}) \stackrel{\triangle}{=} \Lambda^+ = Dom^+(\mathcal{E}_i), \ \forall i \in \mathcal{I}.$$

▲口> ▲圖> ▲注> ▲注> 三注

Optimal Stopping with Multiple Priors

The stopper aims to find an optimal moment in a situation of multiple priors and the *Nature* is in cooperation with the stopper. More precisely, the stopper finds an optimal stopping time τ^* that satisfies

$$\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_{i}\left[Y_{\gamma}^{i}\right]=\sup_{i\in\mathcal{I}}\mathcal{E}_{i}\left[Y_{\tau^{*}}^{i}\right],\tag{2}$$

✓ Construct

where

- $\mathscr{E} = \{\mathcal{E}_i\}_{i \in \mathcal{I}}$ is a stable class of **F**-expectations,
- $Y_t^i \stackrel{\triangle}{=} Y_t + \int_0^t h_s^i ds$, $\forall t \in [0, T]$: Y is a primary reward process, and h^i is a *model*-dependent cumulative reward process.

Optimal Stopping with Multiple Priors

The stopper aims to find an optimal moment in a situation of multiple priors and the *Nature* is in cooperation with the stopper. More precisely, the stopper finds an optimal stopping time τ^* that satisfies

$$\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_{i}\left[Y_{\gamma}^{i}\right] = \sup_{i\in\mathcal{I}}\mathcal{E}_{i}\left[Y_{\tau^{*}}^{i}\right],\tag{2}$$

✓ Construct

where

- $\mathscr{E} = {\mathcal{E}_i}_{i \in \mathcal{I}}$ is a stable class of **F**-expectations,
- $Y_t^i \stackrel{\triangle}{=} Y_t + \int_0^t h_s^i ds$, $\forall t \in [0, T]$: Y is a primary reward process, and h^i is a *model*-dependent cumulative reward process.

Optimal Stopping with Multiple Priors

The stopper aims to find an optimal moment in a situation of multiple priors and the *Nature* is in cooperation with the stopper. More precisely, the stopper finds an optimal stopping time τ^* that satisfies

$$\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_{i}\left[Y_{\gamma}^{i}\right] = \sup_{i\in\mathcal{I}}\mathcal{E}_{i}\left[Y_{\tau^{*}}^{i}\right],\tag{2}$$

✓ Construct

where

- $\mathscr{E} = {\mathcal{E}_i}_{i \in \mathcal{I}}$ is a stable class of **F**-expectations,
- $Y_t^i \stackrel{\triangle}{=} Y_t + \int_0^t h_s^i ds$, $\forall t \in [0, T]$: Y is a primary reward process, and h^i is a *model*-dependent cumulative reward process.

Assumptions on Reward Processes

- Y— a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in S_{0,T}.$
- {hⁱ}_{i∈I}— a family of non-negative progressive processes such that
 (1) For any i ∈ I, ∫₀^T hⁱ_t dt ∈ Dom(𝔅);
 (2) For any i, j ∈ I, ν ∈ S_{0,T} and t ∈ [0, T]

$$h_t^k = \mathbf{1}_{\{\nu \leq t\}} h_t^j + \mathbf{1}_{\{\nu > t\}} h_t^i, \quad dt \times dP\text{-a.s.},$$

where $k = k(i, j, \nu)$ is the index in the definition of stable class.

• Moreover, we assume that $\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_i\left[Y_{\gamma}^i\right]<\infty.$

Note:

In light of (A4), instead of non-negativity, it suffices to assume that $Y \ge c$ for some c < 0.

(日) (同) (日) (日) (日)

6/23/2010

Assumptions on Reward Processes

- Y— a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in S_{0,T}.$
- {hⁱ}_{i∈I} → a family of non-negative progressive processes such that
 (1) For any i ∈ I, ∫₀^T hⁱ_t dt ∈ Dom(𝔅);
 (2) For any i, j ∈ I, ν ∈ S_{0,T} and t ∈ [0, T] h^k_t = 1_{ν≤t}h^j_t + 1_{ν>t}hⁱ_t, dt × dP-a.s., where k = k(i, j, ν) is the index in the definition of stable class.
- Moreover, we assume that $\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_i\left[Y_{\gamma}^i\right]<\infty.$

Note:

In light of (A4), instead of non-negativity, it suffices to assume that $Y \ge c$ for some c < 0.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

6/23/2010

Assumptions on Reward Processes

- Y— a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in S_{0,T}.$
- {hⁱ}_{i∈I} → a family of non-negative progressive processes such that
 (1) For any i ∈ I, ∫₀^T hⁱ_t dt ∈ Dom(𝔅);
 (2) For any i, j ∈ I, ν ∈ S_{0,T} and t ∈ [0, T] h^k_t = 1_{ν≤t} h^j_t + 1_{ν>t} hⁱ_t, dt × dP-a.s., where k = k(i, j, ν) is the index in the definition of stable class.
 Moreover, we assume that sup (i,γ)∈I×S_{0,T} E_i [Yⁱ_γ] < ∞.

