On Permutation Polynomials of Prescribed Shape

Amir Akbary

University of Lethbridge

July 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

•
$$\mathbb{F}_q :=$$
 finite field of $q = p^m$ elements.

<□ > < @ > < E > < E > E のQ @

- $\mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- Definition A polynomial f ∈ F_q[x] is called a *permutation polynomial* of F_q if the associated polynomial function f : c → f(c) from F_q to F_q is a permutation of F_q.

- $\mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- Definition A polynomial f ∈ F_q[x] is called a *permutation polynomial* of F_q if the associated polynomial function f : c → f(c) from F_q to F_q is a permutation of F_q.
- Example
 - 1 f(x) = ax + b, $a \neq 0$ is a permutation polynomial.

- $\mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- Definition A polynomial f ∈ F_q[x] is called a *permutation polynomial* of F_q if the associated polynomial function f : c → f(c) from F_q to F_q is a permutation of F_q.
- Example
 - 1 f(x) = ax + b, $a \neq 0$ is a permutation polynomial. 2 $f(x) = x^n$ is a permutation polynomial of \mathbb{F}_q $\iff (n, q - 1) = 1$.

- $\mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- Definition A polynomial f ∈ F_q[x] is called a *permutation polynomial* of F_q if the associated polynomial function f : c → f(c) from F_q to F_q is a permutation of F_q.
- Example
 - 1 f(x) = ax + b, $a \neq 0$ is a permutation polynomial. 2 $f(x) = x^n$ is a permutation polynomial of \mathbb{F}_q $\iff (n, q - 1) = 1$.
- ► Two Problems Counting permutation polynomials of F_q and Constructing permutation polynomials of F_q.

(日) (同) (三) (三) (三) (○) (○)

By Lagrange's interpolation, every mapping f : 𝔽_q → 𝔽_q can be expressed uniquely by a polynomial of degree ≤ q − 1.

By Lagrange's interpolation, every mapping f : 𝔽_q → 𝔽_q can be expressed uniquely by a polynomial of degree ≤ q − 1.

$$g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1} \right)$$

►

By Lagrange's interpolation, every mapping f : 𝔽_q → 𝔽_q can be expressed uniquely by a polynomial of degree ≤ q − 1.

$$g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1} \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We assume each polynomial defined over 𝔽_q has degree at most (q − 1) because x^q = x for each x ∈ 𝔽_q.

By Lagrange's interpolation, every mapping f : 𝔽_q → 𝔽_q can be expressed uniquely by a polynomial of degree ≤ q − 1.

$$g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1} \right)$$

- We assume each polynomial defined over 𝔽_q has degree at most (q − 1) because x^q = x for each x ∈ 𝔽_q.
- ▶ (Kayal, 2004) There exists a deterministic polynomial-time algorithm that given a polynomial *f*(*x*) determines whether it is a permutation polynomial or not.

By Lagrange's interpolation, every mapping f : 𝔽_q → 𝔽_q can be expressed uniquely by a polynomial of degree ≤ q − 1.

$$g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1} \right)$$

- We assume each polynomial defined over 𝔽_q has degree at most (q − 1) because x^q = x for each x ∈ 𝔽_q.
- ► (Kayal, 2004) There exists a deterministic polynomial-time algorithm that given a polynomial f(x) determines whether it is a permutation polynomial or not.

Permutation polynomials are rare.

By Lagrange's interpolation, every mapping f : 𝔽_q → 𝔽_q can be expressed uniquely by a polynomial of degree ≤ q − 1.

$$g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1} \right)$$

- We assume each polynomial defined over 𝔽_q has degree at most (q − 1) because x^q = x for each x ∈ 𝔽_q.
- ▶ (Kayal, 2004) There exists a deterministic polynomial-time algorithm that given a polynomial *f*(*x*) determines whether it is a permutation polynomial or not.
- Permutation polynomials are rare.

$$\lim_{q\to\infty}\frac{q!}{q^q}=0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

► There is a deterministic polynomial time for primality testing.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- ► There is a deterministic polynomial time for primality testing.
- The density of the set of primes in the set of integers is zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- There is a deterministic polynomial time for primality testing.
- The density of the set of primes in the set of integers is zero.
- There are many open problems regarding primes of prescribed shapes, such as Mersenne primes, Fermat primes, and twin primes.

