Inflation Linked Bonds: An incentive for lower inflation?

Johannes Geißler

University of St Andrews

June 23, 2010

Johannes Geißler (University of St Andrews) Inflation Linked Bonds: An incentive for lower June 23, 2010 1 / 12

Table of contents

- [The Basic Economic Model](#page-2-0)
- 2 [Inflation Linked Bond and the Structuring](#page-10-0)
	- [The HJB-problem](#page-16-0)
- 4 [Implications for Monetary Policy](#page-20-0)
- 5 [Pricing](#page-22-0)
- 6 [Some simulation](#page-28-0)

Log-real output y_t is given by

$$
y_t = y_t^N + \tilde{a}(\pi_t - \pi_t^e),
$$

where y_t^n denotes the so called natural rate of output.

Log-real output y_t is given by

$$
y_t = y_t^N + \tilde{a}(\pi_t - \pi_t^e),
$$

where y_t^n denotes the so called natural rate of output. π_t and π_t^e are actual and expected rates of inflation respectively.

Log-real output y_t is given by

$$
y_t = y_t^N + \tilde{a}(\pi_t - \pi_t^e),
$$

where y_t^n denotes the so called natural rate of output. π_t and π_t^e are actual and expected rates of inflation respectively. \tilde{a} is the slope of the Phillips curve.

Log-real output y_t is given by

$$
y_t = y_t^N + \tilde{a}(\pi_t - \pi_t^e),
$$

where y_t^n denotes the so called natural rate of output. π_t and π_t^e are actual and expected rates of inflation respectively. \tilde{a} is the slope of the Phillips curve.

In a first order approximation the central bank's accumulated gains (in absolute real terms) over the time interval $[t;\, \mathcal{T}]$ following the policy π_t is given by

$$
Y_t = Y_t^n \int_t^T \tilde{a}(\pi_s - \pi_s^e) ds.
$$

Social cost arising from inflation is assumed to be quadratic in $\pi_t.$ This is weight up against the output benefit via the parameter $\tilde{\lambda}$.

where

Social cost arising from inflation is assumed to be quadratic in $\pi_t.$ This is weight up against the output benefit via the parameter $\tilde{\lambda}$. Hence the bank's instantaneous benefit function reads

$$
a(\pi_t - \pi_t^e) - \frac{\tilde{\lambda}}{2}\pi_t^2 = a\left(\pi_t - \pi_t^e - \frac{\lambda}{2}\pi_t^2\right),
$$

$$
a := \tilde{a}Y_t^N \text{ and } \lambda := \frac{\tilde{\lambda}}{a}.
$$

Social cost arising from inflation is assumed to be quadratic in $\pi_t.$ This is weight up against the output benefit via the parameter $\tilde{\lambda}$. Hence the bank's instantaneous benefit function reads

$$
a(\pi_t - \pi_t^e) - \frac{\tilde{\lambda}}{2}\pi_t^2 = a\left(\pi_t - \pi_t^e - \frac{\lambda}{2}\pi_t^2\right),
$$

where $a := \tilde{a}Y_t^N$ and $\lambda := \frac{\tilde{\lambda}}{a}$.

Further we assume

$$
d\pi_t^e = \gamma(\pi_t - \pi_t^e)dt \quad \text{and} \quad \pi_t = u_t + \sigma \dot{W}_t.
$$

Social cost arising from inflation is assumed to be quadratic in $\pi_t.$ This is weight up against the output benefit via the parameter $\tilde{\lambda}$. Hence the bank's instantaneous benefit function reads

$$
a(\pi_t - \pi_t^e) - \frac{\tilde{\lambda}}{2}\pi_t^2 = a\left(\pi_t - \pi_t^e - \frac{\lambda}{2}\pi_t^2\right),
$$

$$
\sum_{t=1}^{N} a(t) = \frac{\tilde{\lambda}}{2\pi}
$$

where $a := \tilde{a} Y_t^N$ and $\lambda := \frac{\tilde{\lambda}}{a}$. Further we assume

$$
d\pi_t^e = \gamma(\pi_t - \pi_t^e)dt \quad \text{and} \quad \pi_t = u_t + \sigma \dot{W}_t.
$$

And hence one gets

$$
d\pi_t^e = \gamma (u_t - \pi_t^e) dt + \gamma \sigma dW_t.
$$

and

$$
dP_t = P_t \pi_t dt = P_t (u_t dt + \sigma dW_t)
$$

Definition

Definition

An inflation linked bond (ILB) with maturity time T issued at time $s\in[0,\,T]$ is a financial contract that pays off $1\cdot\frac{P_T}{P_S}$ $\frac{P\tau}{P_s}$ Dollar at time T.

When selling N ILB's the bank enters a liability at maturity of $N\frac{P_T}{P_S}$ $\frac{P T}{P_s}$.

Definition

- When selling N ILB's the bank enters a liability at maturity of $N\frac{P_T}{P_S}$ $\frac{P T}{P_s}$.
- Each ILB can be structured into a zero coupon bond B_s with face value 1 and an inflation compensation component $\frac{P_T-P_s}{P_s}$.

