Some Basic Results Concerning Permutation Polynomials over Finite Fields

Gary L. Mullen

Penn State University

mullen@math.psu.edu

July 23, 2010

 F_q finite field order $q = p^e$

value set of $f \in F_q[x]$, $V_f = \{f(a) | a \in F_q\}$

f is Perm. Poly. (PP) if $|V_f| = q$

1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$

1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$

2 q! total; group under comp. mod $x^q - x$ iso. S_q , sym. group

- 1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$
- 2 q! total; group under comp. mod $x^q x$ iso. S_q , sym. group
- 3 Normalized if monic, f(0) = 0, and coeff. of x^{n-1} is 0 if deg. n not divisible by p

- 1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$
- **2** q! total; group under comp. mod $x^q x$ iso. S_q , sym. group
- 3 Normalized if monic, f(0) = 0, and coeff. of x^{n-1} is 0 if deg. n not divisible by p
- 4 L/N p 352 list of all nor. PPs of deg. < 6

- 1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$
- **2** q! total; group under comp. mod $x^q x$ iso. S_q , sym. group
- 3 Normalized if monic, f(0) = 0, and coeff. of x^{n-1} is 0 if deg. n not divisible by p
- 4 L/N p 352 list of all nor. PPs of deg. < 6
- 5 x^n PP on F_q iff (n, q 1) = 1

- 1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$
- **2** q! total; group under comp. mod $x^q x$ iso. S_q , sym. group
- 3 Normalized if monic, f(0) = 0, and coeff. of x^{n-1} is 0 if deg. n not divisible by p
- 4 L/N p 352 list of all nor. PPs of deg. < 6
- 5 x^n PP on F_q iff (n, q-1) = 1
- **6** Linearized polys. $f(x) = \sum a_i x^{p^i}$ PP iff $det(A_f) \neq 0$

- 1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$
- **2** q! total; group under comp. mod $x^q x$ iso. S_q , sym. group
- 3 Normalized if monic, f(0) = 0, and coeff. of x^{n-1} is 0 if deg. n not divisible by p
- 4 L/N p 352 list of all nor. PPs of deg. < 6
- 5 x^n PP on F_q iff (n, q-1) = 1
- **6** Linearized polys. $f(x) = \sum a_i x^{p^i}$ PP iff $det(A_f) \neq 0$
- 7 If q odd, $x^{(q+1)/2} + ax$ contains (q-3)/2 PPs

- 1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$
- **2** q! total; group under comp. mod $x^q x$ iso. S_q , sym. group
- 3 Normalized if monic, f(0) = 0, and coeff. of x^{n-1} is 0 if deg. n not divisible by p
- 4 L/N p 352 list of all nor. PPs of deg. < 6
- 5 x^n PP on F_q iff (n, q-1) = 1
- **6** Linearized polys. $f(x) = \sum a_i x^{p^i}$ PP iff $det(A_f) \neq 0$
- 7 If q odd, $x^{(q+1)/2} + ax$ contains (q-3)/2 PPs
- 8 $x^r(f(x^s))^{(q-1)/s}$ PPs and group structure

- 1 If f(x) is PP, so is af(x+b) + c for $a \neq 0, b, c \in F_q$
- **2** q! total; group under comp. mod $x^q x$ iso. S_q , sym. group
- 3 Normalized if monic, f(0) = 0, and coeff. of x^{n-1} is 0 if deg. n not divisible by p
- 4 L/N p 352 list of all nor. PPs of deg. < 6
- 5 x^n PP on F_q iff (n, q-1) = 1
- **6** Linearized polys. $f(x) = \sum a_i x^{p^i}$ PP iff $det(A_f) \neq 0$
- 7 If q odd, $x^{(q+1)/2} + ax$ contains (q-3)/2 PPs
- 8 $x^r(f(x^s))^{(q-1)/s}$ PPs and group structure
- 9 M, Handbook Combin. Designs, Sec. Ed., (CRC 07), 572-574

$$|V_{x^n}| = 1 + \frac{q-1}{(n,q-1)}$$

- $|V_{x^n}| = 1 + \frac{q-1}{(n,q-1)}$
- **2** Das/M (Fq 6, Springer, 02) $|V_f| \ge L_f + 2$ where L_f is max # 0s in any col. of matrix A_f