- There is a deterministic polynomial time for primality testing.
- The density of the set of primes in the set of integers is zero.
- There are many open problems regarding primes of prescribed shapes, such as Mersenne primes, Fermat primes, and twin primes.

Similarly it is not always easy to count and construct permutation polynomials of a prescribed shape.

• (Hermite, 1863) $f \in \mathbb{F}_q[x]$ is a permutation polynomial if and only if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

(Hermite, 1863) f ∈ F_q[x] is a permutation polynomial if and only if
 (i) f has exactly one root in F_q.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

▶ (Hermite, 1863) f ∈ F_q[x] is a permutation polynomial if and only if
 (i) f has exactly one root in F_q.

(ii) For each integer t with $1 \le t < q - 1$, $t \not\equiv 0 \pmod{p}$, the reduction of $(f(x))^t \mod (x^q - x)$ has degree $\le q - 2$.

► (Hermite, 1863) f ∈ 𝔽_q[x] is a permutation polynomial if and only if

(i) f has exactly one root in \mathbb{F}_q .

(ii) For each integer t with $1 \le t < q - 1$, $t \ne 0 \pmod{p}$, the reduction of $(f(x))^t \mod (x^q - x)$ has degree $\le q - 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Corollary If d > 1 is a divisor of q - 1 then there is no permutation polynomial of F_q of degree d.

<ロ> <@> < E> < E> E のQの

▶ Problem(Lidl-Mullen) Let N_d(q) denote the number of permutation polynomials of F_q which have degree d.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Problem(LidI-Mullen) Let N_d(q) denote the number of permutation polynomials of F_q which have degree d. We have the trivial boundary conditions:
 (i) N₁(q) = q(q - 1).

Problem(Lidl-Mullen) Let N_d(q) denote the number of permutation polynomials of F_q which have degree d. We have the trivial boundary conditions:
 (i) N₁(q) = q(q − 1).
 (ii) N_d(q) = 0 if d is a divisor of (q − 1) larger than 1.

Problem(Lidl-Mullen) Let N_d(q) denote the number of permutation polynomials of F_q which have degree d. We have the trivial boundary conditions:
(i) N₁(q) = q(q - 1).
(ii) N_d(q) = 0 if d is a divisor of (q - 1) larger than 1.
(iii) ∑ N_d(q) = q! where the sum is over all 1 ≤ d < q - 1 such that d is either 1 or it is not a divisor of (q - 1).

(日) (同) (三) (三) (三) (○) (○)

Problem(Lidl-Mullen) Let N_d(q) denote the number of permutation polynomials of F_q which have degree d. We have the trivial boundary conditions:
(i) N₁(q) = q(q − 1).
(ii) N_d(q) = 0 if d is a divisor of (q − 1) larger than 1.
(iii) ∑ N_d(q) = q! where the sum is over all 1 ≤ d < q − 1 such that d is either 1 or it is not a divisor of (q − 1). Find N_d(q).

(日) (同) (三) (三) (三) (○) (○)

- - (ロ) (個) (E) (E) E) の(の)

• Das (2002) $N_{p-2}(p) \sim (1 - \frac{1}{p})p!$ as $p \to \infty$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

- Das (2002) $N_{p-2}(p) \sim (1 \frac{1}{p})p!$ as $p \to \infty$.
- Almost all permutation polynomials of \mathbb{F}_p have degree p-2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- Das (2002) $N_{p-2}(p) \sim (1-\frac{1}{p})p!$ as $p \to \infty$.
- ▶ Almost all permutation polynomials of \mathbb{F}_p have degree p 2.
- Konyagin and Pappalardi (2002)

$$\left| N_{q-2}(q) - rac{\varphi(q)}{q} q!
ight| \leq \sqrt{rac{2e}{\pi}} q^{rac{q}{2}}.$$

Terminology

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Terminology

 g(x) ∈ 𝔽_q[x] is a monic polynomial of degree ≤ q − 1 with g(0) = 0.
• $g(x) \in \mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q - 1$ with g(0) = 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• r is the vanishing order of g(x) at zero.

