On Permutation Polynomials of Prescribed Shape

Amir Akbary

University of Lethbridge

July 2010

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

$$
\blacktriangleright \mathbb{F}_q := \text{finite field of } q = p^m \text{ elements.}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

- $\blacktriangleright \mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- ▶ Definition A polynomial $f \in \mathbb{F}_q[x]$ is called a *permutation* polynomial of \mathbb{F}_q if the associated polynomial function $f: c \to f(c)$ from \mathbb{F}_q to \mathbb{F}_q is a permutation of \mathbb{F}_q .

AD A REAREA E ARA

- $\blacktriangleright \mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- **► Definition** A polynomial $f \in \mathbb{F}_q[x]$ is called a *permutation* polynomial of \mathbb{F}_q if the associated polynomial function $f: c \to f(c)$ from \mathbb{F}_q to \mathbb{F}_q is a permutation of \mathbb{F}_q .
- \blacktriangleright Example
	- 1 $f(x) = ax + b$, $a \ne 0$ is a permutation polynomial.

AD A REAREA E ARA

- $\blacktriangleright \mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- ▶ Definition A polynomial $f \in \mathbb{F}_q[x]$ is called a *permutation* polynomial of \mathbb{F}_q if the associated polynomial function $f: c \to f(c)$ from \mathbb{F}_q to \mathbb{F}_q is a permutation of \mathbb{F}_q .
- \blacktriangleright Example
	- 1 $f(x) = ax + b$, $a \ne 0$ is a permutation polynomial. 2 $f(x) = x^n$ is a permutation polynomial of \mathbb{F}_q \iff $(n, q - 1) = 1.$

- $\blacktriangleright \mathbb{F}_q :=$ finite field of $q = p^m$ elements.
- **► Definition** A polynomial $f \in \mathbb{F}_q[x]$ is called a *permutation* polynomial of \mathbb{F}_q if the associated polynomial function $f: c \to f(c)$ from \mathbb{F}_q to \mathbb{F}_q is a permutation of \mathbb{F}_q .
- \blacktriangleright Example
	- 1 $f(x) = ax + b$, $a \ne 0$ is a permutation polynomial. 2 $f(x) = x^n$ is a permutation polynomial of \mathbb{F}_q \iff $(n, q - 1) = 1.$
- \triangleright Two Problems Counting permutation polynomials of \mathbb{F}_q and Constructing permutation polynomials of \mathbb{F}_q .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

► By Lagrange's interpolation, every mapping $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely by a polynomial of degree $\leq q-1$.

AD A REAREA E ARA

I

► By Lagrange's interpolation, every mapping $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely by a polynomial of degree $\leq q-1$.

$$
g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1}\right)
$$

AD A REAREA E ARA

I

► By Lagrange's interpolation, every mapping $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely by a polynomial of degree $\leq q-1$.

$$
g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1}\right)
$$

AD A REAKEN E VAN

 \triangleright We assume each polynomial defined over \mathbb{F}_q has degree at most $(q-1)$ because $x^q = x$ for each $x \in \mathbb{F}_q$.

I

► By Lagrange's interpolation, every mapping $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely by a polynomial of degree $\leq q-1$.

$$
g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1}\right)
$$

- \triangleright We assume each polynomial defined over \mathbb{F}_q has degree at most $(q-1)$ because $x^q = x$ for each $x \in \mathbb{F}_q$.
- \triangleright (Kayal, 2004) There exists a deterministic polynomial-time algorithm that given a polynomial $f(x)$ determines whether it is a permutation polynomial or not.

► By Lagrange's interpolation, every mapping $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely by a polynomial of degree $\leq q-1$.

$$
g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1}\right)
$$

- \triangleright We assume each polynomial defined over \mathbb{F}_q has degree at most $(q-1)$ because $x^q = x$ for each $x \in \mathbb{F}_q$.
- \triangleright (Kayal, 2004) There exists a deterministic polynomial-time algorithm that given a polynomial $f(x)$ determines whether it is a permutation polynomial or not.

 \blacktriangleright Permutation polynomials are rare.

I

► By Lagrange's interpolation, every mapping $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely by a polynomial of degree $\leq q-1$.

$$
g(x) = \sum_{c \in \mathbb{F}_q} f(c) \left(1 - (x - c)^{q-1}\right)
$$

- \triangleright We assume each polynomial defined over \mathbb{F}_q has degree at most $(q-1)$ because $x^q = x$ for each $x \in \mathbb{F}_q$.
- \triangleright (Kayal, 2004) There exists a deterministic polynomial-time algorithm that given a polynomial $f(x)$ determines whether it is a permutation polynomial or not.
- \blacktriangleright Permutation polynomials are rare.

