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Turbo Codes

What are they?

A basic structure of an encoder for a turbo code consists of an
input sequence, two equal encoders and an interleaver, denoted by
Π:

Amin Sakzad

Self-Inverse Interleavers for Turbo Codes



Introduction Deterministic Interleavers Conclusions

Turbo Codes

Interleavers and permutations

The interleaver permutes the information block x = (x0, . . . , xN )
so that the second encoder receives a permuted sequence of the
same size denoted by x̃ = (xΠ(0), . . . , xΠ(N)) for feeding into the
Encoder 2.

The inverse function Π−1 is also necessary for decoding process
when we implement a de-interleaver. An interleaver Π is called
self-inverse if Π = Π−1.
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Permutation Polynomials and Permutation Functions

Definitions and history

Let p be a prime number, q = pm and Fq be the finite field of
order q. A permutation function over Fq is a bijective function
which maps the elements of Fq onto itself. A permutation function
P is called self-inverse if P = P−1.
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Permutation Polynomials and Permutation Functions

Well-known permutation polynomials

Monomials: M(x) = xn for some n ∈ N is a permutation
polynomial over Fq if and only if (n, q − 1) = 1.

Dickson polynomials of the 1st kind:

Dn(x, a) =

bn/2c∑
k=0

n

n− k

(
n− k
k

)
(−a)kxn−2k

is a permutation polynomial over Fq if and only if
(n, q2 − 1) = 1.
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Permutation Polynomials and Permutation Functions

Well-known permutation functions

Möbius transformation: Let a, b, c, d ∈ Fq, c 6= 0 and
ad− bc 6= 0. Then, the function

T (x) =

{
ax+b
cx+d x 6= −d

c ,
a
c x = −d

c ,

is a permutation function.

Rédei functions: Let char(Fq) 6= 2 and a ∈ F∗q be a non-square
element, then we have

(x+
√
a)n = Gn(x, a) +Hn(x, a)

√
a.

The Rédei function Rn = Gn
Hn

with degree n is a rational
function over Fq. The Rédei function Rn is a permutation
function if and only if (n, q + 1) = 1.
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Our Method

Interleaver

Definition. Let P be a permutation function over Fq and α a
primitive element in Fq. An interleaver ΠP : Zq → Zq is defined by

ΠP (i) = ln(P (αi)) (1)

where ln(.) denotes the discrete logarithm to the base α over F∗q
and ln(0) = 0.

There is a one-to-one correspondence between the set of all
permutations over a fixed finite field Fq and the set of all
interleavers of size q.
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Our Method

The need of cycle structure

Let P be a permutation function over Fq. Then, we have
(ΠP )−1 = ΠP−1 . Let P be a self-inverse permutation function
over Fq. Then, we have ΠP = (ΠP )−1.

We pick a permutation polynomial or a permutation function and
apply it to produce an interleaver following the above definition.
This generates deterministic interleavers based on permutations on
finite fields.

We are interested in self-inverse interleavers. This requires the
study of permutations that decompose into cycles of length 1 or 2.
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Results

Previous and new results on cycle structures

Permutation monomials xn with a cycle of length j as well as with
all cycles of the same length have been characterized. The cycle
structure of Dickson permutation polynomials Dn(x, a) where
a ∈ {0,±1} have been studied. Furthermore, the cycle structure of
Möbius transformation have been fully described.

We give the cycle structure of Rédei functions. More precisely, we
characterize Rédei function with a cycle of length j, and then
extend this to all cycles of the same length. An exact formula for
counting the number of cycles of certain length is also provided.
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Results

Möbius interleavers

Let T be a Möbius transformation over Fq. The ΠT as defined
in (1) is called a Möbius interleaver. The inverse function of T is

T−1(x) =

{
dx−b
−cx+a x 6= a

c ,
−d
c x = a

c .

It is easy to see that T = T−1 when we have a = d, −b = b and
c = −c.
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Results

Cycle structure of Möbius transformation

Theorem. Let T be a Möbius transformation, and let t be the
characteristic polynomial of the matrix AT associated with T .

1 Suppose t(x) is irreducible. If k = ord
(
α1
α2

)
= q+1

s ,

1 ≤ s < q+1
2 , then T has s− 1 cycles of length k and one

cycle of length k − 1. In particular T is a full cycle if s = 1.

2 Suppose t(x) is reducible and α1, α2 ∈ F∗q are roots of t(x)

and α1 6= α2. If k = ord
(
α1
α2

)
= q−1

s , s ≥ 1, then T has s− 1

cycles of length k, one cycle of length k − 1 and two cycles of
length 1.

3 Suppose t(x) = (x− α1)2, α1 ∈ F∗q where q = pm. Then T
has pm−1 − 1 cycles of length p, one cycle of length p− 1 and
one cycle of length 1.
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Results

Self-inverse Möbius interleavers

In order to have these cycles in terms of cases of the above
theorem we consider:

1 If the polynomial t is irreducible and tr(AT ) = 0, then we
have q+1

2 − 1 cycles of length two and one cycle of length one.

2 If t is reducible and tr(AT ) = 0, then we have q−1
2 − 1 cycles

of length 2 and three cycles of length 1.

3 This happens only if p = 2. The permutation T has 2m−1 − 1
cycles of length 2 and two cycles of length 1 where q = 2m.

Amin Sakzad

Self-Inverse Interleavers for Turbo Codes



Introduction Deterministic Interleavers Conclusions

Results

Example. Let n = 3, a = α3 = d, b = α2 and c = α. Then we get

T (x) =

{
α3x+α2

αx+α3 x 6= α2,

α2 x = α2.

