Outperforming The Market Portfolio With A Given Probability

Yu-Jui Huang

Joint work with Erhan Bayraktar and Qingshuo Song University of Michigan, Ann Arbor

6th World Congress of the Bachelier Finance Society Toronto, June 23 2010

イロト イヨト イヨト イヨト

The Problem Related Work The Model

OUTLINE

1 INTRODUCTION

- The Problem
- Related Work
- The Model

2 ON QUANTILE HEDGING

3 The PDE Characterization

- Stochastic Control Problem Formulation
- Associated PDE

イロン イヨン イヨン イヨン

Introduction The Problem On Quantile Hedging Related Work The PDE Characterization The Model

 Consider a financial market with a bond B(·) = 1 and d stocks X = (X₁, · · · , X_d) which satisfy for i = 1; · · · d,

$$dX_{i}(t) = X_{i}(t) \left(b_{i}(X(t))dt + \sum_{k=1}^{d} s_{ik}(X(t))dW_{k}(t) \right).$$
(1)

• Let \mathcal{H} be the set of \mathbb{F} -progressively measurable processes $\pi : [0, T) \times \Omega \to \mathbb{R}^d$, which satisfies

$$\int_0^T ig(|\pi'(t)\mu(X(t))|+\pi'(t)lpha(X(t))\pi(t)ig)\,dt<\infty,$$
 a.s.,

in which $\mu = (\mu_1, \cdots, \mu_d)$ and $\sigma = (\sigma_{ij})_{1 \le i,j \le d}$ with $\mu_i(x) = b_i(x)x_i, \ \sigma_{ik}(x) = s_{ik}(x)x_i$, and $\alpha(x) = \sigma(x)\sigma'(x)$.

Introduction The Problem On Quantile Hedging Related Work The PDE Characterization The Model

 Consider a financial market with a bond B(·) = 1 and d stocks X = (X₁, · · · , X_d) which satisfy for i = 1; · · · d,

$$dX_{i}(t) = X_{i}(t) \left(b_{i}(X(t))dt + \sum_{k=1}^{d} s_{ik}(X(t))dW_{k}(t) \right).$$
(1)

• Let \mathcal{H} be the set of \mathbb{F} -progressively measurable processes $\pi : [0, T) \times \Omega \to \mathbb{R}^d$, which satisfies

$$\int_0^T ig(|\pi'(t)\mu(X(t))|+\pi'(t)lpha(X(t))\pi(t)ig)\,dt<\infty, \quad ext{a.s.},$$

in which $\mu = (\mu_1, \cdots, \mu_d)$ and $\sigma = (\sigma_{ij})_{1 \le i,j \le d}$ with $\mu_i(x) = b_i(x)x_i, \ \sigma_{ik}(x) = s_{ik}(x)x_i$, and $\alpha(x) = \sigma(x)\sigma'(x)$.

The Problem Related Work The Model

The Problem

 For each π ∈ H and initial wealth y ≥ 0 the associated wealth process will be denoted by Y^{y,π}(·). This process solves

$$dY^{y,\pi}(t) = Y^{y,\pi}(t) \sum_{i=1}^{d} \pi_i(t) \frac{dX_i(t)}{X_i(t)}, \quad Y^{y,\pi}(0) = y.$$

• In this paper, we want to determine and characterize

The Problem

 $V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t.} \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\}$

, where X(0)=x, $g:(0,\infty)^d\mapsto \mathbb{R}_+$ is a measurable function.

The Problem Related Work The Model

The Problem

 For each π ∈ H and initial wealth y ≥ 0 the associated wealth process will be denoted by Y^{y,π}(·). This process solves

$$dY^{y,\pi}(t) = Y^{y,\pi}(t) \sum_{i=1}^{d} \pi_i(t) \frac{dX_i(t)}{X_i(t)}, \quad Y^{y,\pi}(0) = y.$$

• In this paper, we want to determine and characterize

The Problem

 $V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t.} \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\}$

, where X(0)=x, $g:(0,\infty)^d\mapsto \mathbb{R}_+$ is a measurable function.

◆□→ ◆□→ ◆注→ ◆注→ □ 注

The Problem Related Work The Model

The Problem

 For each π ∈ H and initial wealth y ≥ 0 the associated wealth process will be denoted by Y^{y,π}(·). This process solves

$$dY^{y,\pi}(t) = Y^{y,\pi}(t) \sum_{i=1}^{d} \pi_i(t) \frac{dX_i(t)}{X_i(t)}, \quad Y^{y,\pi}(0) = y.$$

• In this paper, we want to determine and characterize

The Problem

$$V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t.} \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\}$$

, where X(0)=x, $g:(0,\infty)^d\mapsto \mathbb{R}_+$ is a measurable function.

◆□→ ◆□→ ◆注→ ◆注→ □ 注

The Problem Related Work The Model

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

 $V(T,x,1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y,\pi}(T) \ge g(X(T)) \text{ a.s.}\}.$

In Fernholz and Karatzas (2008), a PDE characterization for $\tilde{V}(T,x,1) := V(T,x,1)/g(x)$ was derived when V(T,x,1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

The Problem Related Work The Model

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

 $V(T,x,1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y,\pi}(T) \ge g(X(T)) \text{ a.s.}\}.$

In Fernholz and Karatzas (2008), a PDE characterization for $\tilde{V}(T,x,1) := V(T,x,1)/g(x)$ was derived when V(T,x,1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

The Problem Related Work The Model

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

 $V(T,x,1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y,\pi}(T) \ge g(X(T)) \text{ a.s.}\}.$

In Fernholz and Karatzas (2008), a PDE characterization for $\tilde{V}(T, x, 1) := V(T, x, 1)/g(x)$ was derived when V(T, x, 1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

The Problem Related Work The Model

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

$$V(\mathcal{T}, x, 1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y, \pi}(\mathcal{T}) \ge g(X(\mathcal{T})) \text{ a.s.} \}.$$

In Fernholz and Karatzas (2008), a PDE characterization for $\tilde{V}(T, x, 1) := V(T, x, 1)/g(x)$ was derived when V(T, x, 1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

The Problem Related Work The Model

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

$$V(\mathcal{T}, x, 1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y, \pi}(\mathcal{T}) \ge g(X(\mathcal{T})) \text{ a.s.} \}.$$

In Fernholz and Karatzas (2008), a PDE characterization for $\tilde{V}(T, x, 1) := V(T, x, 1)/g(x)$ was derived when V(T, x, 1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

The Problem Related Work The Model

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

$$V(\mathcal{T}, x, 1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y, \pi}(\mathcal{T}) \ge g(X(\mathcal{T})) \text{ a.s.} \}.$$

In Fernholz and Karatzas (2008), a PDE characterization for $\tilde{V}(T, x, 1) := V(T, x, 1)/g(x)$ was derived when V(T, x, 1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

The Problem Related Work The Model

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

$$V(\mathcal{T}, x, 1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y, \pi}(\mathcal{T}) \ge g(X(\mathcal{T})) \text{ a.s.} \}.$$

In Fernholz and Karatzas (2008), a PDE characterization for $\tilde{V}(T, x, 1) := V(T, x, 1)/g(x)$ was derived when V(T, x, 1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

The Problem Related Work The Model

Related Work

- In our paper, we will also work towards a PDE characterization for V(t, x, p), but
 - We only assume the existence of a weak solution of (1) that is unique in distribution;
 - We admit arbitrage in our model
 - main tools used: generalization of the results in Follmer and Leukert (1999), dynamic programming principle under weak formulation,...

・ロン ・回 と ・ ヨ と ・ ヨ と

The Problem Related Work The Model

Related Work

- In our paper, we will also work towards a PDE characterization for V(t, x, p), but
 - We only assume the existence of a weak solution of (1) that is unique in distribution;
 - We admit arbitrage in our model
 - main tools used: generalization of the results in Follmer and Leukert (1999), dynamic programming principle under weak formulation,...

The Problem Related Work The Model

Related Work

- In our paper, we will also work towards a PDE characterization for V(t, x, p), but
 - We only assume the existence of a weak solution of (1) that is unique in distribution;
 - We admit arbitrage in our model
 - main tools used: generalization of the results in Follmer and Leukert (1999), dynamic programming principle under weak formulation,...

The Problem Related Work The Model

Related Work

- In our paper, we will also work towards a PDE characterization for V(t, x, p), but
 - We only assume the existence of a weak solution of (1) that is unique in distribution;
 - We admit arbitrage in our model
 - main tools used: generalization of the results in Follmer and Leukert (1999), dynamic programming principle under weak formulation,...

・ロン ・回 と ・ ヨ と ・ ヨ と

The Problem Related Work The Model

ASSUMPTIONS

Assumption M

- Let b_i: (0,∞)^d → ℝ and s_{ik}: (0,∞)^d → ℝ be continuous functions and b(·) = (b₁(·), · · · , b_d(·))' and s(·) = (s_{ij}(·))_{1≤i,j≤d}, which we assume to be invertible for al x ∈ (0,∞)^d.
- We also assume that (1) has a weak solution that is unique in distribution for every initial value.
- Let $\theta(\cdot) := s^{-1}(\cdot)b(\cdot)$, $a_{ij}(\cdot) := \sum_{k=1}^d s_{ik}(\cdot)s_{jk}(\cdot)$ s atisfy

$$\sum_{i=1}^d \int_0^T ig(|b_i(X(t))|+a_{ii}(X(t))+ heta_i^2(X(t))ig)<\infty.$$

・ロン ・回と ・ヨン ・ヨン

The Problem Related Work The Model

ASSUMPTIONS

Assumption M

- Let b_i: (0,∞)^d → ℝ and s_{ik}: (0,∞)^d → ℝ be continuous functions and b(·) = (b₁(·), · · · , b_d(·))' and s(·) = (s_{ij}(·))_{1≤i,j≤d}, which we assume to be invertible for all x ∈ (0,∞)^d.
- We also assume that (1) has a weak solution that is unique in distribution for every initial value.
- Let $\theta(\cdot) := s^{-1}(\cdot)b(\cdot)$, $a_{ij}(\cdot) := \sum_{k=1}^d s_{ik}(\cdot)s_{jk}(\cdot)$ s atisfy