I

D

$$
\lim_{q\to\infty}\frac{q!}{q^q}=0
$$

K ロ K K (메 K K E K K E K H A K K K G K K H

 \blacktriangleright There is a deterministic polynomial time for primality testing.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

- \blacktriangleright There is a deterministic polynomial time for primality testing.
- \blacktriangleright The density of the set of primes in the set of integers is zero.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

- \blacktriangleright There is a deterministic polynomial time for primality testing.
- \blacktriangleright The density of the set of primes in the set of integers is zero.
- \triangleright There are many open problems regarding primes of prescribed shapes, such as Mersenne primes, Fermat primes, and twin primes.

KORK EX KEY KEY KORA

- \triangleright There is a deterministic polynomial time for primality testing.
- \blacktriangleright The density of the set of primes in the set of integers is zero.
- \triangleright There are many open problems regarding primes of prescribed shapes, such as Mersenne primes, Fermat primes, and twin primes.

KORK EX KEY KEY KORA

 \triangleright Similarly it is not always easy to count and construct permutation polynomials of a prescribed shape.

-
- - -
		-
		- - - K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

► (Hermite, 1863) $f \in \mathbb{F}_q[x]$ is a permutation polynomial if and only if

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

► (Hermite, 1863) $f \in \mathbb{F}_q[x]$ is a permutation polynomial if and only if (i) f has exactly one root in \mathbb{F}_q .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ _ 할 | 2000

► (Hermite, 1863) $f \in \mathbb{F}_q[x]$ is a permutation polynomial if and only if (i) f has exactly one root in \mathbb{F}_q . (ii) For each integer t with $1 \le t < q-1$, $t \not\equiv 0$ (mod p), the reduction of $(f(x))$ ^t mod $(x^q - x)$ has degree $\leq q - 2$.

AD A REAKEN E VAN

► (Hermite, 1863) $f \in \mathbb{F}_q[x]$ is a permutation polynomial if and only if

(i) f has exactly one root in \mathbb{F}_q .

(ii) For each integer t with $1 \le t < q-1$, $t \not\equiv 0$ (mod p), the reduction of $(f(x))$ ^t mod $(x^q - x)$ has degree $\leq q - 2$.

AD A REAKEN E VAN

► Corollary If $d > 1$ is a divisor of $q - 1$ then there is no permutation polynomial of \mathbb{F}_q of degree d.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Problem(Lidl-Mullen) Let $N_d(q)$ denote the number of permutation polynomials of \mathbb{F}_q which have degree d.

K □ ▶ K @ ▶ K 할 X K 할 X (할) 10 Q Q Q

Problem(Lidl-Mullen) Let $N_d(q)$ denote the number of permutation polynomials of \mathbb{F}_q which have degree d. We have the trivial boundary conditions: (i) $N_1(q) = q(q-1)$.

4 D > 4 P > 4 E > 4 E > E + 9 Q O

Problem(Lidl-Mullen) Let $N_d(q)$ denote the number of permutation polynomials of \mathbb{F}_q which have degree d. We have the trivial boundary conditions: (i) $N_1(q) = q(q-1)$. (ii) $N_d(q) = 0$ if d is a divisor of $(q - 1)$ larger than 1.

Problem(Lidl-Mullen) Let $N_d(q)$ denote the number of permutation polynomials of \mathbb{F}_q which have degree d. We have the trivial boundary conditions: (i) $N_1(q) = q(q-1)$. (ii) $N_d(q) = 0$ if d is a divisor of $(q - 1)$ larger than 1. (iii) $\sum N_d(q) = q!$ where the sum is over all $1 \leq d < q-1$ such that d is either 1 or it is not a divisor of $(q - 1)$.

Problem(Lidl-Mullen) Let $N_d(q)$ denote the number of permutation polynomials of \mathbb{F}_q which have degree d. We have the trivial boundary conditions: (i) $N_1(q) = q(q-1)$. (ii) $N_d(q) = 0$ if d is a divisor of $(q - 1)$ larger than 1. (iii) $\sum N_d(q) = q!$ where the sum is over all $1 \leq d < q-1$ such that d is either 1 or it is not a divisor of $(q - 1)$. Find $N_d(q)$.