Note:

In light of (A4), instead of non-negativity, it suffices to assume that $Y \ge c$ for some c < 0.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

6/23/2010

Assumptions on Reward Processes

- Y— a non-negative right-continuous **F**-adapted process such that $Y_{\nu} \in Dom(\mathscr{E}), \ \forall \nu \in S_{0,T}.$
- {hⁱ}_{i∈I} → a family of non-negative progressive processes such that
 (1) For any i ∈ I, ∫₀^T hⁱ_t dt ∈ Dom(𝔅);
 (2) For any i, j ∈ I, ν ∈ S_{0,T} and t ∈ [0, T] h^k_t = 1_{ν≤t} h^j_t + 1_{ν>t} hⁱ_t, dt × dP-a.s., where k = k(i, j, ν) is the index in the definition of stable class.
 Moreover, we assume that sup (i,γ)∈I×S_{0,T} E_i [Yⁱ_γ] < ∞.

Note:

In light of (A4), instead of non-negativity, it suffices to assume that $Y \ge c$ for some c < 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• $\forall \nu \in \mathcal{S}_{0,T}$, we define $Z(\nu) \stackrel{ riangle}{=} \operatorname{essup}_{(i,\gamma) \in \mathcal{I} \times \mathcal{S}_{\nu,T}} \mathcal{E}_i \left[Y_\gamma + \int_{\nu}^{\gamma} h_t^i dt \big| \mathcal{F}_{\nu} \right] \geq Y_{\nu}.$

• $\forall i \in \mathcal{I} \text{ and } \forall \nu \in S_{0,T}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_0^{\nu} h_t^i dt$.

Proposition

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in S_{0,T}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_{\nu}] \leq Z^i(\nu)$, which shows that $\{Z^i(t)\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\{Z(t)\}_{t\in[0,T]}$ admits an RCLL modification Z^0 .

We call Z^0 the \mathscr{E} -upper Snell envelope of Y: It is the smallest RCLL **F**-adapted process dominating Y such that $\{Z_t^0 + \int_0^t h_s^i ds\}_{t \in [0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

•
$$\forall \nu \in S_{0,T}$$
, we define $Z(\nu) \stackrel{\triangle}{=} \operatorname{essup}_{(i,\gamma) \in \mathcal{I} \times S_{\nu,T}} \mathcal{E}_i \left[Y_{\gamma} + \int_{\nu}^{\gamma} h_t^i dt \middle| \mathcal{F}_{\nu} \right] \ge Y_{\nu}.$
• $\forall i \in \mathcal{I} \text{ and } \forall \nu \in S_{0,T}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_0^{\nu} h_t^i dt.$

Proposition

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in S_{0,T}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_{\nu}] \leq Z^i(\nu)$, which shows that $\{Z^i(t)\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\{Z(t)\}_{t\in[0,T]}$ admits an RCLL modification Z^0 .

We call Z^0 the \mathscr{E} -upper Snell envelope of Y: It is the smallest RCLL **F**-adapted process dominating Y such that $\{Z_t^0 + \int_0^t h_s^i ds\}_{t \in [0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

•
$$\forall \nu \in S_{0,T}$$
, we define $Z(\nu) \stackrel{\triangle}{=} \operatorname{essup}_{(i,\gamma) \in \mathcal{I} \times S_{\nu,T}} \mathcal{E}_i \left[Y_{\gamma} + \int_{\nu}^{\gamma} h_t^i dt \middle| \mathcal{F}_{\nu} \right] \ge Y_{\nu}.$

• $\forall i \in \mathcal{I} \text{ and } \forall \nu \in \mathcal{S}_{0,T}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_0^{\nu} h_t^i dt$.

Proposition

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in S_{0,T}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_{\nu}] \leq Z^i(\nu)$, which shows that $\{Z^i(t)\}_{t \in [0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\{Z(t)\}_{t \in [0,T]}$ admits an RCLL modification Z^0 .