$$\sum_{i=1}^d \int_0^T ig(|b_i(X(t))|+a_{ii}(X(t))+ heta_i^2(X(t))ig)<\infty.$$

The Problem Related Work The Model

ASSUMPTIONS

Assumption M

- Let b_i: (0,∞)^d → ℝ and s_{ik}: (0,∞)^d → ℝ be continuous functions and b(·) = (b₁(·), · · · , b_d(·))' and s(·) = (s_{ij}(·))_{1≤i,j≤d}, which we assume to be invertible for all x ∈ (0,∞)^d.
- We also assume that (1) has a weak solution that is unique in distribution for every initial value.
- Let $\theta(\cdot) := s^{-1}(\cdot)b(\cdot)$, $a_{ij}(\cdot) := \sum_{k=1}^d s_{ik}(\cdot)s_{jk}(\cdot)$ s atisfy

$$\sum_{i=1}^d \int_0^T ig(|b_i(X(t))|+a_{ii}(X(t))+ heta_i^2(X(t))ig)<\infty.$$

The Problem Related Work The Model

ASSUMPTIONS

Assumption M

- Let b_i: (0,∞)^d → ℝ and s_{ik}: (0,∞)^d → ℝ be continuous functions and b(·) = (b₁(·), · · · , b_d(·))' and s(·) = (s_{ij}(·))_{1≤i,j≤d}, which we assume to be invertible for all x ∈ (0,∞)^d.
- We also assume that (1) has a weak solution that is unique in distribution for every initial value.
- Let $\theta(\cdot) := s^{-1}(\cdot)b(\cdot)$, $a_{ij}(\cdot) := \sum_{k=1}^d s_{ik}(\cdot)s_{jk}(\cdot)$ s atisfy

$$\sum_{i}^{d}\int_{0}^{T}\left(|b_{i}(X(t))|+a_{ii}(X(t))+\theta_{i}^{2}(X(t))\right)<\infty. \tag{2}$$

The Problem Related Work The Model

CONSEQUENCES OF ASSUMPTIONS

- We denote by \mathbb{F} the augmentation of the natural filtration of $X(\cdot)$.
- Thanks to Assumption M,
 - every local martingale of 𝔅 has the martingale representation property with respect to 𝑘(·) (adapted to 𝔅).
 - the solution of (1) takes values in the positive orthant
 - the exponential local martingale

$$Z(t) := \exp\left\{-\int_0^t \theta(X(s))' dW(s) - \frac{1}{2}\int_0^t |\theta(X(s))|^2 ds\right\},$$
(3)

the so-called *deflator* is well defined. We do not exclude the possibility that $Z(\cdot)$ is a strict local martingale.

・ロン ・四マ ・ヨマ ・ヨマ

The Problem Related Work The Model

CONSEQUENCES OF ASSUMPTIONS

- We denote by \mathbb{F} the augmentation of the natural filtration of $X(\cdot)$.
- Thanks to Assumption M,
 - every local martingale of 𝔅 has the martingale representation property with respect to 𝑘(·) (adapted to 𝔅).
 - the solution of (1) takes values in the positive orthant
 - the exponential local martingale

$$Z(t) := \exp\left\{-\int_0^t \theta(X(s))' dW(s) - \frac{1}{2}\int_0^t |\theta(X(s))|^2 ds\right\},$$
(3)

the so-called *deflator* is well defined. We do not exclude the possibility that $Z(\cdot)$ is a strict local martingale.

・ロン ・四マ ・ヨマ ・ヨマ

The Problem Related Work The Model

CONSEQUENCES OF ASSUMPTIONS

- We denote by \mathbb{F} the augmentation of the natural filtration of $X(\cdot)$.
- Thanks to Assumption M,
 - every local martingale of 𝔅 has the martingale representation property with respect to 𝑘(·) (adapted to 𝔅).
 - the solution of (1) takes values in the positive orthant
 - the exponential local martingale

$$Z(t) := \exp\left\{-\int_0^t \theta(X(s))' dW(s) - \frac{1}{2}\int_0^t |\theta(X(s))|^2 ds\right\},$$
(3)

the so-called *deflator* is well defined. We do not exclude the possibility that $Z(\cdot)$ is a strict local martingale.

・ロット (四) (日) (日)

The Problem Related Work The Model

CONSEQUENCES OF ASSUMPTIONS

- We denote by \mathbb{F} the augmentation of the natural filtration of $X(\cdot)$.
- Thanks to Assumption M,
 - every local martingale of 𝔅 has the martingale representation property with respect to 𝑘(·) (adapted to 𝔅).
 - the solution of (1) takes values in the positive orthant
 - the exponential local martingale

$$Z(t) := \exp\left\{-\int_0^t \theta(X(s))' dW(s) - \frac{1}{2}\int_0^t |\theta(X(s))|^2 ds\right\},$$
(3)

the so-called *deflator* is well defined. We do not exclude the possibility that $Z(\cdot)$ is a strict local martingale.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Problem Related Work The Model

What does the existence of a deflator entail?

- While we do not assume the existence of equivalent local martingale measures, we assume the existence of a local martingale deflator (the Z(·) process). This is equivalent to the No-Unbounded-Profit-with-Bounded-Risk (NUPBR) condition, introduced in Karatzas and Kardaras (2007).
- By Kardaras (2010), NUPBR is equivalent to the non-existence of arbitrages of the first kind, arbitages that can be attained through nonegative wealth processes.
- So in our model, arbitrage may exist, but we cannot scale it up to make arbitrary amount of money.

< □ > < @ > < 注 > < 注 > ... 注

The Problem Related Work The Model

What does the existence of a deflator entail?

- While we do not assume the existence of equivalent local martingale measures, we assume the existence of a local martingale deflator (the Z(·) process). This is equivalent to the No-Unbounded-Profit-with-Bounded-Risk (NUPBR) condition, introduced in Karatzas and Kardaras (2007).
- By Kardaras (2010), NUPBR is equivalent to the non-existence of arbitrages of the first kind, arbitages that can be attained through nonegative wealth processes.
- So in our model, arbitrage may exist, but we cannot scale it up to make arbitrary amount of money.

The Problem Related Work The Model

What does the existence of a deflator entail?

- While we do not assume the existence of equivalent local martingale measures, we assume the existence of a local martingale deflator (the Z(·) process). This is equivalent to the No-Unbounded-Profit-with-Bounded-Risk (NUPBR) condition, introduced in Karatzas and Kardaras (2007).
- By Kardaras (2010), NUPBR is equivalent to the non-existence of arbitrages of the first kind, arbitages that can be attained through nonegative wealth processes.
- So in our model, arbitrage may exist, but we cannot scale it up to make arbitrary amount of money.

The Problem Related Work The Model

What does the existence of a deflator entail?

- While we do not assume the existence of equivalent local martingale measures, we assume the existence of a local martingale deflator (the Z(·) process). This is equivalent to the No-Unbounded-Profit-with-Bounded-Risk (NUPBR) condition, introduced in Karatzas and Kardaras (2007).
- By Kardaras (2010), NUPBR is equivalent to the non-existence of arbitrages of the first kind, arbitages that can be attained through nonegative wealth processes.
- So in our model, arbitrage may exist, but we cannot scale it up to make arbitrary amount of money.

OUTLINE

1 INTRODUCTION

- The Problem
- Related Work
- The Model

2 ON QUANTILE HEDGING

- **3** The PDE Characterization
 - Stochastic Control Problem Formulation
 - Associated PDE

・ロト ・回ト ・ヨト ・ヨト

• Let $g: (0,\infty)^d \to \mathbb{R}_+$ be a measurable function satisfying $\mathbb{E}[Z(T)g(X(T))] < \infty.$ (4)

• We want to determine

 $V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\},$ (5)
for $p \in [0, 1]$.

• We will always assume Assumption M and (4) hold.

• Let
$$g: (0,\infty)^d \to \mathbb{R}_+$$
 be a measurable function satisfying $\mathbb{E}[Z(T)g(X(T))] < \infty.$ (4)

• We want to determine

$$V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\},$$
for $p \in [0, 1]$.

• We will always assume Assumption M and (4) hold.

イロン イボン イヨン イヨン 三日

• Let
$$g: (0,\infty)^d \to \mathbb{R}_+$$
 be a measurable function satisfying
 $\mathbb{E}[Z(T)g(X(T))] < \infty.$ (4)

• We want to determine

$$V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\},$$
(5)
for $p \in [0, 1]$.

• We will always assume Assumption M and (4) hold.

æ

Lemma 3.1

We will present a probabilistic characterization of V(T, x, p).

(II) if $\mathbb{P}(A) = p$ and $\operatorname{ess\,sup}_{A}\{Z(T)g(X(T))\} < \operatorname{ess\,inf}_{A^{c}}\{Z(T)g(X(T))\}, \quad (6)$ $V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A].$

Lemma 3.1

We will present a probabilistic characterization of V(T, x, p).

Yu-Jui Huang

Outperforming The Market Portfolio With A Given Probability

Lemma 3.1

We will present a probabilistic characterization of V(T, x, p).

Lemma 3.1 Given $A \in \mathcal{F}_{\mathcal{T}}$. (I) if $\mathbb{P}(A) \geq p$, then $V(T, x, p) \leq \mathbb{E}[Z(T)g(X(T))1_A].$ (II) if $\mathbb{P}(A) = p$ and $\operatorname{ess\,sup}_{A}\{Z(T)g(X(T))\} \leq \operatorname{ess\,inf}_{A^{c}}\{Z(T)g(X(T))\},$ (6)then $V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A].$ (7)Yu-Jui Huang Outperforming The Market Portfolio With A Given Probability

PROOF OF LEMMA 3.1

(1) Assumption M implies that the market is complete. So $Z(T)g(X^{t,x}(T))1_A \in \mathcal{F}_T$ is replicable with initial capital $\mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$. Since $\mathbb{P}(A) \ge p$, it follows that $V(T, x, p) \le \mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$.

(II) take arbitrary $y_0 > 0$ and $\pi_0 \in \mathcal{H}$ such that

 $\mathbb{P}\{B\} \ge p, \text{ where } B \triangleq \{Y^{y_0,\pi_0}(T) \ge g(X(T))\}.$

To prove equality in (7), it's enough to show that

$$y_0 \geq \mathbb{E}[Z(T)g(X(T))1_A].$$

PROOF OF LEMMA 3.1

(I) Assumption M implies that the market is complete. So $Z(T)g(X^{t,x}(T))1_A \in \mathcal{F}_T$ is replicable with initial capital $\mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$. Since $\mathbb{P}(A) \ge p$, it follows that $V(T, x, p) \le \mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$.