It is clear that T is a permutation function over F23 with
compositional inverse T . A Möbius interleaver ΠT : Z8 → Z8 can
be defined by ΠT (i) = ln(T (αi)). Thus, we get

T (0) = α2

α3 = α−1 = α6, T (α1) = α
α5 = α−4 = α3,

T (α2) = α2, T (α3) = 1
α6 = α−6 = α1,

T (α4) = α6

α2 = α4, T (α5) = α4

α4 = 1 = α7,

T (α6) = 0
α = 0, T (α7) = α5

1 = α5.

The above equalities induce the following Möbius interleaver(
0 1 2 3 4 5 6 7
6 3 2 1 4 7 0 5

)
.
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Results

Rédei interleavers and their cycle structure

Definition. Let Rn be a Rédei permutation function over Fq. The
interleaver Πn

R defined in (1) is called a Rédei interleaver.

We have that R−1
n = Rm for m satisfying nm ≡ 1 (mod q + 1).

Theorem. Let j be a positive integer. The Rédei function Rn(x, a)
of Fq with (n, q+ 1) = 1 has a cycle of length j if and only if q+ 1
has a divisor s such that j = ords(n). The number Nj of cycles of
length j of the Rédei function Rn over Fq with (n, q + 1) = 1
satisfies

jNj +
∑
i|j
i<j

iNi + 1 = (nj − 1, q + 1).
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Results

Self-inverse Rédei interleavers

Theorem. Let q + 1 = pk00 p
k1
1 · · · pkrr , and p0 = 2. The permutation

of Fq given by the Rédei function Rn has cycles of the same length
j or fixed points if and only if one of the following conditions holds
for each 1 ≤ l ≤ r

n ≡ 1 (mod pkll ),

j = ord
p
kl
l

(n) and j|pl − 1,

j = ord
p
kl
l

(n), kl ≥ 2 and j = pl.

Theorem. The Rédei function Rn of Fq with (n, q + 1) = 1 has
cycles of length j = 2 or 1 if and only if for every divisor s > 1 of
q + 1 we have that n ≡ 1 (mod s) or j = 2 is the smallest integer
with n2 ≡ 1 (mod s).
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Results

Example: Let q = 7, n = 5 and a = 3 ∈ Z∗7 is a non-square. Since
(5, 7 + 1) = 1 and 5.5 ≡ 1 (mod 8), we get a self-inverse Rédei
function

R5(x, 3) =
G5(x, 3)

H5(x, 3)
=
x5 + 2x3 + 3x

5x4 + 2x2 + 2
.

Thus, since 3 is a primitive element of F7, we have

R5(0, 3) = 0, R5(31, 3) = 36, R5(32, 3) = 32, R5(33, 3) = 34,
R5(34, 3) = 33, R5(35, 3) = 35, R5(36, 3) = 31.

Hence, Π5
R is (

0 1 2 3 4 5 6
0 6 2 4 3 5 1

)
.

We observe that the three fixed points are 0, 32 ≡ 2 (mod 7), and
35 ≡ 5 (mod 7) in contrast with the monomial case.
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Conclusions

Conclusions and further work

We study some deterministic interleavers based on permutation
functions over finite fields. Four well-known permutation functions
including polynomials and rational functions are investigated.
In the paper we also considered Skolem sequence interleavers.

A byproduct of this work is a study of Rédei functions in detail.
We derive an exact formula for the inverse of a Rédei function.
The cycle structure of these functions are given. The exact number
of cycles of a certain length j is also provided.

We are measuring their performance via simulations.
Self-interleavers are simple and allow for the use of same structure
in the encoding and deconding process. We expect that there will
be considerable savings.
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Conclusions
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Conclusions
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• L. Rédei, “Uber eindeuting umkehrbare Polynome in endlichen Kopern”, Acta Scientarium Mathmematicarum,
vol. 11, pp. 85-92, 1946-48.
• I. Rubio, G. L. Mullen, C. Corrada, and F. Castro, “Dickson permutation polynomials that decompose in cycles
of the same length”, 8th International Conference on Finite Fields and their Applications, Contemporary
Mathematics, vol 461, pp. 229-239, 2008.
• J. Ryu and O. Y. Takeshita, “On quadratic inverses for quadratic permutation polynomials over integer rings”,
IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1254-1260, Mar. 2006.
• O. Y. Takeshita, “Permutation polynomials interleavers: an algebraic-geometric perspective”, IEEE Trans.
Inform. Theory, vol. 53, no. 6, pp. 2116-2132, Jun. 2007.
• O. Y. Takeshita and D. J. Costello, “New Deterministic Interleaver Designs for Turbo Codes”, IEEE Trans.
Inform. Theory, vol. 46, no. 3, pp. 1988-2006, Sep. 2000.
• B. Vucetic, Y. Li, L. C. Perez and F. Jiang, “Recent advances in turbo code design and theory”, Proceedings of
the IEEE, Vol. 95, pp. 1323-1344, 2007.

Amin Sakzad

Self-Inverse Interleavers for Turbo Codes


	Introduction
	Turbo Codes
	Permutation Polynomials and Permutation Functions

	Deterministic Interleavers
	Our Method
	Results

	Conclusions
	Conclusions