- $|V_{x^n}| = 1 + \frac{q-1}{(n,q-1)}$
- **2** Das/M (Fq 6, Springer, 02) $|V_f| \ge L_f + 2$ where L_f is max # 0s in any col. of matrix A_f
- **3 Mills** (Pac. J. Math. 64) If f monic deg. $n < \sqrt{q}$ with (n,q) = 1and $|V_f| = \lfloor (q-1)/n \rfloor + 1$, then n|(q-1) and $f(x) = (x+b)^n + c$

Dickson Polynomials

Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

(i) Let $T_n(x) = \cos (n \arccos x)$ be Chebyshev poly. first kind.

Then over C, $D_n(2x, 1) = 2T_n(x)$.

(ii) Recurrence: $D_n(x,0) = x^n$

$$\begin{split} D_{n+2}(x,a) &= x D_{n+1}(x,a) - a D_n(x,a), n \geq 0 \text{ with } \\ D_0(x,a) &= 2, D_1(x,a) = x \end{split}$$

(Funct. eq.)
$$D_n(x,a) = y^n + rac{a^n}{y^n}$$
 with $x = y + a/y$, $y \in F_{q^2}$

(Funct. eq.)
$$D_n(x,a) = y^n + rac{a^n}{y^n}$$
 with $x = y + a/y$, $y \in F_{q^2}$

Theorem

Dickson (Ann Math 1897) If $a \neq 0 \in F_q$, $D_n(x, a)$ PP on F_q iff $(n, q^2 - 1) = 1$.

(Funct. eq.)
$$D_n(x,a) = y^n + \frac{a^n}{y^n}$$
 with $x = y + a/y$, $y \in F_{q^2}$

Theorem

Dickson (Ann Math 1897) If $a \neq 0 \in F_q$, $D_n(x, a)$ PP on F_q iff $(n, q^2 - 1) = 1$.

Theorem

Chou/Gomez-Calderon/M (JNT 88) For $a \neq 0 \in F_q$

$$|V_{D_n(x,a)}| = \frac{q-1}{2(n,q-1)} + \frac{q+1}{2(n,q+1)} + \alpha$$

 $\alpha = 0, 1/2, 1$

(i) x^n PP on F_p for ∞ ly many primes p iff (n, 2) = 1(ii) If $a \neq 0$, $D_n(x, a)$ PP on F_p for ∞ ly many primes p iff (n, 6) = 1.

(i) x^n PP on F_p for ∞ ly many primes p iff (n, 2) = 1(ii) If $a \neq 0$, $D_n(x, a)$ PP on F_p for ∞ ly many primes p iff (n, 6) = 1.

Conjecture

Schur (1922) If $f \in Z[x]$ and f PP on F_p for ∞ ly primes p, then f is a composition of $ax^k + b$ and DPs $D_n(x, a)$

Fried (Mich. Math. J. 70) Schur conj. true

Fried (Mich. Math. J. 70) Schur conj. true

Theorem

Turnwald (J. Austral. Math. Soc., 95) Schur conj. true, no complex. anal.

Fried (Mich. Math. J. 70) Schur conj. true

Theorem

Turnwald (J. Austral. Math. Soc., 95) Schur conj. true, no complex. anal.

See Lidl/M/Turnwald, "Dickson Polys.," 1993

Xiang-dong Hou/M/James Sellers/Joe Yucas (FFA 09)

Xiang-dong Hou/M/James Sellers/Joe Yucas (FFA 09)

Consider $D_n(x, a)$ but now fix x, and let a be the variable.

 $D_n(x,a)$ is a reversed Dickson poly. (RDP)

Xiang-dong Hou/M/James Sellers/Joe Yucas (FFA 09)

Consider $D_n(x, a)$ but now fix x, and let a be the variable.