(II) take arbitrary $y_0 > 0$ and $\pi_0 \in \mathcal{H}$ such that

 $\mathbb{P}\{B\} \ge p, \text{ where } B \triangleq \{Y^{y_0,\pi_0}(T) \ge g(X(T))\}.$

To prove equality in (7), it's enough to show that

$$y_0 \geq \mathbb{E}[Z(T)g(X(T))1_A].$$

 (I) Assumption M implies that the market is complete. So Z(T)g(X^{t,x}(T))1_A ∈ F_T is replicable with initial capital E[Z(T)g(X^{t,x}(T))1_A]. Since P(A) ≥ p, it follows that V(T,x,p) ≤ E[Z(T)g(X^{t,x}(T))1_A].

 $\mathbb{P}{B} \ge p$, where $B \triangleq {Y^{y_0,\pi_0}(T) \ge g(X(T))}.$

To prove equality in (7), it's enough to show that

$$y_0 \geq \mathbb{E}[Z(T)g(X(T))1_A].$$

(1) Assumption M implies that the market is complete. So $Z(T)g(X^{t,x}(T))1_A \in \mathcal{F}_T$ is replicable with initial capital $\mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$. Since $\mathbb{P}(A) \ge p$, it follows that $V(T, x, p) \le \mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$.

(II) take arbitrary $y_0>0$ and $\pi_0\in\mathcal{H}$ such that

 $\mathbb{P}\{B\} \ge p$, where $B \triangleq \{Y^{y_0,\pi_0}(T) \ge g(X(T))\}.$

To prove equality in (7), it's enough to show that

$$y_0 \geq \mathbb{E}[Z(T)g(X(T))1_A].$$

(I) Assumption M implies that the market is complete. So $Z(T)g(X^{t,x}(T))1_A \in \mathcal{F}_T$ is replicable with initial capital $\mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$. Since $\mathbb{P}(A) \ge p$, it follows that $V(T,x,p) \le \mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$.

(II) take arbitrary $y_0>0$ and $\pi_0\in\mathcal{H}$ such that

 $\mathbb{P}\{B\} \ge p$, where $B \triangleq \{Y^{y_0,\pi_0}(T) \ge g(X(T))\}.$

To prove equality in (7), it's enough to show that

 $y_0 \geq \mathbb{E}[Z(T)g(X(T))1_A].$

(I) Assumption M implies that the market is complete. So $Z(T)g(X^{t,x}(T))1_A \in \mathcal{F}_T$ is replicable with initial capital $\mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$. Since $\mathbb{P}(A) \ge p$, it follows that $V(T,x,p) \le \mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$.

(II) take arbitrary $y_0>0$ and $\pi_0\in\mathcal{H}$ such that

 $\mathbb{P}{B} \ge p$, where $B \triangleq {Y^{y_0,\pi_0}(T) \ge g(X(T))}.$

To prove equality in (7), it's enough to show that

$$y_0 \geq \mathbb{E}[Z(T)g(X(T))1_A].$$

(I) Assumption M implies that the market is complete. So $Z(T)g(X^{t,x}(T))1_A \in \mathcal{F}_T$ is replicable with initial capital $\mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$. Since $\mathbb{P}(A) \ge p$, it follows that $V(T,x,p) \le \mathbb{E}[Z(T)g(X^{t,x}(T))1_A]$.

(II) take arbitrary $y_0>0$ and $\pi_0\in\mathcal{H}$ such that

$$\mathbb{P}{B} \ge p$$
, where $B \triangleq {Y^{y_0,\pi_0}(T) \ge g(X(T))}$.

To prove equality in (7), it's enough to show that

$$y_0 \geq \mathbb{E}[Z(T)g(X(T))1_A].$$

イロン イヨン イヨン イヨン

æ

$$\begin{split} &= \mathbb{E}[Z(T)Y^{y_0,\pi_0}(T)\mathbf{1}_B] + \mathbb{E}[Z(T)Y^{y_0,\pi_0}(T)\mathbf{1}_{B^c}] \\ &\geq \mathbb{E}[Z(T)g(X(T))\mathbf{1}_B] \\ &= \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A\cap B}] + \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A^c\cap B}] \\ &\geq \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A\cap B}] + \mathbb{P}(A^c \cap B) \operatorname{ess\,sup}_{A\cap B^c}\{Z(T)g(X(T))\} \\ &\geq \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A\cap B}] + \mathbb{P}(A \cap B^c) \operatorname{ess\,sup}_{A\cap B^c}\{Z(T)g(X(T))\} \\ &\geq \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A\cap B}] + \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A\cap B^c}] \\ &= \mathbb{E}[Z(T)g(X(T))\mathbf{1}_A]. \end{split}$$

PROOF OF LEMMA 3.1 (CONTI.)

 $y_0 \geq \mathbb{E}[Z(T)Y^{y_0,\pi_0}(T)]$

Introduction On Quantile Hedging The PDE Characterization

- Let F(·) be the cumulative distribution function of Z(T)g(X(T)).
- For any $a \in \mathbb{R}_+$ define

 $A_a := \{ \omega : Z(T)g(X(T)) < a \}, \ \partial A_a := \{ \omega : Z(T)g(X(T)) = a \},\$ and let \overline{A}_a denote $A_a \cup \partial A_a$.

• Taking $A = \overline{A}_a$ in Lemma 3.1, it follows that

$$V(T, x, F(a)) = \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{\bar{A}_a}].$$
(8)

On the other hand, taking $A = A_a$, we obtain that

$$V(T, x, F(a-)) = \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A_a}].$$
(9)

$$V(T, x, F(a)) = V(t, x, F(a-)) + a\mathbb{P}\{\partial A_a\}$$

= $V(t, x, F(a-)) + a(F(a) - F(a-)).$

- Let F(·) be the cumulative distribution function of Z(T)g(X(T)).
- For any $a \in \mathbb{R}_+$ define

 $A_a := \{ \omega : Z(T)g(X(T)) < a \}, \ \partial A_a := \{ \omega : Z(T)g(X(T)) = a \},\$ and let \overline{A}_a denote $A_a \cup \partial A_a$.

• Taking $A = \overline{A}_a$ in Lemma 3.1, it follows that

$$V(T, x, F(a)) = \mathbb{E}[Z(T)g(X(T))1_{\bar{A}_a}].$$
(8)

On the other hand, taking $A = A_a$, we obtain that

$$V(T, x, F(a-)) = \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A_a}].$$
(9)

$$V(T, x, F(a)) = V(t, x, F(a-)) + a\mathbb{P}\{\partial A_a\}$$

= $V(t, x, F(a-)) + a(F(a) - F(a-)).$

- Let F(·) be the cumulative distribution function of Z(T)g(X(T)).
- For any $a \in \mathbb{R}_+$ define

$$\begin{split} &A_a := \{ \omega : Z(T)g(X(T)) < a \}, \ \partial A_a := \{ \omega : Z(T)g(X(T)) = a \}, \\ &\text{and let } \bar{A}_a \text{ denote } A_a \cup \partial A_a. \end{split}$$

• Taking $A = \overline{A}_a$ in Lemma 3.1, it follows that

$$V(T, x, F(a)) = \mathbb{E}[Z(T)g(X(T))1_{\bar{A}_a}].$$
(8)

On the other hand, taking $A = A_a$, we obtain that

$$V(T, x, F(a-)) = \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A_a}].$$
(9)

$$V(T, x, F(a)) = V(t, x, F(a-)) + a\mathbb{P}\{\partial A_a\}$$

= $V(t, x, F(a-)) + a(F(a) - F(a-)).$

- Let F(·) be the cumulative distribution function of Z(T)g(X(T)).
- For any $a \in \mathbb{R}_+$ define

$$A_a := \{ \omega : Z(T)g(X(T)) < a \}, \ \partial A_a := \{ \omega : Z(T)g(X(T)) = a \},\$$
and let \bar{A}_a denote $A_a \cup \partial A_a$.

• Taking $A = \overline{A}_a$ in Lemma 3.1, it follows that

$$V(T, x, F(a)) = \mathbb{E}[Z(T)g(X(T))1_{\bar{A}_a}].$$
(8)

On the other hand, taking $A = A_a$, we obtain that

$$V(T, x, F(a-)) = \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A_a}].$$
(9)

$$V(T, x, F(a)) = V(t, x, F(a-)) + a\mathbb{P}\{\partial A_a\}$$

= $V(t, x, F(a-)) + a(F(a) - F(a-)).$

- Let F(·) be the cumulative distribution function of Z(T)g(X(T)).
- For any $a \in \mathbb{R}_+$ define

$$A_a := \{ \omega : Z(T)g(X(T)) < a \}, \ \partial A_a := \{ \omega : Z(T)g(X(T)) = a \},\$$
and let \bar{A}_a denote $A_a \cup \partial A_a$.

• Taking $A = \overline{A}_a$ in Lemma 3.1, it follows that

$$V(T, x, F(a)) = \mathbb{E}[Z(T)g(X(T))1_{\bar{A}_a}].$$
(8)

On the other hand, taking $A = A_a$, we obtain that

$$V(T, x, F(a-)) = \mathbb{E}[Z(T)g(X(T))\mathbf{1}_{A_a}].$$
(9)

$$V(T, x, F(a)) = V(t, x, F(a-)) + a\mathbb{P}\{\partial A_a\}$$

= $V(t, x, F(a-)) + a(F(a) - F(a-)).$

- Let F(·) be the cumulative distribution function of Z(T)g(X(T)).
- For any $a \in \mathbb{R}_+$ define

$$A_a := \{ \omega : Z(T)g(X(T)) < a \}, \ \partial A_a := \{ \omega : Z(T)g(X(T)) = a \}, \ \text{and let } \bar{A}_a \text{ denote } A_a \cup \partial A_a.$$

• Taking $A = \overline{A}_a$ in Lemma 3.1, it follows that

$$V(T, x, F(a)) = \mathbb{E}[Z(T)g(X(T))1_{\bar{A}_a}].$$
(8)

On the other hand, taking $A = A_a$, we obtain that

$$V(T, x, F(a-)) = \mathbb{E}[Z(T)g(X(T))1_{A_a}].$$
(9)

$$V(T, x, F(a)) = V(t, x, F(a-)) + a\mathbb{P}\{\partial A_a\}$$

= $V(t, x, F(a-)) + a(F(a) - F(a-)).$

PROPOSITION 3.1

Next, we will determine V(T, x, p) for $p \in (F(a-), F(a))$ when F(a-) < F(a).