-
-
- -
	-
-
-
- - - K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1990

► Das (2002) $N_{p-2}(p) \sim (1 - \frac{1}{p})$ $(\frac{1}{p})p!$ as $p \to \infty$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

- ► Das (2002) $N_{p-2}(p) \sim (1 \frac{1}{p})$ $(\frac{1}{p})p!$ as $p \to \infty$.
- Almost all permutation polynomials of \mathbb{F}_p have degree $p-2$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

- ► Das (2002) $N_{p-2}(p) \sim (1 \frac{1}{p})$ $(\frac{1}{p})p!$ as $p \to \infty$.
- Almost all permutation polynomials of \mathbb{F}_p have degree $p-2$.
- \blacktriangleright Konyagin and Pappalardi (2002)

$$
\left|N_{q-2}(q)-\frac{\varphi(q)}{q}q!\right|\leq \sqrt{\frac{2e}{\pi}}q^{\frac{q}{2}}.
$$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Terminology

K ロ > K 레 > K 할 > K 할 > 1 를 > 1 이익어

Terminology

► $g(x) \in \mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q-1$ with $g(0) = 0.$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ _ 할 | 2000
\blacktriangleright g(x) ∈ $\mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q-1$ with $g(0) = 0.$

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X 9 Q @

r is the vanishing order of $g(x)$ at zero.

 \blacktriangleright g(x) ∈ $\mathbb{F}_q[x]$ is a monic polynomial of degree $\leq q-1$ with $g(0) = 0.$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

- r is the vanishing order of $g(x)$ at zero.
- In Let $f_1(x) := g(x)/x^r$.

- \blacktriangleright g(x) \in $\mathbb{F}_q[x]$ is a monic polynomial of degree \leq q 1 with $g(0) = 0.$
- r is the vanishing order of $g(x)$ at zero.

$$
\blacktriangleright \ \mathsf{Let} \ f_1(x) := g(x)/x^r.
$$

► Let s be the largest divisor of $q-1$ with the property that there exists a polynomial $f(x)$ of degree deg(f_1)/s such that $f_1(x) = f(x^s).$

- \blacktriangleright g(x) \in $\mathbb{F}_q[x]$ is a monic polynomial of degree \leq q 1 with $g(0) = 0.$
- r is the vanishing order of $g(x)$ at zero.

$$
\blacktriangleright \ \mathsf{Let} \ f_1(x) := g(x)/x^r.
$$

► Let s be the largest divisor of $q-1$ with the property that there exists a polynomial $f(x)$ of degree deg(f_1)/s such that $f_1(x) = f(x^s).$

$$
\blacktriangleright \ell = (q-1)/s.
$$

- \blacktriangleright g(x) \in $\mathbb{F}_q[x]$ is a monic polynomial of degree \leq q 1 with $g(0) = 0.$
- r is the vanishing order of $g(x)$ at zero.

$$
\blacktriangleright \ \mathsf{Let} \ f_1(x) := g(x)/x^r.
$$

► Let s be the largest divisor of $q-1$ with the property that there exists a polynomial $f(x)$ of degree deg $(f_1)/s$ such that $f_1(x) = f(x^s).$

AD A REAKEN E VAN

$$
\blacktriangleright \ell = (q-1)/s.
$$

 \blacktriangleright We call ℓ the *index* of g.

- \blacktriangleright g(x) \in $\mathbb{F}_q[x]$ is a monic polynomial of degree \leq q 1 with $g(0) = 0.$
- r is the vanishing order of $g(x)$ at zero.

$$
\blacktriangleright \ \mathsf{Let} \ f_1(x) := g(x)/x^r.
$$

- ► Let s be the largest divisor of $q-1$ with the property that there exists a polynomial $f(x)$ of degree deg $(f_1)/s$ such that $f_1(x) = f(x^s).$
- $\blacktriangleright \ell = (q 1)/s.$
- \blacktriangleright We call ℓ the *index* of g.
- Any polynomial $h(x) \in \mathbb{F}_q[x]$ of degree $\leq q-1$ can be written *uniquely* as

$$
a(x^r f(x^{(q-1)/\ell})) + b.
$$

In \mathbb{F}_{17} we have

$$
h(x) = 3 x15 + 6x9 + 12x3 + 5
$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

In \mathbb{F}_{17} we have

$$
h(x) = 3 x15 + 6x9 + 12x3 + 5
$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

 $(17 - 1, 12, 6) = 2.$

In \mathbb{F}_{17} we have

$$
h(x) = 3 x15 + 6x9 + 12x3 + 5
$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

$$
(17-1, 12, 6) = 2.
$$

$$
h(x) = 3 x3 ((x2)6 + 2(x2)3 + 4) + 5
$$

$$
= 3 x3 f(x2) + 5,
$$

In \mathbb{F}_{17} we have

$$
h(x) = 3 x15 + 6x9 + 12x3 + 5
$$

= 3 x³(x¹² + 2x⁶ + 4) + 5

$$
(17-1, 12, 6) = 2.
$$

$$
h(x) = 3 x3 ((x2)6 + 2(x2)3 + 4) + 5
$$

$$
= 3 x3 f(x2) + 5,
$$

where $f(x)=x^6+2x^3+4.$ So $\ell=8$ and

$$
h(x) = 3 x^3 f(x^{\frac{17-1}{8}}) + 5.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Rogers-Dickson Polynomials