• $g(x) \in \mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q - 1$ with g(0) = 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- r is the vanishing order of g(x) at zero.
- Let $f_1(x) := g(x)/x^r$.

- $g(x) \in \mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q 1$ with g(0) = 0.
- r is the vanishing order of g(x) at zero.

• Let
$$f_1(x) := g(x)/x^r$$
.

Let s be the largest divisor of q − 1 with the property that there exists a polynomial f(x) of degree deg(f₁)/s such that f₁(x) = f(x^s).

- $g(x) \in \mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q 1$ with g(0) = 0.
- r is the vanishing order of g(x) at zero.

• Let
$$f_1(x) := g(x)/x^r$$
.

Let s be the largest divisor of q − 1 with the property that there exists a polynomial f(x) of degree deg(f₁)/s such that f₁(x) = f(x^s).

►
$$\ell = (q-1)/s$$
.

- $g(x) \in \mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q 1$ with g(0) = 0.
- r is the vanishing order of g(x) at zero.

• Let
$$f_1(x) := g(x)/x^r$$
.

• Let s be the largest divisor of q - 1 with the property that there exists a polynomial f(x) of degree $\deg(f_1)/s$ such that $f_1(x) = f(x^s)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶
$$\ell = (q-1)/s$$
.

• We call ℓ the *index* of g.

- $g(x) \in \mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q 1$ with g(0) = 0.
- r is the vanishing order of g(x) at zero.

• Let
$$f_1(x) := g(x)/x^r$$
.

- Let s be the largest divisor of q 1 with the property that there exists a polynomial f(x) of degree $\deg(f_1)/s$ such that $f_1(x) = f(x^s)$.
- ► $\ell = (q-1)/s$.
- We call ℓ the *index* of g.
- Any polynomial h(x) ∈ 𝔽_q[x] of degree ≤ q − 1 can be written *uniquely* as

$$a(x^rf(x^{(q-1)/\ell}))+b.$$

In \mathbb{F}_{17} we have

$$h(x) = 3 x^{15} + 6x^9 + 12x^3 + 5$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

In \mathbb{F}_{17} we have

$$h(x) = 3 x^{15} + 6x^9 + 12x^3 + 5$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

(17 - 1, 12, 6) = 2.

In \mathbb{F}_{17} we have

$$h(x) = 3 x^{15} + 6x^9 + 12x^3 + 5$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

$$(17 - 1, 12, 6) = 2.$$

$$h(x) = 3 x^{3} ((x^{2})^{6} + 2(x^{2})^{3} + 4) + 5$$

$$= 3 x^{3} f(x^{2}) + 5,$$

In \mathbb{F}_{17} we have

$$h(x) = 3 x^{15} + 6x^9 + 12x^3 + 5$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

$$(17 - 1, 12, 6) = 2.$$

$$h(x) = 3 x^{3} ((x^{2})^{6} + 2(x^{2})^{3} + 4) + 5$$

$$= 3 x^{3} f(x^{2}) + 5,$$

where $f(x) = x^{6} + 2x^{3} + 4$. So $\ell = 8$ and

$$h(x) = 3 x^3 f(x^{\frac{17-1}{8}}) + 5.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Rogers-Dickson Polynomials

Rogers-Dickson Polynomials

(Rogers-Dickson) x^r f(x^{q-1}/_ℓ)^ℓ is a permutation polynomial if and only if (r, q − 1) = 1, and f(x^{q-1}/_ℓ) has no non-zero root in F_q.