PROPOSITION 3.1

Fix arbitrary $(t, x, p) \in (0, T) \times (0, \infty)^d \times [0, 1]$ (I) There exists $A \in \mathcal{F}_T$ satisfying $\mathbb{P}(A) = p$ and (6). As we have

$$V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A].$$

(II) If $F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$, then letting $a := \inf\{s \in \mathbb{R}_+ : F(s) > p\}$ we have

$$V(T, x, p) = V(T, x, F(a-)) + a(p - F(a-)).$$

= $V(T, x, F(a)) - a(F(a) - p)$ (1

PROPOSITION 3.1

Next, we will determine V(T, x, p) for $p \in (F(a-), F(a))$ when F(a-) < F(a).

PROPOSITION 3.1

Fix arbitrary $(t, x, p) \in (0, T) \times (0, \infty)^d \times [0, 1]$

(1) There exists $A \in \mathcal{F}_T$ satisfying $\mathbb{P}(A) = p$ and (6). As a result, we have

$$V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A].$$

(II) If $F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$, then letting $a := \inf\{s \in \mathbb{R}_+ : F(s) > p\}$ we have

$$V(T, x, p) = V(T, x, F(a-)) + a(p - F(a-)).$$

= $V(T, x, F(a)) - a(F(a) - p)$

Outperforming The Market Portfolio With A Given Probability

PROPOSITION 3.1

Next, we will determine V(T, x, p) for $p \in (F(a-), F(a))$ when F(a-) < F(a).

PROPOSITION 3.1

Fix arbitrary $(t, x, p) \in (0, T) \times (0, \infty)^d \times [0, 1]$

(1) There exists $A \in \mathcal{F}_T$ satisfying $\mathbb{P}(A) = p$ and (6). As a result, we have

$$V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A].$$

(II) If
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
, then letting $a := \inf\{s \in \mathbb{R}_+ : F(s) > p\}$ we have

$$V(T, x, p) = V(T, x, F(a-)) + a(p - F(a-)).$$

= $V(T, x, F(a)) - a(F(a) - p)$ (11)

PROOF OF PROPOSITION 3.1

Assume $F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$. For (i),

- Let \widetilde{W} be a Brownian motion with respect to \mathbb{F} and define $B_b = \{\omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b\}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b\to -\infty} f(b) = 0 \text{ and } \lim_{b\to \infty} f(b) = \mathbb{P}(\partial A_a).$$

Moreover, it is continuous and nondecreasing. For continuity:

$$0 \leq f(b+\varepsilon) - f(b) = \mathbb{P}(\partial A_a \cap B_{b+\varepsilon}) - \mathbb{P}(\partial A_a \cap B_b) \leq \mathbb{P}(B_{b+\varepsilon} \cap B_b^c),$$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b^{*} ∈ R₊ satisfying f(b^{*}) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1

Assume
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
. For (i),

- Let W be a Brownian motion with respect to \mathbb{F} and define $B_b = \{\omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b\}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b\to\infty} f(b) = 0 \text{ and } \lim_{b\to\infty} f(b) = \mathbb{P}(\partial A_a).$$

Moreover, it is continuous and nondecreasing. For continuity:

$$0 \leq f(b+\varepsilon) - f(b) = \mathbb{P}(\partial A_a \cap B_{b+\varepsilon}) - \mathbb{P}(\partial A_a \cap B_b) \leq \mathbb{P}(B_{b+\varepsilon} \cap B_b^c),$$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b^{*} ∈ R₊ satisfying f(b^{*}) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1

Assume
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
. For (i),

- Let W be a Brownian motion with respect to \mathbb{F} and define $B_b = \{ \omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b \}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b\to\infty} f(b) = 0 \text{ and } \lim_{b\to\infty} f(b) = \mathbb{P}(\partial A_a).$$

Moreover, it is continuous and nondecreasing. For continuity:

$$0 \leq f(b+\varepsilon) - f(b) = \mathbb{P}(\partial A_a \cap B_{b+\varepsilon}) - \mathbb{P}(\partial A_a \cap B_b) \leq \mathbb{P}(B_{b+\varepsilon} \cap B_b^c),$$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b^{*} ∈ R₊ satisfying f(b^{*}) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1

Assume
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
. For (i),

- Let \widehat{W} be a Brownian motion with respect to \mathbb{F} and define $B_b = \{\omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b\}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b\to -\infty} f(b) = 0 \text{ and } \lim_{b\to \infty} f(b) = \mathbb{P}(\partial A_a).$$

Moreover, it is continuous and nondecreasing. For continuity:

 $0 \leq f(b+\varepsilon) - f(b) = \mathbb{P}(\partial A_a \cap B_{b+\varepsilon}) - \mathbb{P}(\partial A_a \cap B_b) \leq \mathbb{P}(B_{b+\varepsilon} \cap B_b^c),$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b^{*} ∈ R₊ satisfying f(b^{*}) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1

Assume
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
. For (i),

- Let \widehat{W} be a Brownian motion with respect to \mathbb{F} and define $B_b = \{\omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b\}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b\to -\infty} f(b) = 0 \text{ and } \lim_{b\to \infty} f(b) = \mathbb{P}(\partial A_a).$$

Moreover, it is continuous and nondecreasing. For continuity:

 $0 \leq f(b+\varepsilon) - f(b) = \mathbb{P}(\partial A_a \cap B_{b+\varepsilon}) - \mathbb{P}(\partial A_a \cap B_b) \leq \mathbb{P}(B_{b+\varepsilon} \cap B_b^c),$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b* ∈ R₊ satisfying f(b*) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1

Assume
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
. For (i),

- Let W be a Brownian motion with respect to \mathbb{F} and define $B_b = \{\omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b\}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b
ightarrow -\infty} f(b) = 0 ext{ and } \lim_{b
ightarrow \infty} f(b) = \mathbb{P}(\partial A_{a}).$$

Moreover, it is continuous and nondecreasing. For continuity:

$$0 \leq f(b + \varepsilon) - f(b) = \mathbb{P}(\partial A_{a} \cap B_{b + \varepsilon}) - \mathbb{P}(\partial A_{a} \cap B_{b}) \leq \mathbb{P}(B_{b + \varepsilon} \cap B_{b}^{c}),$$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b^{*} ∈ R₊ satisfying f(b^{*}) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1

Assume
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
. For (i),

- Let \widehat{W} be a Brownian motion with respect to \mathbb{F} and define $B_b = \{\omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b\}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b
ightarrow -\infty} f(b) = 0 ext{ and } \lim_{b
ightarrow \infty} f(b) = \mathbb{P}(\partial A_a).$$

Moreover, it is continuous and nondecreasing. For continuity:

$$0 \leq f(b+\varepsilon) - f(b) = \mathbb{P}(\partial A_{a} \cap B_{b+\varepsilon}) - \mathbb{P}(\partial A_{a} \cap B_{b}) \leq \mathbb{P}(B_{b+\varepsilon} \cap B_{b}^{c}),$$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b^{*} ∈ R₊ satisfying f(b^{*}) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1

Assume
$$F^{-1}(p) := \{s \in \mathbb{R}_+ : F(s) = p\} = \emptyset$$
. For (i),

- Let W be a Brownian motion with respect to \mathbb{F} and define $B_b = \{\omega : \frac{\widetilde{W}(T)}{\sqrt{T-t}} < b\}.$
- Define $f(\cdot)$ by $f(b) = \mathbb{P}\{\partial A_a \cap B_b\}$. It satisfies

$$\lim_{b\to -\infty} f(b) = 0 \text{ and } \lim_{b\to \infty} f(b) = \mathbb{P}(\partial A_a).$$

Moreover, it is continuous and nondecreasing. For continuity:

$$0 \leq f(b+\varepsilon) - f(b) = \mathbb{P}(\partial A_{a} \cap B_{b+\varepsilon}) - \mathbb{P}(\partial A_{a} \cap B_{b}) \leq \mathbb{P}(B_{b+\varepsilon} \cap B_{b}^{c}),$$

- Since 0 a</sub>) < P(∂A_a), thanks to the above properties of f, there exists a b^{*} ∈ R₊ satisfying f(b^{*}) = p − P(A_a).
- Define $A := A_a \cup (\partial A_a \cap B_{b^*})$. Observe that $\mathbb{P}(A) = \mathbb{P}(A_a) + \mathbb{P}(\partial A_a \cap B_{b^*}) = p$, and A satisfies (6).

PROOF OF PROPOSITION 3.1 (CONTI.)

For (ii), it follows immediately from (i),

$$V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A]$$

= $\mathbb{E}[Z(T)g(X(T))1_{A_a}] + \mathbb{E}[Z(T)g(X(T))1_{\partial A_a \cap B_{b^*}}]$
= $V(T, x, F(a-)) + a\mathbb{P}(\partial A_a \cap B_{b^*})$
= $V(t, x, F(a-)) + a(p - F(a-)).$

イロン イヨン イヨン イヨン

2

When Z is a martingale:

• Using Neyman-Pearson Lemma, Follmer and Leukert (1999) showed that

$$V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi] = \mathbb{E}[Z(T)g(X(T))\varphi^*],$$
(12)

where

 $\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge p \}.$ (13)

When Z is a martingale:

• Using Neyman-Pearson Lemma, Follmer and Leukert (1999) showed that

$$V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi] = \mathbb{E}[Z(T)g(X(T))\varphi^*],$$
(12)

where

 $\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge p \}.$ (13)

When Z is a martingale:

• Using Neyman-Pearson Lemma, Follmer and Leukert (1999) showed that

$$V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi] = \mathbb{E}[Z(T)g(X(T))\varphi^*],$$
(12)

where

$$\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge \rho \}. (13)$$

When Z is a martingale:

• Using Neyman-Pearson Lemma, Follmer and Leukert (1999) showed that

$$V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi] = \mathbb{E}[Z(T)g(X(T))\varphi^*],$$
(12)

where

$$\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge p \}. (13)$$

When Z is a martingale:

• Using Neyman-Pearson Lemma, Follmer and Leukert (1999) showed that

$$V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi] = \mathbb{E}[Z(T)g(X(T))\varphi^*],$$
(12)

where

$$\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge p \}.$$
 (13)

• Consider a market with a single stock, whose dynamics follow a three-dimensional Bessel process, i.e.

$$dX(t) = \frac{1}{X(t)}dt + dW(t) \quad X_0 = x > 0,$$

and let g(x) = x.