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000 W

Rogers-Dickson Polynomials

▶ (Rogers-Dickson) $x^r f(x^{\frac{q-1}{\ell}})^{\ell}$ is a permutation polynomial if and only if $(r, q - 1) = 1$, and $f(\textstyle{x^{\frac{q-1}{\ell}}})$ has no non-zero root in \mathbb{F}_q .

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

K ロ > K 레 > K 할 > K 할 > 1 를 > 1) 의 Q Q

► Let $\ell \ge 2$ be a divisor of $q - 1$. Let $s := (q - 1)/\ell$. Let m, r be positive integers, and $\bar{e} = (e_1, \ldots, e_m)$ be an *m*-tuple of integers that satisfy the following conditions:

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

► Let $\ell \ge 2$ be a divisor of $q - 1$. Let $s := (q - 1)/\ell$. Let m, r be positive integers, and $\bar{e} = (e_1, \ldots, e_m)$ be an *m*-tuple of integers that satisfy the following conditions: (i) $0 < e_1 < e_2 \cdots < e_m < \ell - 1$,

► Let $\ell \ge 2$ be a divisor of $q - 1$. Let $s := (q - 1)/\ell$. Let m, r be positive integers, and $\bar{e} = (e_1, \ldots, e_m)$ be an *m*-tuple of integers that satisfy the following conditions: (i) $0 < e_1 < e_2 \cdots < e_m < \ell - 1$, (ii) $(e_1, \ldots, e_m, \ell) = 1$,

► Let $\ell \ge 2$ be a divisor of $q - 1$. Let $s := (q - 1)/\ell$. Let m, r be positive integers, and $\bar{e} = (e_1, \ldots, e_m)$ be an *m*-tuple of integers that satisfy the following conditions: (i) $0 < e_1 < e_2 \cdots < e_m < \ell - 1$, (ii) $(e_1, \ldots, e_m, \ell) = 1$, (iii) $r + e_m s \leq q - 1$.

► Let $\ell \ge 2$ be a divisor of $q - 1$. Let $s := (q - 1)/\ell$. Let m, r be positive integers, and $\bar{e} = (e_1, \ldots, e_m)$ be an *m*-tuple of integers that satisfy the following conditions: (i) $0 < e_1 < e_2 \cdots < e_m < \ell - 1$, (ii) $(e_1, \ldots, e_m, \ell) = 1$, (iii) $r + e_m s \leq q - 1$. For a tuple $\bar a:=(a_1,\ldots,a_m)\in\left({\Bbb F}_q^*\right)^m$, we let $g_{r,\bar{e}}^{\bar{a}}(x) := x^r (x^{e_m s} + a_1 x^{e_{m-1}s} + \cdots + a_{m-1} x^{e_1 s} + a_m).$

► Let $\ell \ge 2$ be a divisor of $q - 1$. Let $s := (q - 1)/\ell$. Let m, r be positive integers, and $\bar{e} = (e_1, \ldots, e_m)$ be an *m*-tuple of integers that satisfy the following conditions: (i) $0 < e_1 < e_2 \cdots < e_m < \ell - 1$, (ii) $(e_1, \ldots, e_m, \ell) = 1$, (iii) $r + e_m s \leq q - 1$. For a tuple $\bar a:=(a_1,\ldots,a_m)\in\left({\Bbb F}_q^*\right)^m$, we let $g_{r,\bar{e}}^{\bar{a}}(x) := x^r (x^{e_m s} + a_1 x^{e_{m-1}s} + \cdots + a_{m-1} x^{e_1 s} + a_m).$

If $g_{r,\bar{e}}^{\bar{a}}(x)$ is a permutation polynomial then $(r,s) = 1$.

