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Why pseudorandom and not ’truly’ random

sequences?
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Pseudorandom Sequences

Sequences which are generated by a deterministic algorithm and ’look
random’ are called pseudorandom.

Desirable ’randomness properties’ depend on the application!

cryptography: unpredictability
numerical integration (quasi-Monte Carlo): uniform distribution
radar: distinction from reflected signal
gambling: a good lawyer
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Linear Complexity

The linear complexity L(sn) of a periodic sequence (sn) over a field F
is the smallest positive integer L such that there are constants
c0, . . . , cL−1 ∈ F with

sn+L = cL−1sn+L−1 + . . . + c0sn, n ≥ 0.

For a positive integer N the Nth linear complexity L(sn,N) of a
sequence (sn) over F is the smallest positive integer L such that there
are constants c0, . . . , cL−1 ∈ F satisfying

sn+L = cL−1sn+L−1 + . . . + c0sn,

0 ≤ n ≤ N − L− 1.
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Cryptographic Background

A low Nth linear complexity has turned out to be undesirable for
cryptographical applications as stream ciphers.

Example (Stream Cipher)

We consider a message m0,m1, . . . represented as a sequence over F.
In a stream cipher each message symbol mj is enciphered with an
element xj of another sequence x0, x1, . . . over F, the key stream, by

cj = mj + xj .

The cipher text c0, c1, . . . can be deciphered by subtracting the key
stream

mj = cj − xj .
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Relation to Quasi-Monte Carlo Methods

Sequences with low linear complexity are shown to be unsuitable for
some applications using quasi-Monte Carlo methods as well. The
following example describes a typical quasi-Monte Carlo application.

Example (Quasi-Monte-Carlo Calculation of π)

1 Choose N pairs of a sequence (xn) in [0, 1)

(xn, xn+1) ∈ [0, 1)2, n = 0, . . . ,N − 1.

2 Count the number K of pairs (xn, xn+1) in the unit circle.

3 Approximate π by 4K
N

.

A.Winterhof (RICAM (Linz)) Linear Complexity Carleton University 2010 5 / 45



 

A.Winterhof (RICAM (Linz)) Linear Complexity Carleton University 2010 6 / 45



Marsaglia’s Lattice test, 1972

(ηn) T-periodic sequence over Fp

For s ≥ 1 we say that (ηn) passes the s-dimensional lattice test if the
vectors {un − u0 : 1 ≤ n < T} span Fs

p, where

un = (ηn, ηn+1, . . . , ηn+s−1), 0 ≤ n < T .

S(ηn) = max
{

s : 〈un − u0, 1 ≤ n < T 〉 = Fs
p

}
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s = 2:
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s = 3:
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Niederreiter/W., 2002: L(ηn) = S(ηn) or = S(ηn) + 1

Dorfer/W., 2003: Lattice test for parts of the period, S(ηn,N)
We have either

S(ηn,N) = min(L(ηn,N),N + 1− L(ηn,N))

or
S(ηn,N) = min(L(ηn,N),N + 1− L(ηn,N))− 1.
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Relation to Information and Coding Theory

The Kolmogorov complexity of a sequence over F is the length of a
shortest Turing machine that generates it.

Beth/Dai, 1989: F = F2: Linear complexity and Kolmogorov
complexity are the same for almost all binary sequences.

In general there is no algorithm for calculating the Kolmogorov
complexity.
In contrast we have the Berlekamp-Massey Algorithm for calculating
the linear complexity.
This algorithm stems from coding theory.
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A Consequence of the Berlekamp-Massey

Algorithm

Theorem
If L(sn,N) > N/2, then we have

L(sn,N + 1) = L(sn,N).

If L(sn,N) ≤ N/2, then we have either

L(sn,N + 1) = L(sn,N)

or
L(sn,N + 1) = N + 1− L(sn,N).
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The Expected Value

F = Fq

Theorem
The expected value for L(sn,N) is{

N
2

+ q
(q+1)2

− q−N N(q+1)+q
(q+1)2

for even N ,
N
2

+ q2+1
2(q+1)2

− q−N N(q+1)+q
(q+1)2

for odd N .
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Lower Bounds

In case of a p-periodic sequence (ξn) over Fp, where p is a prime,
linear complexity is related to the degree of the polynomial
g(X ) ∈ Fp[X ] representing the sequence (ξn), i.e., g(X ) is the
unique polynomial which satisfies deg g ≤ p − 1 and

ξn = g(n), 0 ≤ n ≤ p − 1.