Definition

- When selling N ILB's the bank enters a liability at maturity of $N\frac{P_T}{P_S}$ $\frac{P T}{P_s}$.
- Each ILB can be structured into a zero coupon bond B_s with face value 1 and an inflation compensation component $\frac{P_T-P_s}{P_s}$.
- At time s the bank buys B_s from a private bank, where the price is $e^{-r_i(T-s)}$.

Definition

- When selling N ILB's the bank enters a liability at maturity of $N\frac{P_T}{P_S}$ $\frac{P T}{P_s}$.
- Each ILB can be structured into a zero coupon bond B_s with face value 1 and an inflation compensation component $\frac{P_T-P_s}{P_s}$.
- At time s the bank buys B_s from a private bank, where the price is $e^{-r_i(T-s)}$.
- The bank is left with the inflation compensation component, which it values in real terms.

Definition

An inflation linked bond (ILB) with maturity time T issued at time $s\in[0,\,T]$ is a financial contract that pays off $1\cdot\frac{P_T}{P_S}$ $\frac{P\tau}{P_s}$ Dollar at time T.

- When selling N ILB's the bank enters a liability at maturity of $N\frac{P_T}{P_S}$ $\frac{P T}{P_s}$.
- Each ILB can be structured into a zero coupon bond B_s with face value 1 and an inflation compensation component $\frac{P_T-P_s}{P_s}$.
- \bullet At time s the bank buys $B_{\rm s}$ from a private bank, where the price is $e^{-r_i(T-s)}$.
- The bank is left with the inflation compensation component, which it values in real terms.

Hence the liability for the bank at maturity is given by

$$
-N\left(\frac{P_T-P_s}{P_s}\right)\cdot\left(\frac{P_T}{P_s}\right)^{-1}=-N\frac{P_T-P_s}{P_T}=-N\left(1-\frac{P_s}{P_T}\right).
$$

Using the instantaneous benefit and the approximation $1-x$ \approx log (x^{-1}) for the terminal obligation we see the central bank needs to optimize

$$
V(t, \pi^e, P, N) := \max_{u_v} \mathbb{E}\left(a \int_t^T e^{-r(v-t)} \left(u_v - \pi^e_v - \frac{\lambda}{2} u_v^2\right) dv - e^{-r(T-t)} N \log\left(\frac{P_T}{P_s}\right) \Big| \pi^e_t = \pi^e, P_t = P\right)
$$

Using the instantaneous benefit and the approximation $1-x$ \approx log (x^{-1}) for the terminal obligation we see the central bank needs to optimize

$$
V(t, \pi^e, P, N) := \max_{u_v} \mathbb{E}\left(a \int_t^T e^{-r(v-t)} \left(u_v - \pi_v^e - \frac{\lambda}{2} u_v^2\right) dv - e^{-r(T-t)} N \log\left(\frac{P_T}{P_s}\right) \Big| \pi_t^e = \pi^e, P_t = P\right)
$$

subject to

$$
d\pi_t^e = \gamma(\pi_t - \pi_t^e)dt \quad ; \quad \pi_t = u_t + \sigma \dot{W}_t.
$$

and

$$
V(T, \pi^e, P, N) = -N \log \left(\frac{P}{P_s}\right)
$$

This can be solved as

$$
V(t, \pi^e, P, N) = -N \log \left(\frac{P}{P_s}\right) e^{-r(T-t)} + A_t \pi^e + C_t + D_t(N)
$$

This can be solved as

$$
V(t,\pi^e, P, N) = -N \log \left(\frac{P}{P_s}\right) e^{-r(T-t)} + A_t \pi^e + C_t + D_t(N)
$$

with

$$
A_{t} = \frac{a}{\gamma + r} \left(e^{-(\gamma + r)(\tau - t)} - 1 \right)
$$
\n
$$
C_{t} = \frac{a}{\lambda(\gamma + r)^{2}} \left[\frac{r}{2} \left(1 + e^{-r(\tau - t)} \right) - r e^{-(\gamma + r)(\tau - t)} \right]
$$
\n
$$
+ \frac{\gamma^{2}}{2(2\gamma + r)} \left(e^{-r(\tau - t)} - e^{-2(\gamma + r)(\tau - t)} \right) \right]
$$
\n
$$
D_{t}(N) = e^{-r(\tau - t)} \left[\frac{N^{2}}{2a\lambda r} \left(1 - e^{-r(\tau - t)} \right) + \frac{N\sigma^{2}}{2} (\tau - t) \right]
$$
\n
$$
- \frac{N}{\lambda(\gamma + r)^{2}} \left(r(\gamma + r)(\tau - t) + \gamma \left(1 - e^{-(\gamma + r)(\tau - t)} \right) \right) \right].
$$