The Main Result

The Main Result

► For admissible m, r, \bar{e} , ℓ , and q, define

$$
N_{r,\overline{e}}^m(\ell,q)
$$

the number of all monic permutation $(m + 1)$ -nomial

$$
g_{r,\bar{e}}^{\bar{a}}(x):=x^r\left(x^{e_m s}+a_1x^{e_{m-1}s}+\cdots+a_{m-1}x^{e_1 s}+a_m\right).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

The Main Result

► For admissible m, r, \bar{e} , ℓ , and q, define

$$
N_{r,\overline{e}}^m(\ell,q)
$$

the number of all monic permutation $(m + 1)$ -nomial

$$
g_{r,\bar{e}}^{\bar{a}}(x):=x^r\left(x^{e_m s}+a_1x^{e_{m-1}s}+\cdots+a_{m-1}x^{e_1 s}+a_m\right).
$$

 \blacktriangleright A., Ghioca, and Wang (2008)

$$
\left|N_{r,\overline{e}}^m(\ell,q)-\frac{\ell!}{\ell^{\ell}}q^m\right|<\ell\cdot\ell!q^{m-\frac{1}{2}}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

• Carlitz-Wells (1966) (i) Let $\ell > 1$. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $\chi\!\left(x^{(q-1)/\ell}+a\right)$ is a permutation polynomial of $\mathbb{F}_q.$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

• Carlitz-Wells (1966) (i) Let $\ell > 1$. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $\chi\!\left(x^{(q-1)/\ell}+a\right)$ is a permutation polynomial of $\mathbb{F}_q.$ (ii) Let $\ell > 1$, $(r, q - 1) = 1$, and k be a positive integer. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $x^r(x^{(q-1)/\ell}+a)^k$ is a permutation polynomial of \mathbb{F}_q .

4 D > 4 P > 4 E > 4 E > E + 9 Q O

- Carlitz-Wells (1966) (i) Let $\ell > 1$. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $\chi\!\left(x^{(q-1)/\ell}+a\right)$ is a permutation polynomial of $\mathbb{F}_q.$ (ii) Let $\ell > 1$, $(r, q - 1) = 1$, and k be a positive integer. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $x^r(x^{(q-1)/\ell}+a)^k$ is a permutation polynomial of \mathbb{F}_q .
- ▶ Laigle-Chapuy (2007) The first assertion of Carlitz-Wells' theorem is true for $q > \ell^{2\ell+2} \left(1 + \frac{\ell+1}{\ell^{\ell+2}} \right)^2$.

- Carlitz-Wells (1966) (i) Let $\ell > 1$. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $\chi\!\left(x^{(q-1)/\ell}+a\right)$ is a permutation polynomial of $\mathbb{F}_q.$ (ii) Let $\ell > 1$, $(r, q - 1) = 1$, and k be a positive integer. Then for q sufficiently large, there exists $a \in \mathbb{F}_q$ such that the polynomial $x^r(x^{(q-1)/\ell}+a)^k$ is a permutation polynomial of \mathbb{F}_q .
- ▶ Laigle-Chapuy (2007) The first assertion of Carlitz-Wells' theorem is true for $q > \ell^{2\ell+2} \left(1 + \frac{\ell+1}{\ell^{\ell+2}} \right)^2$.
- \triangleright Masuda and Zieve (2007) For more general binomials of the form $x^r(x^{e_1(q-1)/\ell}+a)$ The first assertion of Carlitz-Wells' theorem is true for $q > \ell^{2\ell+2}$.

K ロ > K 레 > K 할 > K 할 > 1 를 > 1) 의 Q Q

\blacktriangleright The Main Result

$$
\left|N_{r,\overline{e}}^m(\ell,q)-\frac{\ell!}{\ell^{\ell}}q^m\right|<\ell\cdot\ell!q^{m-\frac{1}{2}}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

\blacktriangleright The Main Result

$$
\left|N_{r,\overline{e}}^m(\ell,q)-\frac{\ell!}{\ell^{\ell}}q^m\right|<\ell\cdot\ell!q^{m-\frac{1}{2}}.
$$

▶ Corollary For any admissible q, r, \bar{e} , m, ℓ , and $q > \ell^{2\ell+2}$, there exists an $\bar{\mathsf{a}} \in (\mathbb{F}_q^*)^m$ such that the $(m+1)$ -nomial

$$
g_{r,\bar{e}}^{\bar{a}}(x)=x^r\left(x^{e_m s}+a_1x^{e_{m-1}s}+\cdots+a_{m-1}x^{e_1 s}+a_m\right)
$$

AD A REAKEN E VAN

is a permutation polynomial of \mathbb{F}_q .

\blacktriangleright The Main Result

$$
\left|N_{r,\overline{e}}^m(\ell,q)-\frac{\ell!}{\ell^{\ell}}q^m\right|<\ell\cdot\ell!q^{m-\frac{1}{2}}.
$$

▶ Corollary For any admissible q, r, \bar{e} , m, ℓ , and $q > \ell^{2\ell+2}$, there exists an $\bar{\mathsf{a}} \in (\mathbb{F}_q^*)^m$ such that the $(m+1)$ -nomial

$$
g_{r,\bar{e}}^{\bar{a}}(x)=x^r\left(x^{e_m s}+a_1x^{e_{m-1}s}+\cdots+a_{m-1}x^{e_1 s}+a_m\right)
$$

AD A REAKEN E VAN

is a permutation polynomial of \mathbb{F}_q .