We call Z^0 the \mathscr{E} -upper Snell envelope of Y: It is the smallest RCLL **F**-adapted process dominating Y such that $\{Z_t^0 + \int_0^t h_s^i ds\}_{t \in [0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

•
$$\forall \nu \in S_{0,T}$$
, we define $Z(\nu) \stackrel{\triangle}{=} \operatorname{essup}_{(i,\gamma) \in \mathcal{I} \times S_{\nu,T}} \mathcal{E}_i \left[Y_\gamma + \int_{\nu}^{\gamma} h_t^i dt \middle| \mathcal{F}_{\nu} \right] \ge Y_{\nu}.$
• $\forall i \in \mathcal{I} \text{ and } \forall \nu \in S_{0,T}$, we set $Z^i(\nu) \stackrel{\triangle}{=} Z(\nu) + \int_{0}^{\nu} h_t^i dt.$

Proposition

Given $i \in \mathcal{I}$, $\forall \nu, \gamma \in S_{0,T}$ with $\nu \leq \gamma$, one has $\mathcal{E}_i[Z^i(\gamma)|\mathcal{F}_{\nu}] \leq Z^i(\nu)$, which shows that $\{Z^i(t)\}_{t\in[0,T]}$ is an \mathcal{E}_i -supermartingale. Moreover the process $\{Z(t)\}_{t\in[0,T]}$ admits an RCLL modification Z^0 .

We call Z^0 the \mathscr{E} -upper Snell envelope of Y: It is the smallest RCLL **F**-adapted process dominating Y such that $\{Z_t^0 + \int_0^t h_s^i ds\}_{t \in [0,T]}$ is an \mathcal{E}_i -supermartingale for any $i \in \mathcal{I}$.

Constructing an Optimal Stopping Time

Given ν ∈ S_{0,T}, the stopping time τ_δ(ν) = inf {t ∈ [ν, T] : Y_t ≥ δZ_t⁰} ∧ T is increasing in δ ∈ (0, 1).
Set τ(ν) = lim τ_δ(ν). Then τ(0) is an optimal stopping time for (2).

Definition

The family $\{Y^i\}_{i \in \mathcal{I}}$ is called \mathscr{E} -uniformly-left-continuous if $\forall \nu, \gamma \in S_{0,T}$ with $\nu \leq \gamma$ and for any sequence $\{\gamma_n\}_{n \in \mathbb{N}} \subset S_{\nu,T}$ with $\gamma_n \nearrow \gamma$

$$\lim_{n\to\infty} \operatorname{esssup}_{i\in\mathcal{I}} \left| \mathcal{E}_i \left[\frac{n}{n-1} Y_{\gamma_n} + \int_0^{\gamma_n} h_t^i dt \big| \mathcal{F}_\nu \right] - \mathcal{E}_i \left[Y_\gamma^i \big| \mathcal{F}_\nu \right] \right| = 0.$$

Constructing an Optimal Stopping Time

Definition

The family $\{Y^i\}_{i \in \mathcal{I}}$ is called \mathscr{E} -uniformly-left-continuous if $\forall \nu, \gamma \in S_{0,T}$ with $\nu \leq \gamma$ and for any sequence $\{\gamma_n\}_{n \in \mathbb{N}} \subset S_{\nu,T}$ with $\gamma_n \nearrow \gamma$

$$\lim_{n\to\infty} \operatorname{esssup}_{i\in\mathcal{I}} \left| \mathcal{E}_i \left[\frac{n}{n-1} Y_{\gamma_n} + \int_0^{\gamma_n} h_t^i dt \big| \mathcal{F}_\nu \right] - \mathcal{E}_i \left[Y_\gamma^i \big| \mathcal{F}_\nu \right] \right| = 0.$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Constructing an Optimal Stopping Time

Definition

The family $\{Y^i\}_{i \in \mathcal{I}}$ is called \mathscr{E} -uniformly-left-continuous if $\forall \nu, \gamma \in S_{0,T}$ with $\nu \leq \gamma$ and for any sequence $\{\gamma_n\}_{n \in \mathbb{N}} \subset S_{\nu,T}$ with $\gamma_n \nearrow \gamma$ $\lim_{n \to \infty} \operatorname{essup}_{i \in \mathcal{I}} \left| \mathcal{E}_i \left[\frac{n}{n-1} Y_{\gamma_n} + \int_0^{\gamma_n} h_t^i dt \Big| \mathcal{F}_\nu \right] - \mathcal{E}_i \left[Y_{\gamma}^i \Big| \mathcal{F}_\nu \right] \right| = 0.$

- 4 同 6 4 日 6 4 日 6

Assume that $\{Y^i\}_{i \in \mathcal{I}}$ is " \mathscr{E} -uniformly-left-continuous".