- ロ ト - 4 回 ト - 4 □ - 4

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ▲□ ◆ ��や

Let l≥ 2 be a divisor of q − 1. Let s := (q − 1)/l. Let m, r be positive integers, and ē = (e₁,..., e_m) be an m-tuple of integers that satisfy the following conditions:

Let l≥ 2 be a divisor of q − 1. Let s := (q − 1)/l. Let m, r be positive integers, and ē = (e₁,..., e_m) be an m-tuple of integers that satisfy the following conditions:
(i) 0 < e₁ < e₂ ··· < e_m ≤ l − 1,

Let l≥ 2 be a divisor of q − 1. Let s := (q − 1)/l. Let m, r be positive integers, and ē = (e₁,..., e_m) be an m-tuple of integers that satisfy the following conditions:
(i) 0 < e₁ < e₂ ··· < e_m ≤ l − 1,
(ii) (e₁,..., e_m, l) = 1,

Let l≥ 2 be a divisor of q − 1. Let s := (q − 1)/l. Let m, r be positive integers, and ē = (e₁,..., e_m) be an m-tuple of integers that satisfy the following conditions:
(i) 0 < e₁ < e₂ ··· < e_m ≤ l − 1,
(ii) (e₁,..., e_m, l) = 1,
(iii) r + e_ms ≤ q − 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let l≥ 2 be a divisor of q - 1. Let s := (q - 1)/l. Let m, r be positive integers, and ē = (e₁,..., e_m) be an m-tuple of integers that satisfy the following conditions:
(i) 0 < e₁ < e₂ ··· < e_m ≤ l - 1,
(ii) (e₁,..., e_m, l) = 1,
(iii) r + e_ms ≤ q - 1.
For a tuple ā := (a₁,..., a_m) ∈ (F^{*}_q)^m, we let

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let l≥ 2 be a divisor of q - 1. Let s := (q - 1)/l. Let m, r be positive integers, and ē = (e₁,..., e_m) be an m-tuple of integers that satisfy the following conditions:
(i) 0 < e₁ < e₂ ··· < e_m ≤ l - 1,
(ii) (e₁,..., e_m, l) = 1,
(iii) r + e_ms ≤ q - 1.
For a tuple ā := (a₁,..., a_m) ∈ (F^{*}_q)^m, we let
g^ā_{r,ē}(x) := x^r (x^{e_ms} + a₁x<sup>e_{m-1}s + ··· + a_{m-1}x^{e₁s} + a_m).
</sup>

• If $g_{r,\bar{e}}^{\bar{a}}(x)$ is a permutation polynomial then (r,s) = 1.

(日) (同) (三) (三) (三) (○) (○)

The Main Result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Main Result

For admissible m, r, \bar{e} , ℓ , and q, define

 $N^m_{r,\bar{e}}(\ell,q)$

the number of all monic permutation (m + 1)-nomial

$$g_{r,\bar{e}}^{\bar{a}}(x) := x^r \left(x^{e_m s} + a_1 x^{e_{m-1} s} + \dots + a_{m-1} x^{e_1 s} + a_m \right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

The Main Result

For admissible m, r, \bar{e} , ℓ , and q, define

$$N^m_{r,\bar{e}}(\ell,q)$$

the number of all monic permutation (m + 1)-nomial

$$g_{r,\bar{e}}^{\bar{a}}(x) := x^r \left(x^{e_m s} + a_1 x^{e_{m-1} s} + \dots + a_{m-1} x^{e_1 s} + a_m \right).$$

► A., Ghioca, and Wang (2008)

$$\left| \mathsf{N}^m_{r,\bar{\mathbf{e}}}(\ell,q) - \frac{\ell!}{\ell^{\ell}} q^m \right| < \ell \cdot \ell! q^{m-\frac{1}{2}}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

<ロ> <@> < E> < E> E のQの

▶ Carlitz-Wells (1966) (i) Let $\ell > 1$. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $x(x^{(q-1)/\ell} + a)$ is a permutation polynomial of \mathbb{F}_q .

