BOOTSTRAP-BASED TESTS FOR TRENDS IN HYDROLOGICAL TIME SERIES, WITH APPLICATION TO ICE PHENOLOGY DATA

YULIA R. GEL

Interdisciplinary Centre on Climate Change and Department of Statistics and Actuarial Science, University of Waterloo

Joint work with

KIMIHIRO NOGUCHI, University of California, Davis,

CLAUDE R. DUGUAY, Interdisciplinary Centre on

Climate Change, University of Waterloo

Supported by NSERC of Canada

OUTLINE

- 1. MOTIVATION FOR TREND TESTING
- 2. AVAILABLE TESTS AND DEPENDENCE EFFECT
- 3. REMEDIAL SIEVE BOOTSTRAPPED TREND TESTS
- 4. SIMULATIONS
- 5. CASE STUDIES FOR LAKE KALLAVESI, FINLAND AND LAKE BAIKAL, RUSSIA
- 6. CONCLUSIONS

MOTIVATION

It has been documented that the global average surface temperature has increased by about $0.6^{\circ}C$ over last 100 years due to atmospheric concentrations of trace gases such as carbon dioxide (IPCC, 2001).

What implications do green-house gases have on:

- precipitation?
- streamflow?
- lake ice phenology (ice cover duration, freeze-up and break-up dates)?

APPROACH: check for trends in hydro-meteorological data

AVAILABLE TESTS FOR TRENDS AND DEPENDENCE EFFECT

Consider the case of a possible linear trend

 $y_t = a + bt + e_t.$

We are interested in H_0 : b = 0 vs. H_1 : $b \neq 0$.

MOST POPULAR TREND TESTING PROCEDURES: classical *t*-test; rank-based Mann-Kendall test; rank-based Sen's slope.

AVAILABLE TESTS FOR TRENDS AND DEPENDENCE EFFECT: CONTD

All of these tests assume that the data are independent and identically (normally) distributed. Impact of violations is:

• minor for the distributional assumption;

• potentially **disastrous** for the independence assumption \Rightarrow inflated Type I Error and over-rejection of H_0 .

But hydrological data typically exhibit a strong serial correlation!

Time series and ACF plot of observed freeze-up dates for Lake Kallavesi, Finland, 1834–1996.

AVAILABLE TESTS FOR TRENDS AND DEPENDENCE EFFECT: CONTD

Nominal level $\alpha = 0.05$				
Distribution Mann-Kendall Student'				
Normal	0.373	0.361		
Exponential	0.363	0.406		
Lognormal	0.361	0.357		
t_5	0.359	0.365		

Observed Type I error for the simulated data from the autoregressive model. Sample size is 128 measurements (equals to the number of the break-up observations for Lake Baikal). Number of MC simulations is 10000.

OVER-REJECTION IS UP TO 8 TIMES!

SIEVE BOOTSTRAPPED TREND TESTS

- 1. Approximate $\{y_i\}_{i=1}^T$ by an autoregressive filter, AR(p(T))
- 2. Estimate the AR parameters $\hat{\phi} = (\hat{\phi}_1, \dots, \hat{\phi}_p)'$, using YW or LS
- 3. Get the residuals $\hat{v}_t = \sum_0^p \hat{\phi}_j (y_{t-j} \bar{y}); \ \hat{\phi}_0 = 1$
- 4. Draw a resample of v_t^* from $\tilde{v}_t = \hat{v}_t \bar{v}$
- 5. Define y_t^* by the recursion $\sum_{0}^{p} \hat{\phi}_j (y_{t-j}^* \bar{y}) = v_t^*$
- 6. Compute trend test statistic Tr^* on y_t^*
- 7. Repeat *B* times

Then, SB p - value = $\frac{\#(|Tr_1^*|,...,|Tr_B^*|) \ge |\hat{T}r|}{B}$

SIMULATIONS FOR SIEVE BOOTSTRAPPED TREND TESTS: SIZE

Distribution	ARMA	Sen's	MK	<i>t</i> -test
Exp(0.1)	AR(1)	0.044	0.045	0.046
$\sqrt{\beta_1} = 2$	AR(2)	0.059	0.054	0.055
$\beta_2 = 9$	AR(6)	0.058	0.044	0.062
	ARMA(1, 1)	0.056	0.049	0.058
Lognormal(3.642, 0.25)	AR(1)	0.057	0.051	0.052
$\sqrt{\beta_1} = 0.778$	AR(2)	0.061	0.054	0.051
$\beta_2 = 4.096$	AR(6)	0.065	0.059	0.056
	ARMA (1, 1)	0.062	0.056	0.061
t_5	AR(1)	0.060	0.057	0.055
$\sqrt{\beta_1} = 0$	AR(2)	0.053	0.048	0.052
$\beta_2 = 9$	AR(6)	0.062	0.048	0.055
	ARMA (1, 1)	0.059	0.044	0.054
N(0,1)	AR(1)	0.059	0.050	0.053
$\sqrt{\beta_1} = 0$	AR(2)	0.063	0.053	0.050
$\beta_2 = 3$	AR(6)	0.064	0.055	0.057
	ARMA (1, 1)	0.060	0.049	0.047

B is 1000; MC is 1000; Sample Size is 200; α is 0.05.