 $D_n(x, a)$ is a reversed Dickson poly. (RDP)

Problem

When do RDPs yield PPs?

Xiang-dong Hou/M/James Sellers/Joe Yucas (FFA 09)

Consider $D_n(x, a)$ but now fix x, and let a be the variable.

 $D_n(x, a)$ is a reversed Dickson poly. (RDP)

Problem

When do RDPs yield PPs?

Hereafter, we consider RDPs as functions of \boldsymbol{x}

Consider $D_n(a, x)$ with $a \in F_q$ fixed

a = 0: If n is odd, $D_n(0, x) = 0$ is not PP

If n = 2k is even, q odd, $D_{2k}(0, x) = 2(-1)^k x^k$ is a PP on F_q iff (k, q - 1) = 1.

Funct. eq. implies

$$D_n(a,x) = a^n D_n\left(1,\frac{x}{a^2}\right).$$

Hence for $a \neq 0$, $D_n(a, x)$ is a PP on \mathbb{F}_q if and only if $D_n(1, x)$ is a PP on \mathbb{F}_q .

Suffices to consider the RDP $D_n(1,x)$. The ultimate question is for which n the poly. $D_n(1,x)$ is a PP on \mathbb{F}_q . This question, unlike the same question for Dickson polys. $D_n(x,a)$, does not seem to have an easy answer.

When are $D_{n_1}(1,x)$ and $D_{n_2}(1,x)$ equal as functions on F_{p^e} ?

When are $D_{n_1}(1,x)$ and $D_{n_2}(1,x)$ equal as functions on F_{p^e} ?

(i) If $n_1, n_2 > 0$ are integers such that $n_1 \equiv n_2 \pmod{p^{2e} - 1}$, then $D_{n_1}(1, x) = D_{n_2}(1, x)$ for all $x \in \mathbb{F}_q$.

(ii) If two positive integers n_1 and n_2 belong to the same *p*-cyclotomic coset modulo $p^{2e} - 1$, then $D_{n_1}(1, x)$ is a PP on \mathbb{F}_q if and only if $D_{n_2}(1, x)$ is a PP on \mathbb{F}_q .

For $n_1, n_2 \in \{0, 1, \ldots, p^{2e} - 1\}$, we say that $n_1 \sim n_2$ if $D_{n_1}(1, x) \equiv D_{n_2}(1, x) \pmod{x^{p^e} - x}$. The relation \sim is an eq. rel. whose eq. classes can be described:

Theorem

Let
$$p = 2$$
. Then the \sim -eq. classes of $\{0, 1, \dots, 2^{2e} - 1\}$ are
 $\{0\},\$
 $\{2^k : 0 \le k \le 2e - 1\},\$
 $\{(2^e + 1)2^k : 0 \le k \le e - 1\},\$
 $\{\alpha + \beta 2^e, \beta + \alpha 2^e\},\$
 $0 \le \alpha, \beta \le 2^e - 1,\$
 $\alpha + \beta 2^e \ne 0,\ 2^k \ (0 \le k \le 2e - 1),\$
 $(2^e + 1)2^k \ (0 \le k \le e - 1).$

Let p be an odd prime. Then the \sim -eq. classes of $\{0, 1, \ldots, p^{2e} - 1\}$ are

$$\begin{split} \{0\}, \\ \{p^k : 0 \le k \le 2e - 1\}, \\ \{\frac{p^{2e} - 1}{2} + p^k : 0 \le k \le 2e - 1\}, \\ \{\alpha + \beta p^e, \beta + \alpha p^e\}, \\ & 0 \le \alpha, \beta \le p^e - 1, \ \alpha + \beta p^e \ne 0, \\ & p^k, \frac{p^{2e} - 1}{2} + p^k, \ 0 \le k \le 2e - 1. \end{split}$$