Carlitz-Wells (1966) (i) Let l > 1. Then for q sufficiently large, there exists a ∈ F_q such that the polynomial x(x^{(q-1)/l} + a) is a permutation polynomial of F_q.
(ii) Let l > 1, (r, q - 1) = 1, and k be a positive integer. Then for q sufficiently large, there exists a ∈ F_q such that the polynomial x^r(x^{(q-1)/l} + a)^k is a permutation polynomial of F_q.

(日) (同) (三) (三) (三) (○) (○)

- Carlitz-Wells (1966) (i) Let l > 1. Then for q sufficiently large, there exists a ∈ F_q such that the polynomial x(x^{(q-1)/l} + a) is a permutation polynomial of F_q.
 (ii) Let l > 1, (r, q 1) = 1, and k be a positive integer. Then for q sufficiently large, there exists a ∈ F_q such that the polynomial x^r(x^{(q-1)/l} + a)^k is a permutation polynomial of F_q.
- ▶ Laigle-Chapuy (2007) The first assertion of Carlitz-Wells' theorem is true for $q > \ell^{2\ell+2} \left(1 + \frac{\ell+1}{\ell^{\ell+2}}\right)^2$.

(日) (同) (三) (三) (三) (○) (○)

- Carlitz-Wells (1966) (i) Let l > 1. Then for q sufficiently large, there exists a ∈ F_q such that the polynomial x(x^{(q-1)/l} + a) is a permutation polynomial of F_q.
 (ii) Let l > 1, (r, q 1) = 1, and k be a positive integer. Then for q sufficiently large, there exists a ∈ F_q such that the polynomial x^r(x^{(q-1)/l} + a)^k is a permutation polynomial of F_q.
- ▶ Laigle-Chapuy (2007) The first assertion of Carlitz-Wells' theorem is true for $q > \ell^{2\ell+2} \left(1 + \frac{\ell+1}{\ell^{\ell+2}}\right)^2$.
- ► Masuda and Zieve (2007) For more general binomials of the form x^r(x^{e₁(q-1)/ℓ} + a) The first assertion of Carlitz-Wells' theorem is true for q > ℓ^{2ℓ+2}.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のへで

The Main Result

$$\left|N_{r,\bar{e}}^m(\ell,q)-\frac{\ell!}{\ell^\ell}q^m\right|<\ell\cdot\ell!q^{m-\frac{1}{2}}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

The Main Result

$$\left| N^m_{r,\overline{\mathbf{e}}}(\ell,q) - rac{\ell!}{\ell^\ell} q^m
ight| < \ell \cdot \ell! q^{m-rac{1}{2}}.$$

Corollary For any admissible q, r, ē, m, ℓ, and q > ℓ^{2ℓ+2}, there exists an ā ∈ (𝔽^{*}_q)^m such that the (m + 1)-nomial

$$g_{r,\bar{e}}^{\bar{a}}(x) = x^r \left(x^{e_m s} + a_1 x^{e_{m-1} s} + \dots + a_{m-1} x^{e_1 s} + a_m \right)$$

is a permutation polynomial of \mathbb{F}_q .

The Main Result

$$\left| \mathsf{N}^m_{\mathsf{r},\bar{\mathsf{e}}}(\ell,q) - \frac{\ell!}{\ell^\ell} q^m \right| < \ell \cdot \ell! q^{m-\frac{1}{2}}.$$

► Corollary For any admissible q, r, ē, m, l, and q > l^{2l+2}, there exists an ā ∈ (𝔽^{*}_q)^m such that the (m + 1)-nomial

$$g_{r,\bar{e}}^{\bar{a}}(x) = x^r \left(x^{e_m s} + a_1 x^{e_{m-1} s} + \dots + a_{m-1} x^{e_1 s} + a_m \right)$$

is a permutation polynomial of \mathbb{F}_q .