For
$$
q \ge 7
$$
 we have $\ell^{2\ell+2} < q$ as long as $\ell < \frac{\log q}{2 \log \log q}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

► μ_{ℓ} : = The set of all ℓ -th roots of unity in \mathbb{F}_q^* .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

► μ_{ℓ} : = The set of all ℓ -th roots of unity in \mathbb{F}_q^* . $s = (q - 1)/\ell$, $(r, s) = 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

► μ_{ℓ} : = The set of all ℓ -th roots of unity in \mathbb{F}_q^* .

$$
\blacktriangleright s = (q-1)/\ell, (r,s) = 1.
$$

▶ Wan-Lidl (1991) $g(x) = x^r f(x^s)$ permutes \mathbb{F}_q if and only if $x^r f(x)^s$ permutes μ_{ℓ} .

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X 9 Q @

K ロ > K 레 > K 할 > K 할 > 1 를 > 1) 의 Q Q
$$
\triangleright \zeta := \text{an } \ell\text{-th root of unity in } \mathbb{C}
$$
\n
$$
1 + \zeta + \zeta^2 + \dots + \zeta^{\ell-1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}
$$

K ロ > K 레 > K 할 > K 할 > 1 를 > 1) 의 Q Q

$$
\triangleright \zeta := \text{an } \ell\text{-th root of unity in } \mathbb{C}
$$
\n
$$
1 + \zeta + \zeta^2 + \dots + \zeta^{\ell-1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

A generator of \mathbb{F}_q^* .

 \blacktriangleright $\zeta :=$ an ℓ -th root of unity in $\mathbb C$

$$
1 + \zeta + \zeta^2 + \dots + \zeta^{\ell - 1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

- A generator of \mathbb{F}_q^* .
- $\blacktriangleright \psi := A$ multiplicative character of order ℓ of μ_{ℓ} .

 \blacktriangleright $\zeta :=$ an ℓ -th root of unity in $\mathbb C$

$$
1 + \zeta + \zeta^2 + \dots + \zeta^{\ell - 1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

$$
\blacktriangleright \alpha = A \text{ generator of } \mathbb{F}_q^*.
$$

- $\blacktriangleright \psi := A$ multiplicative character of order ℓ of μ_{ℓ} .
- $\triangleright \omega = A$ primitive ℓ -th root of unity in \mathbb{C} .

 \triangleright $\zeta :=$ an ℓ -th root of unity in $\mathbb C$

$$
1 + \zeta + \zeta^2 + \dots + \zeta^{\ell - 1} = \begin{cases} 0 & \text{if } \zeta \neq 1 \\ \ell & \text{if } \zeta = 1. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

$$
\blacktriangleright \alpha = A \text{ generator of } \mathbb{F}_q^*.
$$

- $\blacktriangleright \psi := A$ multiplicative character of order ℓ of μ_{ℓ} .
- $\triangleright \omega = A$ primitive ℓ -th root of unity in \mathbb{C} .
- \blacktriangleright Define $\psi(\alpha^s) = \omega$, and extend it with $\psi(0) = 0$.

Detecting Permutations of μ_{ℓ}

Detecting Permutations of μ_{ℓ}

 \blacktriangleright For any permutation $\sigma \in \mathcal{S}_\ell$, and any $\beta_1, \cdots, \beta_\ell \in \mu_\ell$, we define

$$
P_{\sigma}(\beta_1,\ldots,\beta_\ell)=\prod_{i=1}^\ell\left(\sum_{j=0}^{\ell-1}\left(\psi(\beta_i)\psi(\alpha^s)^{-\sigma(i)}\right)^j\right).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Detecting Permutations of μ_{ℓ}

 \blacktriangleright For any permutation $\sigma \in \mathcal{S}_\ell$, and any $\beta_1, \cdots, \beta_\ell \in \mu_\ell$, we define

$$
P_{\sigma}(\beta_1,\ldots,\beta_\ell)=\prod_{i=1}^\ell\left(\sum_{j=0}^{\ell-1}\left(\psi(\beta_i)\psi(\alpha^s)^{-\sigma(i)}\right)^j\right).
$$