 $f: F_q \to F_q$ is called almost perfect nonlinear (APN) if for each $a \in F_q^*$ and $b \in F_q$, the equation f(x+a) - f(x) = b has at most two sols. In F_q . $f: F_q \to F_q$ is called almost perfect nonlinear (APN) if for each $a \in F_q^*$ and $b \in F_q$, the equation f(x+a) - f(x) = b has at most two sols. in F_q .

 x^n is an APN fcn. on F_q iff for each $b\in F_q$, the eq. $(x+1)^n-x^n=b$ has at most two sols. in $F_q.$

 $f: F_q \to F_q$ is called almost perfect nonlinear (APN) if for each $a \in F_q^*$ and $b \in F_q$, the equation f(x+a) - f(x) = b has at most two sols. in F_q .

 x^n is an APN fcn. on F_q iff for each $b \in F_q$, the eq. $(x+1)^n - x^n = b$ has at most two sols. in F_q .

Theorem

(i) x^n is an APN func. on $F_{2^{2e}} \Rightarrow D_n(1,x)$ is a PP on $F_{2^e} \Rightarrow x^n$ is an APN function on F_{2^e} .

 $f: F_q \to F_q$ is called almost perfect nonlinear (APN) if for each $a \in F_q^*$ and $b \in F_q$, the equation f(x+a) - f(x) = b has at most two sols. in F_q .

 x^n is an APN fcn. on F_q iff for each $b \in F_q$, the eq. $(x+1)^n - x^n = b$ has at most two sols. in F_q .

Theorem

(i) x^n is an APN func. on $F_{2^{2e}} \Rightarrow D_n(1,x)$ is a PP on $F_{2^e} \Rightarrow x^n$ is an APN function on F_{2^e} . (ii) Let p be an odd prime and n an odd pos. integer. Then x^n is an APN func. on $F_{p^{2e}} \Rightarrow D_n(1,x)$ is a PP on $F_{p^e} \Rightarrow x^n$ is an APN func. on F_{p^e}

The RDP $D_n(1,x)$ is a PP on F_{p^e} in each of the following cases:

I.
$$p = 2$$
.
(i) $n = 2^{k} + 1$, $(k, 2e) = 1$. (Gold)
(ii) $n = 2^{2k} - 2^{k} + 1$, $(k, 2e) = 1$. (Kasami)
(iii) $n = 2^{8k} + 2^{6k} + 2^{4k} + 2^{2k} - 1$, $e = 5k$. (Dobbertin)

The RDP $D_n(1,x)$ is a PP on F_{p^e} in each of the following cases:

I.
$$p = 2$$
.
(i) $n = 2^{k} + 1$, $(k, 2e) = 1$. (Gold)
(ii) $n = 2^{2k} - 2^{k} + 1$, $(k, 2e) = 1$. (Kasami)
(iii) $n = 2^{8k} + 2^{6k} + 2^{4k} + 2^{2k} - 1$, $e = 5k$. (Dobbertin)

Theorem

The RDP $D_n(1,x)$ is a PP on F_{p^e} in each of the following cases:

11.
$$p > 2$$
.

(i)
$$n = 3$$
, $p > 3$. $(D_3(1, x) = -3x + 1$, trivial)

(ii)
$$n = p^e + 2$$
, $p^e \equiv 1 \pmod{3}$.
(iii) $n = \frac{5^k + 1}{2}$, $p = 5$, $(k, 2e) = 1$.

Some examples of RDPPs not coming from APN fcns.

Example

(i) p = 2, e = 2, $n = 2^4 + 2^2 + 1 = 21$. Then $D_{21}(1, x)$ is a PP on F_{2^4} but x^{21} is not an APN function on F_{2^8} . (ii) Let p = 2, e = 3, $n = 2^2 + 1 = 5$. Then x^5 is an APN function on F_{2^3} (the Gold case) but $D_5(1, x) = x^2 + x + 1$ is not a PP on F_{2^3} . (iii) Let p > 3 be a prime such that $p \equiv -1 \pmod{3}$ and let e = 1, n = p + 2. Then $x^{p+2}(=x^3)$ is an APN function on F_p but $D_{p+2}(1, x)$ is not a PP on F_p .