- In this case, Z(t) = x/X(t), which is the classical example for a strict local martingale; see Johnson and Helms (1963). On the other hand, Z(t)X(t) = x is a martingale.
- Thanks to Proposition 3.1 there exits a set $A \in \mathcal{F}_T$ with $\mathbb{P}(A) = p$ such that

$$V(t,x,p) = \mathbb{E}[Z(T)X(T)1_A] = px.$$

・ロト ・回ト ・ヨト ・ヨト

• Consider a market with a single stock, whose dynamics follow a three-dimensional Bessel process, i.e.

$$dX(t) = \frac{1}{X(t)}dt + dW(t) \quad X_0 = x > 0,$$

and let g(x) = x.

- In this case, Z(t) = x/X(t), which is the classical example for a strict local martingale; see Johnson and Helms (1963). On the other hand, Z(t)X(t) = x is a martingale.
- Thanks to Proposition 3.1 there exits a set $A \in \mathcal{F}_T$ with $\mathbb{P}(A) = p$ such that

$$V(t,x,p) = \mathbb{E}[Z(T)X(T)\mathbf{1}_A] = px.$$

• Consider a market with a single stock, whose dynamics follow a three-dimensional Bessel process, i.e.

$$dX(t) = \frac{1}{X(t)}dt + dW(t) \quad X_0 = x > 0,$$

and let g(x) = x.

- In this case, Z(t) = x/X(t), which is the classical example for a strict local martingale; see Johnson and Helms (1963). On the other hand, Z(t)X(t) = x is a martingale.
- Thanks to Proposition 3.1 there exits a set $A \in \mathcal{F}_T$ with $\mathbb{P}(A) = p$ such that

$$V(t,x,p) = \mathbb{E}[Z(T)X(T)\mathbf{1}_A] = px.$$

• Consider a market with a single stock, whose dynamics follow a three-dimensional Bessel process, i.e.

$$dX(t) = \frac{1}{X(t)}dt + dW(t) \quad X_0 = x > 0,$$

and let g(x) = x.

- In this case, Z(t) = x/X(t), which is the classical example for a strict local martingale; see Johnson and Helms (1963). On the other hand, Z(t)X(t) = x is a martingale.
- Thanks to Proposition 3.1 there exits a set $A \in \mathcal{F}_T$ with $\mathbb{P}(A) = p$ such that

$$V(t,x,p) = \mathbb{E}[Z(T)X(T)1_A] = px.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

PROPOSITION 3.3

Here, we will give alternative representation of V, which facilitates its PDE characterization in the next section. Recall that

 $\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge p \}.$

PROPOSITION 3.3 $V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

PROPOSITION 3.3

Here, we will give alternative representation of V, which facilitates its PDE characterization in the next section. Recall that

$$\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge p \}.$$

Proposition 3.3

 $V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

PROPOSITION 3.3

Here, we will give alternative representation of V, which facilitates its PDE characterization in the next section. Recall that

$$\mathcal{M} = \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \ge p \}.$$

PROPOSITION 3.3

 $V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$

PROOF OF PROPOSITION 3.3

• Thanks to Proposition 3.1 there exists a set $A \in \mathcal{F}_T$ such that $V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A]$. Since $1_A \in \mathcal{M}$, clearly

$V(T, x, p) \ge \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$

• For the other direction, we will show that for any $\varphi \in \mathcal{M}$ and a given set $A \in \mathcal{F}_T$ satisfying $\mathbb{P}(A) = p$ and (6), we have

$\mathbb{E}[Z(T)g(X(T))1_A] \leq \mathbb{E}[Z(T)g(X(T))\varphi].$

PROOF OF PROPOSITION 3.3

• Thanks to Proposition 3.1 there exists a set $A \in \mathcal{F}_T$ such that $V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A]$. Since $1_A \in \mathcal{M}$, clearly

$V(T, x, p) \geq \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$

• For the other direction, we will show that for any $\varphi \in \mathcal{M}$ and a given set $A \in \mathcal{F}_T$ satisfying $\mathbb{P}(A) = p$ and (6), we have

 $\mathbb{E}[Z(T)g(X(T))1_{A}] \leq \mathbb{E}[Z(T)g(X(T))\varphi].$

PROOF OF PROPOSITION 3.3

• Thanks to Proposition 3.1 there exists a set $A \in \mathcal{F}_T$ such that $V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A]$. Since $1_A \in \mathcal{M}$, clearly

$$V(T, x, p) \geq \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$$

• For the other direction, we will show that for any $\varphi \in \mathcal{M}$ and a given set $A \in \mathcal{F}_T$ satisfying $\mathbb{P}(A) = p$ and (6), we have

$$\mathbb{E}[Z(T)g(X(T))1_A] \leq \mathbb{E}[Z(T)g(X(T))\varphi].$$

PROOF OF PROPOSITION 3.3 (CONTI.)

• Letting $M = \operatorname{ess} \sup_{A} \{Z(T)g(X(T))\}$, we can write

$$\begin{split} \mathbb{E}[Z(T)g(X(T))\varphi] &- \mathbb{E}[Z(T)g(X(T))1_{A}] \\ &= \mathbb{E}[Z(T)g(X(T))\varphi 1_{A}] + \mathbb{E}[Z(T)g(X(T))\varphi 1_{A^{c}}] \\ &- \mathbb{E}[Z(T)g(X(T))1_{A}] \\ &= \mathbb{E}[Z(T)g(X(T))\varphi 1_{A^{c}}] - \mathbb{E}[Z(T)g(X(T))1_{A}(1-\varphi)] \\ &\geq M\mathbb{E}[\varphi 1_{A^{c}}] - M\mathbb{E}[1_{A}(1-\varphi)] \quad (by (6)) \\ &\geq 0. \end{split}$$

イロン イ部ン イヨン イヨン 三日

PROOF OF PROPOSITION 3.3 (CONTI.)

• Letting $M = \operatorname{ess sup}_A\{Z(T)g(X(T))\}$, we can write

$$\begin{split} & \mathbb{E}[Z(T)g(X(T))\varphi] - \mathbb{E}[Z(T)g(X(T))1_A] \\ &= \mathbb{E}[Z(T)g(X(T))\varphi 1_A] + \mathbb{E}[Z(T)g(X(T))\varphi 1_{A^c}] \\ &- \mathbb{E}[Z(T)g(X(T))1_A] \\ &= \mathbb{E}[Z(T)g(X(T))\varphi 1_{A^c}] - \mathbb{E}[Z(T)g(X(T))1_A(1-\varphi)] \\ &\geq M \mathbb{E}[\varphi 1_{A^c}] - M \mathbb{E}[1_A(1-\varphi)] \quad (by (6)) \\ &\geq 0. \end{split}$$

イロン イヨン イヨン イヨン

Stochastic Control Problem Formulation Associated PDE

OUTLINE

1 INTRODUCTION

- The Problem
- Related Work
- The Model

2 ON QUANTILE HEDGING

- **3** The PDE Characterization
 - Stochastic Control Problem Formulation
 - Associated PDE

イロン イヨン イヨン イヨン

• Let us denote by $P^p_{\alpha}(\cdot)$ the solution of

 $dP(t) = P(t)(1 - P(t))\alpha'(t)dW(t), \ P(0) = p \in [0, 1], \ (14)$

where $\alpha(\cdot)$ is an \mathbb{F} -progressively measurable \mathbb{R}^d -valued process such that $\int_0^T \|\alpha(s)\|^2 ds < \infty$ \mathbb{P} -a.s. We will denote the class of such processes by \mathcal{A} .

• The next result obtains an alternative representation for V in terms of P.

Propostion 4.1

 $V(T, x, p) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z(T)g(X(T))P_{\alpha}^{p}(T)] < \infty.$

• Let us denote by $P^p_{\alpha}(\cdot)$ the solution of

 $dP(t) = P(t)(1 - P(t))\alpha'(t)dW(t), \ P(0) = p \in [0, 1], \ (14)$

where $\alpha(\cdot)$ is an \mathbb{F} -progressively measurable \mathbb{R}^d -valued process such that $\int_0^T \|\alpha(s)\|^2 ds < \infty$ \mathbb{P} -a.s. We will denote the class of such processes by \mathcal{A} .

• The next result obtains an alternative representation for V in terms of P.

Propostion 4.1

 $V(T, x, p) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z(T)g(X(T))P_{\alpha}^{p}(T)] < \infty.$

• Let us denote by $P^p_{\alpha}(\cdot)$ the solution of

 $dP(t) = P(t)(1 - P(t))\alpha'(t)dW(t), \ P(0) = p \in [0, 1], \ (14)$

where $\alpha(\cdot)$ is an \mathbb{F} -progressively measurable \mathbb{R}^d -valued process such that $\int_0^T \|\alpha(s)\|^2 ds < \infty$ \mathbb{P} -a.s. We will denote the class of such processes by \mathcal{A} .

• The next result obtains an alternative representation for V in terms of P.

Propostion 4.1

 $V(T, x, p) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z(T)g(X(T))P_{\alpha}^{p}(T)] < \infty.$

• Let us denote by $P^p_{\alpha}(\cdot)$ the solution of

$$dP(t) = P(t)(1 - P(t))\alpha'(t)dW(t), \ P(0) = p \in [0, 1], \ (14)$$

where $\alpha(\cdot)$ is an \mathbb{F} -progressively measurable \mathbb{R}^d -valued process such that $\int_0^T \|\alpha(s)\|^2 ds < \infty$ \mathbb{P} -a.s. We will denote the class of such processes by \mathcal{A} .

• The next result obtains an alternative representation for V in terms of P.