SIMULATIONS FOR SB TREND TESTS: POWER

Distribution	ARMA	Sen's	MK	t-test
Exp(0.1)	AR(1)	0.920	0.933	0.702
$\sqrt{\beta_1} = 2$	AR(2)	0.916	0.940	0.718
$\beta_2 = 9$	AR(6)	0.401	0.453	0.285
	ARMA(1, 1)	0.866	0.890	0.674
Lognormal(3.642, 0.25)	AR(1)	0.730	0.718	0.661
$\sqrt{\beta_1} = 0.778$	AR(2)	0.736	0.720	0.670
$\beta_2 = 4.096$	AR(6)	0.348	0.333	0.277
	ARMA (1, 1)	0.685	0.683	0.627
t_5	AR(1)	0.779	0.783	0.663
$\sqrt{\beta_1} = 0$	AR(2)	0.802	0.798	0.668
$\beta_2 = 9$	AR(6)	0.377	0.394	0.285
	ARMA (1, 1)	0.725	0.714	0.617
$N(0, 10^2)$	AR(1)	0.679	0.662	0.635
$\sqrt{\beta_1} = 0$	AR(2)	0.703	0.681	0.670
$\beta_2 = 3$	AR(6)	0.296	0.261	0.237
	ARMA (1, 1)	0.678	0.646	0.630

B is 1000; MC is 1000; Sample Size is 200; α is 0.05; b is 0.04.

SIMULATIONS FOR SIEVE BOOTSTRAPPED TREND TESTS

AR Model Order is Unknown and Selected by AIC AR Model Order is Unknown and Selected by AIC 0.10 0.1 Observed Type I Error under nominal level of 0.05 t-test t–test Expected Level of 0.05 Power of the test under nominal level of 0.05 0.08 0.8 0.06 0.6 0.04 0.4 0.02 0.2 0.00 0.0 -1.0-0.5 0.0 0.5 1.0 -1.0 -0.50.0 0.5 1.0 Autoregressive Coefficient for AR(1) Autoregressive Coefficient for AR(1)

Power (left) and size (right) of the *t*-test in respect to the magnitude of the autocorrelation parameter, under N(0, 1).

CASE STUDY: LAKE KALLAVESI, FINLAND

	Critical	Order	Freeze-up	
Trend Test	Values	Selection	Dates	
<i>p</i> -values for tests for independent data				
Student's t	t_{n-2}	-	9.91×10^{-3}	
Mann-Kendall	N(0,1)	-	3.14×10^{-3}	
<i>p</i> -values for tests	s for depe	endent data)	
Student's t with AR(6)	Sieve	AR(6)	3.05×10^{-1}	
Mann-Kendal with AR(6)	Sieve	AR(6)	1.16×10^{-1}	
Sen's slope with AR(6)	Sieve	AR(6)	1.14×10^{-1}	
Likelihood Ratio with AR(6)	Sieve	AR(6)	3.47×10^{-1}	
Likelihood Ratio with AR(6)	χ_1^2	AR(6)	2.50×10^{-1}	

Number of bootstrap replications is 10000. Sample size is 163.

RESULTS CHANGED FROM HIGHLY STATISTICALLY SIGNIFICANT TO INSIGNIFICANT!

Summary plot of for Lake Baikal, Russia, 1869–1996.

CASE STUDY: LAKE BAIKAL, RUSSIA

Dataset / Method	ACF Plot	AIC
Freeze-up Dates	7	6
Break-up Dates	6	6
Ice Cover Duration	7	6

Summary of the selected orders for the approximating AR(p) models, identified using the ACF plots and AIC.

CASE STUDY: LAKE BAIKAL, RUSSIA

	Critical	Order	Freeze-up	Break-up	Ice Cover		
Trend Test	Values	Selection	Dates	Dates	Duration		
<i>p</i> -values for tests for independent data							
Student's t	t_{n-2}	-	6.18×10^{-6}	2.85×10^{-4}	1.39×10^{-7}		
Mann-Kendall	N(0, 1)	-	2.61×10^{-5}	9.67×10^{-4}	4.74×10^{-7}		
<i>p</i> -values for tests for dependent data							
Student's t with AR(p)	Sieve	ACF	9.90×10^{-3}	2.77×10^{-1}	1.81×10^{-2}		
		AIC	3.93×10^{-2}		8.60×10^{-3}		
Mann-Kendall with $AR(p)$	Sieve	ACF	3.15×10^{-2}	1.04×10^{-1}	2.25×10^{-2}		
		AIC	2.65×10^{-2}		6.20×10^{-3}		
Sen's slope with $AR(p)$	Sieve	ACF	3.05×10^{-2}	8 15×10-1	2.80×10^{-2}		
		AIC	2.16×10^{-2}	0.45×10	5.00×10^{-3}		
Likelihood Ratio with $AR(p)$	Sieve	ACF	8.90×10^{-3}	3.18×10^{-1}	6.20×10^{-3}		
		AIC	6.82×10^{-2}	5.10×10	2.90×10^{-3}		
Likelihood Ratio with $AR(p)$	χ_1^2	ACF	1.14×10^{-2}	1.87×10^{-1}	2.47×10^{-2}		
		AIC	1.21×10^{-2}		1.70×10^{-2}		

Number of bootstrap replications is 10000. Sample size is 128.

RESULTS FOR BREAK-UP DATA CHANGED FROM HIGHLY STATISTICALLY SIGNIFICANT TO INSIGNIFICANT!

p-VALUES FOR FREEZE-UP AND ICE COVER DURATION ALSO INCREASED SUBSTANTIALLY

DISCUSSION

 Overall impact of serial correlation on trend tests can be disastrous and can lead to unreliable or even false conclusions, especially for highly correlated hydro-meteorological data

2. New sieve bootstrap-modified trend test are robust across correlation models and distributions

3. Remarkably, the recent analysis of Kouraev et al. (2007) notes the lack of a clear trend in the Baikal break-up dates after the 1920s, which is confirmed by our SB tests.