For
$$q \ge 7$$
 we have $\ell^{2\ell+2} < q$ as long as $\ell < \frac{\log q}{2\log \log q}$.

< ロ > < 団 > < 臣 > < 臣 > < 臣 > 三 のへで

▶ μ_{ℓ} := The set of all ℓ -th roots of unity in \mathbb{F}_q^* .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

µ_ℓ:= The set of all ℓ-th roots of unity in F^{*}_q.
 s = (q − 1)/ℓ, (r, s) = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

• μ_{ℓ} := The set of all ℓ -th roots of unity in \mathbb{F}_q^* .

►
$$s = (q-1)/\ell$$
, $(r,s) = 1$.

Wan-Lidl (1991) g(x) = x^rf(x^s) permutes 𝔽_q if and only if x^rf(x)^s permutes μ_ℓ.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ▲□ ◆ ��や
◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\boldsymbol{\varsigma} := \text{ an } \ell \text{-th root of unity in } \mathbb{C}$$

$$1 + \zeta + \zeta^2 + \dots + \zeta^{\ell-1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• $\alpha := A$ generator of \mathbb{F}_q^* .

• $\zeta := an \ \ell$ -th root of unity in $\mathbb C$

$$1 + \zeta + \zeta^{2} + \dots + \zeta^{\ell-1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- $\alpha := A$ generator of \mathbb{F}_q^* .
- ψ := A multiplicative character of order ℓ of μ_{ℓ} .

• $\zeta := an \ \ell$ -th root of unity in $\mathbb C$

$$1 + \zeta + \zeta^2 + \dots + \zeta^{\ell-1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- $\alpha := A$ generator of \mathbb{F}_q^* .
- ψ := A multiplicative character of order ℓ of μ_{ℓ} .
- $\omega := A$ primitive ℓ -th root of unity in \mathbb{C} .

• $\zeta := an \ \ell$ -th root of unity in $\mathbb C$

$$1 + \zeta + \zeta^{2} + \dots + \zeta^{\ell-1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}$$

- $\alpha := A$ generator of \mathbb{F}_q^* .
- ψ := A multiplicative character of order ℓ of μ_{ℓ} .
- $\omega := A$ primitive ℓ -th root of unity in \mathbb{C} .
- Define $\psi(\alpha^s) = \omega$, and extend it with $\psi(0) = 0$.

Detecting Permutations of μ_ℓ

<ロト < 個 > < 目 > < 目 > 三 の < で</p>

Detecting Permutations of μ_ℓ

▶ For any permutation $\sigma \in S_{\ell}$, and any $\beta_1, \cdots, \beta_{\ell} \in \mu_{\ell}$, we define

$$P_{\sigma}(\beta_1,\ldots,\beta_\ell) = \prod_{i=1}^{\ell} \left(\sum_{j=0}^{\ell-1} \left(\psi(\beta_i) \psi(\alpha^s)^{-\sigma(i)} \right)^j \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Detecting Permutations of μ_ℓ

▶ For any permutation $\sigma \in S_{\ell}$, and any $\beta_1, \cdots, \beta_{\ell} \in \mu_{\ell}$, we define

$$P_{\sigma}(\beta_1,\ldots,\beta_\ell) = \prod_{i=1}^{\ell} \left(\sum_{j=0}^{\ell-1} \left(\psi(\beta_i) \psi(\alpha^s)^{-\sigma(i)} \right)^j \right)$$

• $\{\beta_1, \ldots, \beta_\ell\} = \mu_\ell$ if and only if

there exists a unique $\sigma \in S_{\ell}$ such that $P_{\sigma}(\beta_1, \ldots, \beta_{\ell}) = \ell^{\ell}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○</p>