Propostion 4.1

 $V(T, x, p) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z(T)g(X(T))P_{\alpha}^{p}(T)] < \infty.$

• Let us denote by $P^p_{\alpha}(\cdot)$ the solution of

$$dP(t) = P(t)(1 - P(t))\alpha'(t)dW(t), \ P(0) = p \in [0, 1], \ (14)$$

where $\alpha(\cdot)$ is an \mathbb{F} -progressively measurable \mathbb{R}^d -valued process such that $\int_0^T \|\alpha(s)\|^2 ds < \infty$ \mathbb{P} -a.s. We will denote the class of such processes by \mathcal{A} .

• The next result obtains an alternative representation for V in terms of P.

PROPOSTION 4.1

$$V(T, x, p) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z(T)g(X(T))P^{p}_{\alpha}(T)] < \infty.$$

Stochastic Control Problem Formulation Associated PDE

PROOF OF PROPOSITION 4.1

• The finiteness follows from (4).

• It can be shown using Proposition 3.3 that

$$V(T, x, p) = \inf_{\varphi \in \widetilde{\mathcal{M}}} \mathbb{E}[Z(T)g(X(T))\varphi],$$

where $\widetilde{\mathcal{M}} = \{ \varphi : \Omega \to [0, 1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] = p \}.$ Therefore it's enough to show that $\widetilde{\mathcal{M}}$ satisfies

$$\widetilde{\mathcal{M}} = \{ P^p_{\alpha}(T) : \alpha \in \mathcal{A} \}.$$

PROOF OF PROPOSITION 4.1

- The finiteness follows from (4).
- It can be shown using Proposition 3.3 that

$$V(T, x, p) = \inf_{\varphi \in \widetilde{\mathcal{M}}} \mathbb{E}[Z(T)g(X(T))\varphi],$$

where $\widetilde{\mathcal{M}} = \{ \varphi : \Omega \to [0, 1] \text{ is } \mathcal{F}_T \text{ measurable s.t. } \mathbb{E}[\varphi] = p \}.$ Therefore it's enough to show that $\widetilde{\mathcal{M}}$ satisfies

$$\widetilde{\mathcal{M}} = \{ P^p_\alpha(T) : \alpha \in \mathcal{A} \}.$$

PROOF OF PROPOSITION 4.1

- The finiteness follows from (4).
- It can be shown using Proposition 3.3 that

$$V(T, x, p) = \inf_{\varphi \in \widetilde{\mathcal{M}}} \mathbb{E}[Z(T)g(X(T))\varphi],$$

where $\widetilde{\mathcal{M}} = \{ \varphi : \Omega \to [0, 1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] = p \}.$ Therefore it's enough to show that $\widetilde{\mathcal{M}}$ satisfies

$$\widetilde{\mathcal{M}} = \{ P^p_{\alpha}(T) : \alpha \in \mathcal{A} \}.$$

Stochastic Control Problem Formulation Associated PDE

PROOF OF PROPOSITION 4.1 (CONTI.)

The inclusion *M̃* ⊃ {*P*^p_α(*T*) : α ∈ *A*} is clear. To show the other inclusion, use the martingale representation theorem: For any φ ∈ *F*_T there exists an 𝔅−progressively measurable ℝ^d-valued process ψ(·) satisfying

$$\mathbb{E}[\varphi|\mathcal{F}_t] = p + \int_0^t \psi'(s) dW(s).$$

Then we see that $\mathbb{E}[\varphi|\mathcal{F}_t]$ solves (14) with $\alpha(\cdot)$

$$\alpha(t) = \mathbb{1}_{\{\mathbb{E}[\varphi|\mathcal{F}_t] \in (0,1)\}} \cdot \frac{\psi(t)}{\mathbb{E}[\varphi|\mathcal{F}_t](1 - \mathbb{E}[\varphi|\mathcal{F}_t])}.$$

・ロン ・回 と ・ 回 と ・ 回 と

Stochastic Control Problem Formulation Associated PDE

PROOF OF PROPOSITION 4.1 (CONTI.)

The inclusion *M̃* ⊃ {*P*^p_α(*T*) : α ∈ *A*} is clear. To show the other inclusion, use the martingale representation theorem: For any φ ∈ *F*_T there exists an *F*−progressively measurable *R^d*-valued process ψ(·) satisfying

$$\mathbb{E}[\varphi|\mathcal{F}_t] = p + \int_0^t \psi'(s) dW(s).$$

Then we see that $\mathbb{E}[\varphi|\mathcal{F}_t]$ solves (14) with $\alpha(\cdot)$

$$\alpha(t) = \mathbb{1}_{\{\mathbb{E}[\varphi|\mathcal{F}_t] \in (0,1)\}} \cdot \frac{\psi(t)}{\mathbb{E}[\varphi|\mathcal{F}_t](1 - \mathbb{E}[\varphi|\mathcal{F}_t])}.$$

PROOF OF PROPOSITION 4.1 (CONTI.)

The inclusion *M̃* ⊃ {*P*^p_α(*T*) : α ∈ *A*} is clear. To show the other inclusion, use the martingale representation theorem: For any φ ∈ *F*_T there exists an 𝔅−progressively measurable ℝ^d-valued process ψ(·) satisfying

$$\mathbb{E}[\varphi|\mathcal{F}_t] = p + \int_0^t \psi'(s) dW(s).$$

Then we see that $\mathbb{E}[\varphi|\mathcal{F}_t]$ solves (14) with $\alpha(\cdot)$

$$\alpha(t) = \mathbb{1}_{\{\mathbb{E}[\varphi|\mathcal{F}_t] \in (0,1)\}} \cdot \frac{\psi(t)}{\mathbb{E}[\varphi|\mathcal{F}_t](1 - \mathbb{E}[\varphi|\mathcal{F}_t])}.$$

PROOF OF PROPOSITION 4.1 (CONTI.)

The inclusion *M̃* ⊃ {*P*^p_α(*T*) : α ∈ *A*} is clear. To show the other inclusion, use the martingale representation theorem: For any φ ∈ *F*_T there exists an 𝔅−progressively measurable ℝ^d-valued process ψ(·) satisfying

$$\mathbb{E}[\varphi|\mathcal{F}_t] = p + \int_0^t \psi'(s) dW(s).$$

Then we see that $\mathbb{E}[\varphi|\mathcal{F}_t]$ solves (14) with $\alpha(\cdot)$

$$\alpha(t) = \mathbb{1}_{\{\mathbb{E}[\varphi|\mathcal{F}_t] \in (0,1)\}} \cdot \frac{\psi(t)}{\mathbb{E}[\varphi|\mathcal{F}_t](1 - \mathbb{E}[\varphi|\mathcal{F}_t])}.$$

Stochastic Control Problem Formulation Associated PDE

THE VALUE FUNCTION U

We denote by X^{t,x}(·) the solution of (1) starting from x at time t and by P^{t,p}_α(·) the solution of (14) starting from p at time t. We also introduce Z^{t,x,z}(·) as the solution of

$$dZ(s) = -Z(s)\theta(X^{t,x}(s))'dW(s), \ Z(t) = z,$$
(15)

and the value function

$$U(t,x,p) := \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P^{t,p}_{\alpha}(T)].$$
(16)

• the original value function V can be written in terms of U as

$$V(T, x, p) = U(0, x, p).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Stochastic Control Problem Formulation Associated PDE

THE VALUE FUNCTION U

We denote by X^{t,x}(·) the solution of (1) starting from x at time t and by P^{t,p}_α(·) the solution of (14) starting from p at time t. We also introduce Z^{t,x,z}(·) as the solution of

$$dZ(s) = -Z(s)\theta(X^{t,x}(s))'dW(s), \ Z(t) = z,$$
(15)

and the value function

$$U(t,x,p) := \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P^{t,p}_{\alpha}(T)].$$
(16)

• the original value function V can be written in terms of U as

$$V(T, x, p) = U(0, x, p).$$

・ロット (四) (日) (日)

Stochastic Control Problem Formulation Associated PDE

THE VALUE FUNCTION U

We denote by X^{t,x}(·) the solution of (1) starting from x at time t and by P^{t,p}_α(·) the solution of (14) starting from p at time t. We also introduce Z^{t,x,z}(·) as the solution of

$$dZ(s) = -Z(s)\theta(X^{t,x}(s))'dW(s), \ Z(t) = z, \qquad (15)$$

and the value function

$$U(t,x,p) := \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P^{t,p}_{\alpha}(T)].$$
(16)

• the original value function V can be written in terms of U as

$$V(T, x, p) = U(0, x, p).$$

・ロット (四) (日) (日)

Stochastic Control Problem Formulation Associated PDE

THE VALUE FUNCTION U

We denote by X^{t,x}(·) the solution of (1) starting from x at time t and by P^{t,p}_α(·) the solution of (14) starting from p at time t. We also introduce Z^{t,x,z}(·) as the solution of

$$dZ(s) = -Z(s)\theta(X^{t,x}(s))'dW(s), \ Z(t) = z, \qquad (15)$$

and the value function

$$U(t,x,p) := \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P^{t,p}_{\alpha}(T)].$$
(16)

• the original value function V can be written in terms of U as

$$V(T, x, p) = U(0, x, p).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Stochastic Control Problem Formulation Associated PDE

THE VALUE FUNCTION U

We denote by X^{t,x}(·) the solution of (1) starting from x at time t and by P^{t,p}_α(·) the solution of (14) starting from p at time t. We also introduce Z^{t,x,z}(·) as the solution of

$$dZ(s) = -Z(s)\theta(X^{t,x}(s))'dW(s), \ Z(t) = z, \qquad (15)$$

and the value function

$$U(t,x,p) := \inf_{\alpha \in \mathcal{A}} \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P^{t,p}_{\alpha}(T)].$$
(16)

• the original value function V can be written in terms of U as

$$V(T, x, p) = U(0, x, p).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q}