•
$$\overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \{ t \in [\nu, T] : Z_t^0 = Y_t \}.$$

• For any $\nu \in S_{0,T}$ and $\gamma \in S_{\nu,\overline{\tau}(\nu)}$,

$$Z(\nu) = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_{i} [Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_{t}^{i} dt | \mathcal{F}_{\nu}]$$

=
$$\operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_{i} [Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_{t}^{i} dt | \mathcal{F}_{\nu}] = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_{i} [Z(\gamma) + \int_{\nu}^{\gamma} h_{t}^{i} dt | \mathcal{F}_{\nu}].$$

In particular, when u = 0, $\overline{ au}(0) = \inf \left\{ t \in [0, T] : Z_t^0 = Y_t
ight\}$ satisfies

$$\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\tau}}\mathcal{E}_{i}[Y_{\gamma}^{i}]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_{i}[Y_{\overline{\tau}(0)}^{i}].$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time t = 0, is an optimal stopping time for (2).

(日) (同) (三) (三)

6/23/2010

17 / 17

Assume that $\{Y^i\}_{i \in \mathcal{I}}$ is " \mathscr{E} -uniformly-left-continuous".

•
$$\overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \left\{ t \in [\nu, T] : Z_t^0 = Y_t \right\}.$$

• For any $\nu \in S_{0,T}$ and $\gamma \in S_{\nu,\overline{\tau}(\nu)}$,
 $Z(\nu) = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}]$
 $= \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}] = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Z(\gamma) + \int_{\nu}^{\gamma} h_t^i dt | \mathcal{F}_{\nu}].$

In particular, when $\nu = 0$, $\overline{\tau}(0) = \inf \left\{ t \in [0, T] : Z_t^0 = Y_t \right\}$ satisfies

$$\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_{i}[Y_{\gamma}^{i}]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_{i}[Y_{\overline{\tau}(0)}^{i}].$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time t = 0, is an optimal stopping time for (2).

(日) (同) (三) (三)

Assume that $\{Y^i\}_{i \in \mathcal{I}}$ is " \mathscr{E} -uniformly-left-continuous".

•
$$\overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \left\{ t \in [\nu, T] : Z_t^0 = Y_t \right\}.$$

• For any $\nu \in S_{0,T}$ and $\gamma \in S_{\nu,\overline{\tau}(\nu)}$,
 $Z(\nu) = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}]$
 $= \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}] = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Z(\gamma) + \int_{\nu}^{\gamma} h_t^i dt | \mathcal{F}_{\nu}].$

In particular, when $\nu = 0$, $\overline{\tau}(0) = \inf \left\{ t \in [0, T] : Z_t^0 = Y_t \right\}$ satisfies

$$\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_{i}[Y_{\gamma}^{i}]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_{i}[Y_{\overline{\tau}(0)}^{i}].$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time t = 0, is an optimal stopping time for (2).

6/23/2010

17 / 17

Assume that $\{Y^i\}_{i \in \mathcal{I}}$ is " \mathscr{E} -uniformly-left-continuous".

•
$$\overline{\tau}(\nu) = \tau_1(\nu) \stackrel{\triangle}{=} \inf \left\{ t \in [\nu, T] : Z_t^0 = Y_t \right\}.$$

• For any $\nu \in S_{0,T}$ and $\gamma \in S_{\nu,\overline{\tau}(\nu)}$,
 $Z(\nu) = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Y_{\overline{\tau}(\nu)} + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}]$
 $= \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Z(\overline{\tau}(\nu)) + \int_{\nu}^{\overline{\tau}(\nu)} h_t^i dt | \mathcal{F}_{\nu}] = \operatorname{essup}_{i \in \mathcal{I}} \mathcal{E}_i [Z(\gamma) + \int_{\nu}^{\gamma} h_t^i dt | \mathcal{F}_{\nu}].$

In particular, when $\nu = 0$, $\overline{\tau}(0) = \inf \left\{ t \in [0, T] : Z_t^0 = Y_t \right\}$ satisfies

$$\sup_{(i,\gamma)\in\mathcal{I}\times\mathcal{S}_{0,\mathcal{T}}}\mathcal{E}_{i}[Y_{\gamma}^{i}]=Z(0)=\sup_{i\in\mathcal{I}}\mathcal{E}_{i}[Y_{\overline{\tau}(0)}^{i}].$$

Conclusion: $\overline{\tau}(0)$, the first time the Snell envelope Z^0 meets Y after time t = 0, is an optimal stopping time for (2).

6/23/2010

17 / 17