These sequences are called explicit nonlinear congruential generators
and we have

L(ξn) = deg g + 1.
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High linear complexity but low Nth linear

complexity

Example:
ξn = 1− (n + 1)p−1, 0 ≤ n ≤ p − 1

(ξ0, ξ1, . . . , ξp−2, ξp−1) = (0, 0, . . . , 0, 1)

L(ξn) = p

L(ξn,N) = 0, 1 ≤ N ≤ p − 1

highly predictable
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The explicit inversive congruential generator (zn) is produced by the
relation

zn = (an + b)p−2, n = 0, . . . , p − 1, zn+p = zn, n ≥ 0,

with a, b ∈ Fp, a 6= 0, and p ≥ 5. We have

L(zn,N) ≥


(N − 1)/3, 1 ≤ N ≤ (3p − 7)/2,
N − p + 2, (3p − 5)/2 ≤ N ≤ 2p − 3,
p − 1, N ≥ 2p − 2.
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cL = −1, N ≤ p

L∑
l=0

clzn+l = 0, 0 ≤ n ≤ N − L− 1

a(n + l) + b 6= 0, 0 ≤ l ≤ L:

L∑
l=0

cl(a(n + l) + b)−1 = 0

F (X ) =
L∑

l=0

cl

L∏
j=0
j 6=L

(a(X + j) + b)

has at least N − L− (L + 1) zeros and degree at most L.

F (−a−1b − L) = cL

L−1∏
j=0

(a(j − L)) 6= 0

N − 2L− 1 ≤ L and thus L ≥ (N − 1)/3
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zn = (an + b)p−2 is still highly predictable since inversion is cheap
and a = z−1

n+1 − z−1
n for all but two n.

Open problem: Define a modified linear complexity with inversions
and analyze it.
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Let p > 2 be a prime. The Legendre-sequence (ln) is defined by

ln =

{
1,

(
n
p

)
= −1,

0, otherwise,
n ≥ 0,

where
(

.
p

)
is the Legendre-symbol.

Theorem
The linear complexity of the Legendre sequence is

L(ln) =


(p − 1)/2, p ≡ 1 mod 8,

p, p ≡ 3 mod 8,
p − 1, p ≡ 5 mod 8,

(p + 1)/2, p ≡ 7 mod 8.
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Theorem
The Nth linear complexity of the Legendre sequence satisfies

L(ln,N) >
min{N , p}

1 + p1/2(1 + log p)
− 1, N ≥ 1.
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Weil:
Let f (X ) ∈ Fp[X ] a (monic) polynomial which is not a square and
a ∈ F∗p then we have∣∣∣∣∣∣

∑
x∈Fp

(
af (x)

p

)∣∣∣∣∣∣ ≤ (deg(f )− 1)p1/2.

L∑
k=0

ck ln+k = 0 ∈ F2, 0 ≤ n ≤ N − L− 1, (cL = 1)

(−1)ln =

(
n

p

)
, n 6= 0,

(−1)
PL

k=0 ck ln+k =

(∏L
l=0(n + l)cl

p

)
= 1

for at least min{N , p} − (L + 1) different n
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Summing over n:

min{N , p} − (L + 1) ≤
N−1∑
n=0

(∏L
l=0(n + l)cl

p

)

< (L + 1)p1/2(1 + log p)
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Relation to Wireless Communication

The correlation measure of order k of a binary sequence (sn) is
introduced as

Ck(sn) = max
M,D

∣∣∣∣∣
M∑

n=1

(−1)sn+d1 · · · (−1)sn+dk

∣∣∣∣∣ , k ≥ 1,

where the maximum is taken over all D = (d1, d2, . . . , dk) with
non-negative integers d1 < d2 < · · · < dk and M such that
M − 1 + dk ≤ T − 1.

L(sn,N) ≥ N − max
1≤k≤L(sn,N)+1

Ck(sn), 2 ≤ N ≤ t − 1.
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Examples.
a) bn = 0, 0 ≤ n ≤ t − 2, bt−1 = 1
L(bn) = t, one change L(b′n) = 0

b) cn+4 = cn, n ≥ 0, with c0 = c1 = c2 = 1, c3 = 0
over F2: L(cn) = 4
over F3: L(cn) = 3 since cn+3 = 2cn+2 + 2cn+1 + 2cn, n ≥ 0

Desirable:
1. high linear complexity even if we change a few elements
2. high linear complexity over different fields
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Let (sn) be a sequence over F, with period t. The k-error linear
complexity Lk(sn) of (sn) is defined as

Lk(sn) = min
(yn)

L(yn),

where the minimum is taken over all t-periodic sequences (yn)
over F, for which the Hamming distance of the vectors
(s0, s1, . . . , st−1) and (y0, y1, . . . , yt−1) is at most k .