• $g^{\bar{a}}(x) = x^r (x^{e_m s} + a_1 x^{e_{m-1} s} + \dots + a_{m-1} x^{e_1 s} + a_m).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

•
$$g^{\bar{a}}(x) = x^r(x^{e_ms} + a_1x^{e_{m-1}s} + \dots + a_{m-1}x^{e_1s} + a_m)$$

The polynomial g^ā permutes F_q if and only if the following two conditions are satisfied:

 (i) α^{iems} + a₁α^{iem-1s} + ··· + a_{m-1}α^{ie₁s} + a_m ≠ 0, for each i = 1,..., l;
 (ii) g^ā(αⁱ)^s ≠ g^ā(α^j)^s, for 1 ≤ i < j ≤ l.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$g^{\bar{a}}(x) = x^r (x^{e_m s} + a_1 x^{e_{m-1} s} + \dots + a_{m-1} x^{e_1 s} + a_m).$$

The polynomial g^ā permutes F_q if and only if the following two conditions are satisfied:
(i) α^{iems} + a₁α^{iem-1s} + ··· + a_{m-1}α^{ie₁s} + a_m ≠ 0, for each i = 1,..., l;
(ii) g^ā(αⁱ)^s ≠ g^ā(α^j)^s, for 1 ≤ i < j ≤ l.

$$N_{r,\bar{e}}^{m}(\ell,q) = \frac{1}{\ell^{\ell}} \sum_{\substack{\bar{a} \in (\mathbb{F}_{q}^{*})^{m} \\ \bar{a} \text{ satisfies (i)}}} \sum_{\sigma \in S_{\ell}} P_{\sigma} \left(g^{\bar{a}}(\alpha^{1})^{s}, \dots, g^{\bar{a}}(\alpha^{\ell})^{s} \right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Main Term

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 めんの

The Main Term

►

$N_{r,\bar{\mathsf{e}}}^{m}(\ell,q) = \frac{1}{\ell^{\ell}} \sum_{\substack{\bar{\mathsf{a}} \in (\mathbb{F}_{q}^{*})^{m} \\ \bar{\mathsf{a}} \text{ satisfies (i)}}} \sum_{\sigma \in S_{\ell}} P_{\sigma} \left(g^{\bar{\mathsf{a}}}(\alpha^{1})^{s}, \dots, g^{\bar{\mathsf{a}}}(\alpha^{\ell})^{s} \right).$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The Main Term

$\mathcal{N}_{r,\bar{e}}^{m}(\ell,q) = \frac{1}{\ell^{\ell}} \sum_{\substack{\bar{a} \in (\mathbb{F}_{q}^{*})^{m} \\ \bar{a} \text{ satisfies (i)}}} \sum_{\sigma \in S_{\ell}} \mathcal{P}_{\sigma} \left(g^{\bar{a}}(\alpha^{1})^{s}, \dots, g^{\bar{a}}(\alpha^{\ell})^{s} \right).$

Main Term $= \frac{\ell!}{\ell^\ell} q^m$.

<□ > < @ > < E > < E > E のQ @

$\mathsf{Error Term} = \sum_{(a_1, \cdots, a_m) \in (\mathbb{F}_q)^m} \Psi \left(t \ \varphi(a_1, a_2, \cdots, a_m) \right) \right),$

where $t \in \mathbb{F}_q$, $\Psi(\alpha) = \psi(\alpha^s)$ is a multiplicative character of \mathbb{F}_q , and $\varphi(a_1, a_2, \cdots, a_m) \in \mathbb{F}_q[a_1, \cdots, a_m]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<□ > < @ > < E > < E > E のQ @

<□ > < @ > < E > < E > E のQ @

$$\beta = \alpha^{s}$$

$$\sum_{(a_1, \dots, a_m) \in (\mathbb{F}_q)^m} \Psi\left(t \prod_{i=1}^{\ell} \left(\beta^{e_m i} + a_1 \beta^{e_{m-1} i} + \dots + a_{m-1} \beta^{e_1 i} + a_m\right)^{k_i}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