 $\blacktriangleright \{\beta_1,\ldots,\beta_\ell\} = \mu_\ell$ if and only if

there exists a unique $\sigma \in S_\ell$ such that $\; P_\sigma(\beta_1, \ldots, \beta_\ell) = \ell^\ell.$

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X 9 Q @

$$
\blacktriangleright g^{\bar{a}}(x) = x^r(x^{e_m s} + a_1 x^{e_{m-1}s} + \cdots + a_{m-1} x^{e_1 s} + a_m).
$$

$$
\blacktriangleright g^{\bar{a}}(x) = x^r(x^{e_m s} + a_1 x^{e_{m-1}s} + \cdots + a_{m-1} x^{e_1 s} + a_m).
$$

 \blacktriangleright The polynomial $g^{\bar{a}}$ permutes \mathbb{F}_q if and only if the following two conditions are satisfied: (i) $\alpha^{i e_m s} + a_1 \alpha^{i e_{m-1} s} + \cdots + a_{m-1} \alpha^{i e_1 s} + a_m \neq 0$, for each $i = 1, \ldots, \ell$: (ii) $g^{\bar{a}}(\alpha^{i})^{s} \neq g^{\bar{a}}(\alpha^{j})^{s}$, for $1 \leq i < j \leq \ell$.

AD A REAKEN E VAN

$$
\blacktriangleright g^{\bar{a}}(x) = x^r(x^{e_m s} + a_1 x^{e_{m-1}s} + \cdots + a_{m-1} x^{e_1 s} + a_m).
$$

 \blacktriangleright The polynomial $g^{\bar{a}}$ permutes \mathbb{F}_q if and only if the following two conditions are satisfied: (i) $\alpha^{i e_m s} + a_1 \alpha^{i e_{m-1} s} + \cdots + a_{m-1} \alpha^{i e_1 s} + a_m \neq 0$, for each $i = 1, \ldots, \ell;$ (ii) $g^{\bar{a}}(\alpha^{i})^{s} \neq g^{\bar{a}}(\alpha^{j})^{s}$, for $1 \leq i < j \leq \ell$. **D**

$$
N_{r,\bar{e}}^m(\ell,q) = \frac{1}{\ell^{\ell}} \sum_{\substack{\bar{a} \in (\mathbb{F}_q^*)^m \\ \bar{a} \text{ satisfies (i)}}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(g^{\bar{a}}(\alpha^1)^s, \ldots, g^{\bar{a}}(\alpha^{\ell})^s\right).
$$

AD A REAKEN E VAN

The Main Term

K ロ > K 레 > K 할 > K 할 > 1 를 > 1) 의 Q Q

The Main Term

I

$\mathcal{N}^m_{r,\overline{e}}(\ell,q) = \frac{1}{\ell^\ell} \quad \sum_{\tau \in \mathbb{C}^m}$ $\bar{a} \in (\mathbb{F}_q^*)^m$ \overline{a} satisfies (i) \sum $\sigma{\in}{\mathcal S}_\ell$ $P_{\sigma}\left({\displaystyle {\rm g}^{\bar{\mathsf{a}}}(\alpha^1)^{\mathsf{s}},\ldots,{\rm g}^{\bar{\mathsf{a}}}(\alpha^{\ell})^{\mathsf{s}}}\right).$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The Main Term

I

I

$\mathcal{N}^m_{r,\overline{e}}(\ell,q) = \frac{1}{\ell^\ell} \quad \sum_{\tau \in \mathbb{C}^m}$ $\bar{a} \in (\mathbb{F}_q^*)^m$ \bar{a} satisfies (i) \sum $\sigma{\in}{\mathcal S}_\ell$ $P_{\sigma}\left({\displaystyle {\rm g}^{\bar{\mathsf{a}}}(\alpha^1)^{\mathsf{s}},\ldots,{\rm g}^{\bar{\mathsf{a}}}(\alpha^{\ell})^{\mathsf{s}}}\right).$

Main Term =
$$
\frac{\ell!}{\ell^{\ell}}q^m.
$$

K ロ K K (메 K K E K K E K H A K K K G K K H

I

Error Term $= \qquad \sum \qquad \Psi\left(t \, \, \varphi(a_1, a_2, \cdots, a_m)\right)\right),$ $(a_1,\dots,a_m) \in (\mathbb{F}_q)^m$

where $t\in\mathbb{F}_q$, $\Psi(\alpha)=\psi(\alpha^s)$ is a multiplicative character of \mathbb{F}_q , and $\varphi(a_1, a_2, \cdots, a_m) \in \mathbb{F}_q[a_1, \cdots, a_m].$