First define

$$\begin{split} \Lambda(t,\cdot) &:= \frac{x_1 + \dots + x_d}{Z^{t,x,1}(\cdot)(X_1^{t,x}(\cdot) + \dots + X_d^{t,x}(\cdot))} \\ &= \exp\left(\int_t^{\cdot} (\widetilde{\theta}(X^{t,x}(u)))' d\widetilde{W}(u) - \frac{1}{2}\int_t^{\cdot} \|\widetilde{\theta}(X^{t,x}(u))\|^2 du\right) \end{split}$$

in which $ilde{ heta}(\cdot) := heta(\cdot) - s'(\cdot)\mathfrak{m}(\cdot)$, where \mathfrak{m} is defined by $\mathfrak{m}_i(x) = x_i/(x_1 + \cdots + x_d)$, $i = 1, \cdots, d$, and

$$\widetilde{W}(s) := W(s) + \int_t^s \widetilde{ heta}(X(u)) du, \quad s \ge t.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q}

First define

$$\begin{split} \Lambda(t,\cdot) &:= \frac{x_1 + \dots + x_d}{Z^{t,x,1}(\cdot)(X_1^{t,x}(\cdot) + \dots + X_d^{t,x}(\cdot))} \\ &= \exp\left(\int_t^\cdot (\widetilde{\theta}(X^{t,x}(u)))'d\widetilde{W}(u) - \frac{1}{2}\int_t^\cdot \|\widetilde{\theta}(X^{t,x}(u))\|^2 du\right) \end{split}$$

in which $ilde{ heta}(\cdot):= heta(\cdot)-s'(\cdot)\mathfrak{m}(\cdot)$, where \mathfrak{m} is defined by $\mathfrak{m}_i(x)=x_i/(x_1+\cdots+x_d)$, $i=1,\cdots,d$, and

$$\widetilde{W}(s) := W(s) + \int_t^s \widetilde{ heta}(X(u)) du, \quad s \ge t.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q}

First define

$$\begin{split} \Lambda(t,\cdot) &:= \frac{x_1 + \dots + x_d}{Z^{t,x,1}(\cdot)(X_1^{t,x}(\cdot) + \dots + X_d^{t,x}(\cdot))} \\ &= \exp\left(\int_t^\cdot (\widetilde{\theta}(X^{t,x}(u)))'d\widetilde{W}(u) - \frac{1}{2}\int_t^\cdot \|\widetilde{\theta}(X^{t,x}(u))\|^2 du\right) \end{split}$$

in which $ilde{ heta}(\cdot):= heta(\cdot)-s'(\cdot)\mathfrak{m}(\cdot)$, where \mathfrak{m} is defined by $\mathfrak{m}_i(x)=x_i/(x_1+\cdots+x_d)$, $i=1,\cdots,d$, and

$$\widetilde{W}(s) := W(s) + \int_t^s \widetilde{ heta}(X(u)) du, \quad s \ge t.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q}

First define

$$\begin{split} \Lambda(t,\cdot) &:= \frac{x_1 + \dots + x_d}{Z^{t,x,1}(\cdot)(X_1^{t,x}(\cdot) + \dots + X_d^{t,x}(\cdot))} \\ &= \exp\left(\int_t^\cdot (\widetilde{\theta}(X^{t,x}(u)))'d\widetilde{W}(u) - \frac{1}{2}\int_t^\cdot \|\widetilde{\theta}(X^{t,x}(u))\|^2 du\right) \end{split}$$

in which $\tilde{\theta}(\cdot) := \theta(\cdot) - s'(\cdot)\mathfrak{m}(\cdot)$, where \mathfrak{m} is defined by $\mathfrak{m}_i(x) = x_i/(x_1 + \cdots + x_d)$, $i = 1, \cdots, d$, and

$$\widetilde{W}(s) := W(s) + \int_t^s \widetilde{ heta}(X(u)) du, \quad s \ge t.$$

◆□> ◆□> ◆目> ◆目> ◆目> = 三 のへで

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q} (conti.)

• There exists a probability measure \mathbb{Q} on (Ω, \mathcal{F}) such that $d\mathbb{P} = \Lambda(t, T)d\mathbb{Q}$ on each $\mathcal{F}(T)$, for $T \in (t, \infty)$. Under \mathbb{Q} , $\widetilde{W}(\cdot)$ is a Brownian motion and we have that

$$\frac{\mathbb{E}[Z^{t,\times,1}(T)(X_1^{t,\times}(T)+\cdots+X_d^{t,\times}(T))]}{x_1+\cdots+x_n} = \mathbb{Q}(T > T),$$

for all $T \in [0, \infty)$, where

$$\mathcal{T} = \inf \left\{ s \ge t : \int_t^s \|\tilde{\theta}(X^{t,x}(u))\|^2 du = \infty \right\}.$$

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q} (conti.)

• There exists a probability measure \mathbb{Q} on (Ω, \mathcal{F}) such that $d\mathbb{P} = \Lambda(t, T)d\mathbb{Q}$ on each $\mathcal{F}(T)$, for $T \in (t, \infty)$.Under \mathbb{Q} , $\widetilde{W}(\cdot)$ is a Brownian motion and we have that

$$\frac{\mathbb{E}[Z^{t,x,1}(T)(X_1^{t,x}(T)+\cdots+X_d^{t,x}(T))]}{x_1+\cdots+x_n} = \mathbb{Q}(T > T),$$

for all $T \in [0, \infty)$, where

$$\mathcal{T} = \inf\left\{s \ge t : \int_t^s \|\tilde{\theta}(X^{t,x}(u))\|^2 du = \infty\right\}.$$

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q} (conti.)

• There exists a probability measure \mathbb{Q} on (Ω, \mathcal{F}) such that $d\mathbb{P} = \Lambda(t, T)d\mathbb{Q}$ on each $\mathcal{F}(T)$, for $T \in (t, \infty)$. Under \mathbb{Q} , $\widetilde{W}(\cdot)$ is a Brownian motion and we have that

$$\frac{\mathbb{E}[Z^{t,x,1}(T)(X_1^{t,x}(T)+\cdots+X_d^{t,x}(T))]}{x_1+\cdots+x_n} = \mathbb{Q}(T > T),$$

for all $T \in [0, \infty)$, where

$$\mathcal{T} = \inf \left\{ s \ge t : \int_t^s \|\tilde{\theta}(X^{t,x}(u))\|^2 du = \infty \right\}.$$

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q} (conti.)

• There exists a probability measure \mathbb{Q} on (Ω, \mathcal{F}) such that $d\mathbb{P} = \Lambda(t, T)d\mathbb{Q}$ on each $\mathcal{F}(T)$, for $T \in (t, \infty)$. Under \mathbb{Q} , $\widetilde{W}(\cdot)$ is a Brownian motion and we have that

$$\frac{\mathbb{E}[Z^{t,x,1}(T)(X_1^{t,x}(T)+\cdots+X_d^{t,x}(T))]}{x_1+\cdots+x_n} = \mathbb{Q}(T > T),$$

for all $T \in [0, \infty)$, where

$$\mathcal{T} = \inf\left\{s \geq t : \int_t^s \|\widetilde{ heta}(X^{t,x}(u))\|^2 du = \infty\right\}.$$

Express U under a new measure \mathbb{Q} (conti.)

We will make the following assumption to obtain a representation of \mathcal{T} in terms of X.

Assumption 4.1

 $\|\theta\|^2 \leq C(1 + Trace(a)).$

Under this assumption, it follows \mathbb{Q} -a.e. that

$$\mathcal{T} = \min_{1 \le i \le d} \mathcal{T}_i, \quad \text{in which} \quad \mathcal{T}_i = \inf\{s \ge t : X_i^{t,x}(s) = 0\}.$$

For these claims about the existence and the properties of the probability measure \mathbb{Q} see Fernholz and Karatzas (2008, 2010), and the references therein.

・ロン ・回 と ・ 回 と ・ 回 と

Express U under a new measure \mathbb{Q} (conti.)

We will make the following assumption to obtain a representation of \mathcal{T} in terms of X.

Assumption 4.1

 $\|\theta\|^2 \leq C(1 + Trace(a)).$

Under this assumption, it follows \mathbb{Q} -a.e. that

$$\mathcal{T} = \min_{1 \le i \le d} \mathcal{T}_i, \quad \text{in which} \quad \mathcal{T}_i = \inf\{s \ge t : X_i^{t,x}(s) = 0\}.$$

For these claims about the existence and the properties of the probability measure \mathbb{Q} see Fernholz and Karatzas (2008, 2010), and the references therein.

We will make the following assumption to obtain a representation of \mathcal{T} in terms of X.

Assumption 4.1

 $\|\theta\|^2 \leq C(1 + Trace(a)).$

Under this assumption, it follows \mathbb{Q} -a.e. that

$$\mathcal{T} = \min_{1 \le i \le d} \mathcal{T}_i,$$
 in which $\mathcal{T}_i = \inf\{s \ge t : X_i^{t,x}(s) = 0\}.$

For these claims about the existence and the properties of the probability measure \mathbb{Q} see Fernholz and Karatzas (2008, 2010), and the references therein.

We will make the following assumption to obtain a representation of \mathcal{T} in terms of X.

Assumption 4.1

 $\|\theta\|^2 \leq C(1 + Trace(a)).$

Under this assumption, it follows \mathbb{Q} -a.e. that

$$\mathcal{T} = \min_{1 \leq i \leq d} \mathcal{T}_i,$$
 in which $\mathcal{T}_i = \inf\{s \geq t : X_i^{t,x}(s) = 0\}.$

For these claims about the existence and the properties of the probability measure \mathbb{Q} see Fernholz and Karatzas (2008, 2010), and the references therein.

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q} (conti.)

Now, U can be represented in terms of $\mathbb Q$ as

$$U(t,x,p) = (x_1 + \dots + x_d) \inf_{\alpha \in \mathcal{A}} \mathbb{E}^{\mathbb{Q}} \left[\frac{g(X^{t,x}(T))}{X_1^{t,x}(T) + \dots + X_d^{t,x}(T)} P_{\alpha}^{t,p}(T) \mathbb{1}_{\{T > T\}} \right]$$

Stochastic Control Problem Formulation Associated PDE

Express U under a new measure \mathbb{Q} (conti.)