It follows from Deligne's work on the Weil conjectures for algebraic varieties over finite field that if φ(a₁, · · · , a_m) satisfies GOOD conditions

$$\sum_{(a_1,\cdots,a_m)\in (\mathbb{F}_q)^m} \Psi\left(t \ \varphi(a_1,a_2,\cdots,a_m)\right) \ll q^{\frac{m}{2}}$$

- ロ ト - 4 回 ト - 4 □ - 4

(Katz, 2002) Let m ≥ 1 and let φ = φ(a₁, · · · , a_m) ∈ ℝ_q[a₁, · · · , a_m] be a polynomial of degree d. We write φ = φ_d + φ_{d-1} + + φ₀, where each φ_j is homogeneous of degree j. Then if (d, q) = 1 and if φ_d = 0 defines a smooth, degree d hypersurface in ℙ^{m-1}(ℝ_q), φ = 0 is a smooth hypersurface in A^m(ℝ_q), and if Ψ^d is non-trivial then

$$\sum_{(a_1,\cdots,a_m)\in (\mathbb{F}_q)^m} \Psi\left(arphi(a_1,a_2,\cdots,a_m)
ight) \leq (d-1)q^{rac{m}{2}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\sum_{(a_1,\cdots,a_m)\in(\mathbb{F}_q)^m}\Psi\left(t\prod_{i=1}^\ell\left(\beta^{e_mi}+a_1\beta^{e_{m-1}i}+\cdots+a_{m-1}\beta^{e_1i}+a_m\right)^{k_i}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

(Weil, 1948) Let f(x) ∈ F_q[x] be a monic polynomial of positive degree that is not an *l*-th power of a polynomial. Let d be the number of distinct roots of f(x) in its splitting field over F_q. Then for every t ∈ F_q we have

$$\left|\sum_{\pmb{a}\in\mathbb{F}_q}\Psi(t|f(\pmb{a}))
ight|\leq (d-1)q^{rac{1}{2}}.$$

$$\sum_{a_m \in (\mathbb{F}_q)} \Psi\left(t \prod_{i=1}^{\ell} \left(\beta^{e_m i} + a_1 \beta^{e_{m-1} i} + \dots + a_{m-1} \beta^{e_1 i} + a_m\right)^{k_i}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\sum_{\substack{(a_1,\cdots,a_m)\in(\mathbb{F}_q)^m}} \Psi(t \ \varphi(a_1,a_2,\cdots,a_m)))$$
$$=\sum_{\substack{(a_1,\cdots,a_{m-1})\in(\mathbb{F}_q)^{m-1}}} \sum_{a\in\mathbb{F}_q} \Psi(t \ \varphi(a_1,a_2,\cdots,a_{m-1},a))$$
$$=\sum_{\text{Good}} +\sum_{\text{Bad}} \ll q^{m-\frac{1}{2}}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

$$\sum_{\substack{(a_1,\cdots,a_m)\in (\mathbb{F}_q)^m \\ (a_1,\cdots,a_m-1)\in (\mathbb{F}_q)^{m-1}}} \Psi\left(t \ \varphi(a_1,a_2,\cdots,a_m)\right))$$
$$= \sum_{\substack{(a_1,\cdots,a_{m-1})\in (\mathbb{F}_q)^{m-1} \\ a\in \mathbb{F}_q}} \Psi\left(t \ \varphi(a_1,a_2,\cdots,a_{m-1},a)\right)$$
$$= \sum_{\substack{\mathsf{Good}}} + \sum_{\substack{\mathsf{Bad}}} \ll q^{m-\frac{1}{2}}.$$

$$\left| \mathsf{N}^m_{r,\overline{\mathbf{e}}}(\ell,q) - \frac{\ell!}{\ell^{\ell}} q^m \right| < \ell \cdot \ell! q^{m-\frac{1}{2}}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