Theorem
Let Lk(ln) denote the k-error linear complexity over Fp of the
Legendre sequence (ln). Then,

Lk(ln) =


p, k = 0,

(p + 1)/2, 1 ≤ k ≤ (p − 3)/2,
0, k ≥ (p − 1)/2.
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ln = 2−1(np−1 − n(p−1)/2) ∈ Fp, n ≥ 0

ln = 2−1(1− n(p−1)/2) =: h(n), n 6= 0

ln = f (n) implies L(ln) = deg(f ) + 1
Let (yn) be obtained from (ln) by at most k changes.
Case I: (yn) = (ln): L(yn) = p
Case II: (yn) = h(n): L(yn) = (p + 1)/2
Case III: yn = g(n), g(X ) 6= h(X )

deg(g − h) ≥ p − k − 1 ≥ (p + 1)/2 if k ≤ (p − 3)/2
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Shparlinski/W.,2006: linear complexity over Fk , k prime:

L(ln) ≥ 1

2 log k
min

{
p

p1/2 log p + 2
− 1, 2k − 1

}
.
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Open Problem

Find more sequences with high (Nth, k-error) linear complexity.

For example, study recursive sequences.
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Linear Pseudorandom Number Generators

Fq finite field of q elements, a, b, x0 ∈ Fq, a 6= 0

xn+1 = axn + b, n ≥ 0

q = p prime, Fp = {0, 1, . . . , p − 1}: yn = xn/p ∈ [0, 1), n ≥ 0

Nice features:
– long period can be easily obtained
– uniform distribution in dimension 1
flaws:
– predictable (L(xn) ≤ 2)
– coarse structure
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Nonlinear Pseudorandom Numbers

f ∈ Fq[X ], 2 ≤ deg(f ) ≤ q − 1, x0 ∈ Fq

xn+1 = f (xn), n ≥ 0

(purely) periodic with period t ≤ q
q = p prime: yn = xn/p ∈ [0, 1)
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Lower Bound on the Linear Complexity Profile

Gutierrez/Shparlinski/W., 2003:
The linear complexity profile of a nonlinear sequence (xn) defined by

xn+1 = f (xn), n = 0, 1, . . . ,

with a polynomial f ∈ Fq[X ] of degree d ≥ 2, purely periodic with
period t, satisfies

L(xn,N) ≥ min {dlogd(N − blogd Nc)e, dlogd te} .
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Proof.
F0(X ) := X , Fi(X ) := Fi−1(f (X )), i ≥ 1
deg(Fi) = d i , xn+j = Fj(xn)
xn+L = aL−1xn+L−1 + . . . + a0xn,
0 ≤ n ≤ N − L− 1

F (X ) := −FL(X ) + aL−1FL−1(X ) + . . . + a0F0(X )

has degree dL and at least min {N − L, t} zeros, namely, xn with
0 ≤ n ≤ min{N − L− 1, t − 1}.

dL ≥ min {N − L, t}

2
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Inversive Generators

a, b, y0 ∈ Fq, a 6= 0

yn+1 = ayq−2
n + b =

{
ay−1

n + b, yn 6= 0,
b, yn = 0.

Gutierrez/Shparlinski/W., 2003:

L(yn,N) ≥ min

{⌈
N − 1

3

⌉
,

⌈
t − 1

2

⌉}

Reason for better result:
f (X ) = bX+a

X
, Fj(X ) =

ajX+bj

cjX+d
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Dickson and Power Generator

The Dickson polynomial De(X , a) ∈ Fq[X ] is defined by the following
recurrence relation

De(X , a) = XDe−1(X , a)− aDe−2(X , a), e = 2, 3, . . . ,

with initial values

D0(X , a) = 2, D1(X , a) = X ,

where a ∈ Fq. Obviously, the degree of De is e. Moreover, if
a ∈ {0, 1} then we have De(Df (X , a), a) = Def (X , a).
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a = 0:
De(X , 0) = X e , e ≥ 2

pn+1 = pe
n, n ≥ 0

power generator
Griffin/Shparlinski, 2000: (q = p prime)

L(pn,N) ≥ min

{
N2

4(p − 1)
,

t2

p − 1

}
, N ≥ 1.