Now, U can be represented in terms of $\mathbb Q$ as

$$U(t, x, p) = (x_1 + \dots + x_d) \inf_{\alpha \in \mathcal{A}} \mathbb{E}^{\mathbb{Q}} \left[\frac{g(X^{t, x}(T))}{X_1^{t, x}(T) + \dots + X_d^{t, x}(T)} P_{\alpha}^{t, p}(T) \mathbb{1}_{\{T > T\}} \right]$$

The dynamics of $X^{t,x}$ and $P^{t,p}$ in terms of the \mathbb{Q} -Brownian motion \widetilde{W} can be written as

$$dX_{i}^{t,x}(s) = X_{i}^{t,x}(s) \left(\frac{\sum_{j=1}^{d} a_{ij}(X^{t,x}(s))X_{j}^{t,x}(s)}{X_{1}^{t,x}(s) + \dots + X_{d}^{t,x}(s)} ds + \sum_{k=1}^{d} s_{ik}(X^{t,x}(s))d\widetilde{W}_{k}(s) \right),$$

for $i = 1, \cdots, d$, and

 $dP^{t,p}(s) = P^{t,p}(s)(1 - P^{t,p}(s))\alpha'(s)(-\tilde{\theta}(X^{t,x})ds + d\widetilde{W}(s)).$ (17)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The dynamics of $X^{t,x}$ and $P^{t,p}$ in terms of the \mathbb{Q} -Brownian motion \widetilde{W} can be written as

$$dX_{i}^{t,x}(s) = X_{i}^{t,x}(s) \left(\frac{\sum_{j=1}^{d} a_{ij}(X^{t,x}(s))X_{j}^{t,x}(s)}{X_{1}^{t,x}(s) + \dots + X_{d}^{t,x}(s)} ds + \sum_{k=1}^{d} s_{ik}(X^{t,x}(s))d\widetilde{W}_{k}(s) \right),$$

for $i = 1, \cdots, d$, and

 $dP^{t,p}(s) = P^{t,p}(s)(1 - P^{t,p}(s))\alpha'(s)(-\tilde{\theta}(X^{t,x})ds + d\widetilde{W}(s)).$ (17)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The dynamics of $X^{t,x}$ and $P^{t,p}$ in terms of the \mathbb{Q} -Brownian motion \widetilde{W} can be written as

$$dX_{i}^{t,x}(s) = X_{i}^{t,x}(s) \left(\frac{\sum_{j=1}^{d} a_{ij}(X^{t,x}(s))X_{j}^{t,x}(s)}{X_{1}^{t,x}(s) + \dots + X_{d}^{t,x}(s)} ds + \sum_{k=1}^{d} s_{ik}(X^{t,x}(s))d\widetilde{W}_{k}(s) \right),$$

for $i = 1, \cdots, d$, and

$$dP^{t,p}(s) = P^{t,p}(s)(1 - P^{t,p}(s))\alpha'(s)(-\tilde{\theta}(X^{t,x})ds + d\widetilde{W}(s)).$$
(17)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Stochastic Control Problem Formulation Associated PDE

Dynamic Programming

To apply the dynamic programming principle due to Haussmann and Lepeltier (1990), we assume

Assumption 4.2

For all $y \in \mathbb{R}^d_+ - \{0\}$ we have the following growth condition

$$\sum_{i=1}^d \sum_{j=1}^d y_i y_j |a_{ij}(y)| \le C(1 + \|y\|).$$

for some constant C.

Assumption 4.3

The mapping $(t, x, p) \to \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P_{\alpha}^{t,p}(T)]$ is lower semi-continuous on $t \in [0, T]$, $x \in \mathbb{R}^d_+$, $p \in [0, 1]$, for all $\alpha \in \mathcal{A}$.

DP + 4 = + 4 = +

Stochastic Control Problem Formulation Associated PDE

Dynamic Programming

To apply the dynamic programming principle due to Haussmann and Lepeltier (1990), we assume

Assumption 4.2

For all $y \in \mathbb{R}^d_+ - \{0\}$ we have the following growth condition

$$\sum_{i=1}^d \sum_{j=1}^d y_i y_j |a_{ij}(y)| \leq C(1+\|y\|).$$

for some constant C.

Assumption 4.3

The mapping $(t, x, p) \to \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P_{\alpha}^{t,p}(T)]$ is lower semi-continuous on $t \in [0, T]$, $x \in \mathbb{R}^d_+$, $p \in [0, 1]$, for all $\alpha \in \mathcal{A}$.

くさと くさと

Stochastic Control Problem Formulation Associated PDE

Dynamic Programming

To apply the dynamic programming principle due to Haussmann and Lepeltier (1990), we assume

Assumption 4.2

For all $y \in \mathbb{R}^d_+ - \{0\}$ we have the following growth condition

$$\sum_{i=1}^d \sum_{j=1}^d y_i y_j |a_{ij}(y)| \leq C(1 + \|y\|).$$

for some constant C.

Assumption 4.3

The mapping $(t, x, p) \to \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))P_{\alpha}^{t,p}(T)]$ is lower semi-continuous on $t \in [0, T]$, $x \in \mathbb{R}^d_+$, $p \in [0, 1]$, for all $\alpha \in \mathcal{A}$.

Stochastic Control Problem Formulation Associated PDE

Dynamic Programming (Conti.)

PROPOSITION 4.2

Under Assumption M, 4.1, 4.2 and 4.3,

(I) U^* is a viscosity subsolution of

$$\partial_t U^* + \frac{1}{2} \operatorname{Trace} \left(\sigma \sigma' D_x^2 U^* \right)$$
$$+ \inf_{a \in \mathbb{R}^d} \left\{ (D_{xp} U^*)' \sigma a + \frac{1}{2} |a|^2 D_p^2 U^* - \theta' a D_p U^* \right\} \ge 0$$

with the boundary conditions $U^*(t,x,1) = \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))], U^*(t,x,0) = 0$, and $U^*(T,x,p) \leq pg(x).$

Stochastic Control Problem Formulation Associated PDE

Dynamic Programming (Conti.)

$\overline{PROPOSITION}$ 4.2

Under Assumption M, 4.1, 4.2 and 4.3,

(I) U^* is a viscosity subsolution of

$$\partial_t U^* + \frac{1}{2} \operatorname{Trace} \left(\sigma \sigma' D_x^2 U^* \right) \\ + \inf_{a \in \mathbb{R}^d} \left\{ (D_{xp} U^*)' \sigma a + \frac{1}{2} |a|^2 D_p^2 U^* - \theta' a D_p U^* \right\} \ge 0,$$

with the boundary conditions $U^*(t,x,1) = \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))], U^*(t,x,0) = 0$, and $U^*(T,x,p) \leq pg(x).$

イロン イ部ン イヨン イヨン 三日

Stochastic Control Problem Formulation Associated PDE

DYNAMIC PROGRAMMING (CONTI.)

PROPOSITION 4.2 (CONTI.)

(II) U^* is a viscosity supersolution of

$$\partial_t U_* + \frac{1}{2} \operatorname{Trace} \left(\sigma \sigma' D_x^2 U_* \right) \\ + \inf_{a \in \mathbb{R}^d} \left\{ (D_{xp} U_*)' \sigma a + \frac{1}{2} |a|^2 D_p^2 U_* - \theta' a D_p U_* \right\} \\ \leq 0$$
(18)

with the boundary conditions $U_*(t,x,1) = \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))], U_*(t,x,0) = 0$, and $U_*(T,x,p) \ge pg(x).$

イロン イ部ン イヨン イヨン 三日

Stochastic Control Problem Formulation Associated PDE

Remark

• Let us consider the PDE satisfied by the superhedging price U(t, x, 1):

$$0 = v_t + \frac{1}{2} Tr(\sigma \sigma' D_x^2 v), \text{ on } (0, T) \times (0, \infty)^d,$$
 (19)

$$v(T-,x) = g(x), \text{ on } (0,\infty)^d.$$
 (20)

Stochastic Control Problem Formulation Associated PDE

Remark

• Let us consider the PDE satisfied by the superhedging price U(t, x, 1):

$$0 = v_t + \frac{1}{2} Tr(\sigma \sigma' D_x^2 v), \quad \text{on } (0, T) \times (0, \infty)^d, \qquad (19)$$

$$v(T-,x) = g(x), \text{ on } (0,\infty)^d.$$
 (20)

Stochastic Control Problem Formulation Associated PDE

Remark

• Let us consider the PDE satisfied by the superhedging price U(t, x, 1):

$$0 = v_t + \frac{1}{2} Tr(\sigma \sigma' D_x^2 v), \text{ on } (0, T) \times (0, \infty)^d,$$
 (19)

$$v(T-,x) = g(x), \text{ on } (0,\infty)^d.$$
 (20)

Stochastic Control Problem Formulation Associated PDE

Remark

• Let us consider the PDE satisfied by the superhedging price U(t, x, 1):

$$0 = v_t + \frac{1}{2} Tr(\sigma \sigma' D_x^2 v), \text{ on } (0, T) \times (0, \infty)^d,$$
 (19)

$$v(T-,x) = g(x), \text{ on } (0,\infty)^d.$$
 (20)

Remark

• Let us consider the PDE satisfied by the superhedging price U(t, x, 1):

$$0 = v_t + \frac{1}{2} Tr(\sigma \sigma' D_x^2 v), \quad \text{on } (0, T) \times (0, \infty)^d, \qquad (19)$$

$$v(T-,x) = g(x), \text{ on } (0,\infty)^d.$$
 (20)

Stochastic Control Problem Formulation Associated PDE

REMARK (CONTI.)

 Let ΔU(t, x, 1) be the difference of two solutions of (19)-(20). Then both U(t, x, p) and U(t, x, p) + ΔU(t, x, 1) are viscosity supersolution of (18) (along with its boundary conditions). As a result when (19) and (20) has multiple solutions so does the PDE for the function U.

Stochastic Control Problem Formulation Associated PDE

REMARK (CONTI.)

Let ΔU(t, x, 1) be the difference of two solutions of (19)-(20). Then both U(t, x, p) and U(t, x, p) + ΔU(t, x, 1) are viscosity supersolution of (18) (along with its boundary conditions). As a result when (19) and (20) has multiple solutions so does the PDE for the function U.

Stochastic Control Problem Formulation Associated PDE

REMARK (CONTI.)

Let ΔU(t, x, 1) be the difference of two solutions of (19)-(20). Then both U(t, x, p) and U(t, x, p) + ΔU(t, x, 1) are viscosity supersolution of (18) (along with its boundary conditions). As a result when (19) and (20) has multiple solutions so does the PDE for the function U.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Stochastic Control Problem Formulation Associated PDE

Thank you very much for your attention! Q & A