AD A REAKEN E VAN

K ロ K K (메 K K E K K E K H A K K K G K K H

$$
\rho = \alpha^{s}
$$

\n
$$
\sum_{(a_1,\dots,a_m)\in(\mathbb{F}_q)^m} \Psi\left(t\prod_{i=1}^{\ell} \left(\beta^{e_m i} + a_1 \beta^{e_{m-1}i} + \dots + a_{m-1} \beta^{e_1 i} + a_m\right)^{k_i}\right)
$$

K ロ K K (메 K K E K K E K H A K K K G K K H

 \blacktriangleright It follows from Deligne's work on the Weil conjectures for algebraic varieties over finite field that if $\varphi(a_1, \dots, a_m)$ satisfies GOOD conditions

$$
\sum_{(a_1,\cdots,a_m)\in(\mathbb{F}_q)^m}\Psi(t\;\varphi(a_1,a_2,\cdots,a_m))\ll q^{\frac{m}{2}}.
$$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

► (Katz, 2002) Let $m \geq 1$ and let $\varphi = \varphi(a_1, \dots, a_m) \in \mathbb{F}_q[a_1, \dots, a_m]$ be a polynomial of degree $d.$ We write $\varphi=\varphi_{\bm{d}}+\varphi_{\bm{d}-1}++\varphi_0$, where each φ_j is homogeneous of degree j. Then if $(d, q) = 1$ and if $\varphi_d = 0$ defines a smooth, degree d hypersurface in $\mathbb{P}^{m-1}(\mathbb{F}_q)$, $\varphi=0$ is a smooth hypersurface in $\mathbb{A}^m(\mathbb{F}_q)$, and if Ψ^d is non-trivial then

$$
\sum_{(a_1,\cdots,a_m)\in (\mathbb{F}_q)^m}\Psi\left(\varphi(a_1,a_2,\cdots,a_m)\right)\leq (d-1)q^{\frac{m}{2}}.
$$

4 D > 4 P > 4 E > 4 E > E + 9 Q O

$$
\sum_{(a_1,\cdots,a_m)\in(\mathbb{F}_q)^m}\Psi\left(t\prod_{i=1}^\ell\left(\beta^{e_m i}+a_1\beta^{e_{m-1}i}+\cdots+a_{m-1}\beta^{e_1i}+a_m\right)^{k_i}\right)
$$

► (Weil, 1948) Let $f(x) \in \mathbb{F}_q[x]$ be a monic polynomial of positive degree that is not an ℓ -th power of a polynomial. Let d be the number of distinct roots of $f(x)$ in its splitting field over \mathbb{F}_q . Then for every $t \in \mathbb{F}_q$ we have

$$
\left|\sum_{a\in\mathbb{F}_q}\Psi(t\;f(a))\right|\leq (d-1)q^{\frac{1}{2}}.
$$

AD A REAKEN E VAN

$$
\sum_{a_m \in (\mathbb{F}_q)} \Psi\left(t \prod_{i=1}^\ell \left(\beta^{e_m i} + a_1 \beta^{e_{m-1} i} + \cdots + a_{m-1} \beta^{e_1 i} + a_m\right)^{k_i}\right).
$$

$$
\sum_{(a_1,\dots,a_m)\in(\mathbb{F}_q)^m}\Psi(t \varphi(a_1,a_2,\dots,a_m)))
$$
\n
$$
=\sum_{(a_1,\dots,a_{m-1})\in(\mathbb{F}_q)^{m-1}}\sum_{a\in\mathbb{F}_q}\Psi(t \varphi(a_1,a_2,\dots,a_{m-1},a))
$$
\n
$$
=\sum_{\text{Good}}+\sum_{\text{Bad}}\ll q^{m-\frac{1}{2}}.
$$

メロトメタトメミトメミト (毛) のんぴ

 \blacktriangleright

$$
\sum_{(a_1,\dots,a_m)\in(\mathbb{F}_q)^m}\Psi(t\varphi(a_1,a_2,\dots,a_m)))
$$
\n
$$
=\sum_{(a_1,\dots,a_{m-1})\in(\mathbb{F}_q)^{m-1}}\sum_{a\in\mathbb{F}_q}\Psi(t\varphi(a_1,a_2,\dots,a_{m-1},a))
$$
\n
$$
=\sum_{\text{Good}}+\sum_{\text{Bad}}\ll q^{m-\frac{1}{2}}.
$$

I

 \blacktriangleright

$$
\left|N_{r,\overline{e}}^m(\ell,q)-\frac{\ell!}{\ell^{\ell}}q^m\right|<\ell\cdot\ell!q^{m-\frac{1}{2}}.
$$

イロトメタトメミトメミト (毛) の女々