Reason for better result: Fk(X ) = X ek mod p−1
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a = 1:

De(x + x−1, 1) = xe + x−e , x ∈ Fq2

un+1 = De(un, 1), n ≥ 0,

with some initial value u0 and e ≥ 2.
Dickson generator

Aly/W., 2006:

L(un,N) ≥ min{N2, 4t2}
16(p + 1)

− (p + 1)1/2
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Redéi generator

Suppose that
r(X ) = X 2 − αX − β ∈ Fp[X ]

is an irreducible quadratic polynomial with the two different roots ξ
and ζ = ξp in Fp2 . Then any polynomial b(X ) ∈ Fp2[X ] can uniquely
be written in the form b(X ) = g(X ) + h(X )ξ with
g(X ), h(X ) ∈ Fp[X ]. We consider the elements

(X + ξ)e = ge(X ) + he(X )ξ.

e is the degree of the polynomial ge(X ), and he(X ) has degree at
most e − 1. The Rédei function fe(X ) of degree e is then given by

fe(X ) =
ge(X )

he(X )
.
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un+1 = fe(un), n ≥ 0,

with a Rédei permutation fe(X ) and some initial element u0 ∈ Fp.

Meidl/W., 2007:

L(un,N) ≥ min{N2, 4t2}
20(p + 1)3/2

, N ≥ 2.
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p-Weight Degree

n nonnegative integer
p-weight of n:

σp

(
l∑

i=0

nip
i

)
=

l∑
i=0

ni , 0 ≤ ni < p.

0 ≤ e1 < e2 < · · · < el integers, q = pr , f (X ) =
∑l

i=1 γiX
ei ∈ Fq[X ]

nonzero polynomial over Fq with γi 6= 0, i = 1, . . . , l
p-weight degree of f :

wp(f ) = max{σp(ei) : 1 ≤ i ≤ l}.

wp(f ) ≤ deg(f )
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If g(X ) ∈ Fq[X ] and {β1, . . . , βr} is a fixed ordered Fp-basis of Fq,
we define

G (X1, . . . ,Xr ) = Tr(g(X1β1 + . . . + Xrβr )),

where Tr(X ) = X + X p + . . . + X pr−1
is the absolute trace function

of Fq. Then the transformed polynomial GR(X1, . . . ,Xr ) of g(X ) is
the unique polynomial with all local degrees smaller than p such that

GR(X1, . . . ,Xr ) ≡ G (X1, . . . ,Xr ) mod (X p
1 − X1, . . . ,X

p
r − Xr ).

The interest of this construction relies on the fact that, under certain
assumptions, the total degree of GR(X1, . . . ,Xr ) coincides with the
p-weight degree of g(X ).
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f (X ) = αX d + f̃ (X ) ∈ Fq[X ] with α 6= 0, wp(f̃ ) < σp(d). (1)

If the sequence (xn) given by xn+1 = f (xn), n ≥ 0, with a polynomial
f (X ) ∈ Fq[X ] of the form (1) satisfying

gcd

(
d ,

q − 1

p − 1

)
≤ σp(d)r/2,

with p-weight degree w = σp(d) > 1, is purely periodic with period
t, then for N ≥ 1,

L(xn,N) ≥ min {log(N/pr−1 − log(N/pr−1)/ log w), log(t/pr−1)}
log w

.

(Ibeas/W., 2010)
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Polynomial Systems
Let {F1, . . . ,Fr} be a system of r ≥ 2 polynomials
Fi ∈ Fq[Xi , . . . ,Xm], i = 1, . . . , r , defined in the following way:

F1(X1, . . . ,Xr ) = X1G1(X2, . . . ,Xr ) + H1(X2, . . . ,Xr ),

F2(X1, . . . ,Xr ) = X2G2(X3, . . . ,Xr ) + H2(X3, . . . ,Xr ),

. . .

Fr−1(X1, . . . ,Xr ) = Xr−1Gr−1(Xr ) + Hr−1(Xr ),

Fr (X1, . . . ,Xr ) = grXr + hr .

Using the following vector notation

~F = (F1(X1, . . . ,Xr ), . . . ,Fr (X1, . . . ,Xr )),

we define the following vector sequence

~wn+1 = ~F (~wn), n = 0, 1, . . . .
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Identifying the r dimensional vectors over Fq with elements of Fqr we
get

L (~wn,N)� N1/(r−1)

q
, 1 ≤ N ≤ t.

(Ostafe, Shparlinski, W., 2010)
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Open Problem

Find more good nonlinear generators.
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Thank you for your attention.
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