Implications for Monetary Policy

So we get

$$
\pi_t^*(N) = \frac{1}{\lambda(\gamma+r)} + \left(\gamma e^{-(\gamma+r)(T-t)} + r\right) - \frac{Ne^{-r(T-t)}}{a\lambda} + \sigma W_t,
$$
\n
$$
\pi_t^{e^*}(N) = \pi_s^e e^{-\gamma(t-s)} + \frac{\gamma^2 e^{-(\gamma+r)T} e^{-\gamma(t-s)}}{\lambda(\gamma+r)(2\gamma+r)} \left(e^{(2\gamma+r)t} - e^{(2\gamma+r)s}\right)
$$
\n
$$
+ \frac{r}{\lambda(\gamma+r)} \left(e^{\gamma t} - e^{\gamma s}\right)
$$
\n
$$
- \frac{N\gamma e^{-rT} e^{\gamma(t-s)}}{a\lambda(r-\gamma)} \left(e^{(r-\gamma)t} - e^{(r-\gamma)s}\right) + \gamma \sigma e^{-\gamma(t-s)} \int_s^t e^{\gamma \nu} dW_{\nu}.
$$

Implications for Monetary Policy

So we get

$$
\pi_t^*(N) = \frac{1}{\lambda(\gamma+r)} + (\gamma e^{-(\gamma+r)(T-t)} + r) - \frac{Ne^{-r(T-t)}}{a\lambda} + \sigma W_t,
$$
\n
$$
\pi_t^{e^*}(N) = \pi_s^e e^{-\gamma(t-s)} + \frac{\gamma^2 e^{-(\gamma+r)T} e^{-\gamma(t-s)}}{\lambda(\gamma+r)(2\gamma+r)} \left(e^{(2\gamma+r)t} - e^{(2\gamma+r)s}\right)
$$
\n
$$
+ \frac{r}{\lambda(\gamma+r)} \left(e^{\gamma t} - e^{\gamma s}\right)
$$
\n
$$
- \frac{N\gamma e^{-rT} e^{\gamma(t-s)}}{a\lambda(r-\gamma)} \left(e^{(r-\gamma)t} - e^{(r-\gamma)s}\right) + \gamma \sigma e^{-\gamma(t-s)} \int_s^t e^{\gamma \nu} dW_{\nu}.
$$

Expected inflation turns negative if N is greater than

$$
\frac{ar}{(1-e^{-r(T-s)})(\gamma+r)^2}\left(r(\gamma+r)(T-s)+\gamma(1-e^{-(\gamma+r)(T-s)})\right).
$$

By utility indifference pricing we get

for the price set by the central bank.

By utility indifference pricing we get

for the price set by the central bank.On the demand side we assume a Black-Scholes type financial market:

There is a nominal bond and interest rate r_i .

By utility indifference pricing we get

for the price set by the central bank.On the demand side we assume a Black-Scholes type financial market:

- There is a nominal bond and interest rate r_i .
- There is a Stock with volatility $\tilde{\sigma}$ and drift μ .

By utility indifference pricing we get

for the price set by the central bank.On the demand side we assume a Black-Scholes type financial market:

- There is a nominal bond and interest rate r_i .
- There is a Stock with volatility $\tilde{\sigma}$ and drift μ .
- The price level is not tradeable.

By utility indifference pricing we get

for the price set by the central bank.On the demand side we assume a Black-Scholes type financial market:

- There is a nominal bond and interest rate r_i .
- There is a Stock with volatility $\tilde{\sigma}$ and drift μ .
- The price level is not tradeable.

Therefore the market price of risk is $\rho = \frac{mu-r_i}{\tilde{\sigma}}$ and under the risk free measure we have $\tilde{E}_s(P_{\mathcal{T}})=e^{-\rho(\mathcal{T}-s)}E(P_{\mathcal{T}}).$

By utility indifference pricing we get

for the price set by the central bank.On the demand side we assume a Black-Scholes type financial market:

- There is a nominal bond and interest rate r_i .
- There is a Stock with volatility $\tilde{\sigma}$ and drift μ .
- The price level is not tradeable.

Therefore the market price of risk is $\rho = \frac{mu-r_i}{\tilde{\sigma}}$ and under the risk free measure we have $\tilde{E}_\mathsf{s}(\mathsf{P}_\mathcal{T}) = e^{-\rho(\mathcal{T}-\mathsf{s})} E(\mathsf{P}_\mathcal{T}).$ Hence the arbitrage free price is given by

$$
\widetilde{p}_s(N) = e^{-(r_i + \sigma \rho)(\tau - s)} E_s(P_T^*(N)) = e^{-r_i(\tau - s)} P_s e^{\int_s^T (u_\nu^*(N) - \frac{1}{2}\sigma^2) d\nu + \int_s^T \sigma d\widetilde{W}_\nu}
$$

Some simulation

Figure: There is excess demand for ILB's whenever the Bank chooses $N \leq 4.067 * 10^8$. Supply meets demand when $N = 4.067 * 10^8$.

Some simulation

Figure: The number of ILB's the bank can issue changes in time to maturity and first becomes positive for approx. 6.5 . However the equilibrium N will never lead to an expected constant price level (red line is alway above the blue line).

Some simulation

Figure: with slightly other parameters the situation changes dramatically. When issuing the equilibrium N ILB's with time to maturity of about 3 we observe decreasing expected price level.