Let p be an odd prime and $k \ge 0$. Then in $F_p[x]$,

$$D_{p^{k}+1}(1,x) = 2\left(-x + \frac{1}{4}\right)^{\frac{p^{k}+1}{2}} + \frac{1}{2}$$

$$D_{p^k+2}(1,x) = 2\left(-x + \frac{1}{4}\right)^{\frac{p^k+1}{2}} + \frac{1}{2} - x.$$

Let p be an odd prime and $k \ge 0$. Then in $F_p[x]$,

$$D_{p^{k}+1}(1,x) = 2\left(-x + \frac{1}{4}\right)^{\frac{p^{k}+1}{2}} + \frac{1}{2}$$

$$D_{p^{k}+2}(1,x) = 2\left(-x + \frac{1}{4}\right)^{\frac{p^{k}+1}{2}} + \frac{1}{2} - x.$$

Theorem

Let e be a positive even integer and let $n = 2^e + 2^k + 1$, where k is a positive integer such that (k - 1, e) = 1. Then $D_n(1, x)$ is a PP on F_{2^e} .

Let p be an odd prime and $k \ge 0$. Then in $F_p[x]$,

$$D_{p^{k}+1}(1,x) = 2\left(-x + \frac{1}{4}\right)^{\frac{p^{k}+1}{2}} + \frac{1}{2}$$

$$D_{p^{k}+2}(1,x) = 2\left(-x + \frac{1}{4}\right)^{\frac{p^{k}+1}{2}} + \frac{1}{2} - x.$$

Theorem

Let e be a positive even integer and let $n = 2^e + 2^k + 1$, where k is a positive integer such that (k - 1, e) = 1. Then $D_n(1, x)$ is a PP on F_{2^e} .

Theorem

Let k > 0 be an integer such that (k, 2e) = 1 and let $n = \frac{3^k + 1}{2}$. Then $D_n(1, x)$ is a PP on F_{3^e} .

Conjecture

Let p > 3 be a prime and let $1 \le n \le p^2 - 1$. Then $D_n(1, x)$ is a PP on F_p if and only if

$$n = \begin{cases} 2, 2p, 3, 3p, p+1, p+2, 2p+1 & \text{if } p \equiv 1 \pmod{12}, \\ 2, 2p, 3, 3p, p+1 & \text{if } p \equiv 5 \pmod{12}, \\ 2, 2p, 3, 3p, p+2, 2p+1 & \text{if } p \equiv 7 \pmod{12}, \\ 2, 2p, 3, 3p & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

p^e	n	cyclotomic coset mod $p^{2e} - 1$	reference
2	3	3	T?? I(i)
2^{2}	3	3, 6, 12, 9	T?? I(i)
2^{3}	3	3, 6, 12, 24, 48, 33	T?? I(i)
2^{4}	3	3, 6, 12, 24, 48, 96, 192, 129	T?? I(i)
	9	9, 18, 36, 72, 144, 33, 66, 132	T?? I(i)
	21	21, 42, 84, 168, 81, 162, 69, 138	Т?? С
	39	39, 78, 156, 57, 114, 228, 201, 147	T?? I(ii)
2^{5}	3	3, 6, 12, 24, 48, 96, 192, 384, 768, 513	T?? I(i)
	9	9, 18, 36, 72, 144, 288, 576, 129, 258, 516	T?? I(i)
	57	57, 114, 228, 456, 912, 801, 579, 135, 270, 540	T?? I(ii)
	213	213, 426, 825, 681, 339, 678, 333, 666, 309, 618	T?? I(iii)
2^{6}	3	3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 2049	T?? I(i)
	33	33, 66, 132, 264, 528, 1056, 2112, 129, 258, 516, 1032, 2064	T?? I(i)
	69	69, 138, 276, 552, 1104, 2208, 321, 642, 1284, 2568, 1041, 2082	T??
	159	159, 318, 636, 1272, 2544, 993, 1986, 3972, 3849, 3603, 3111, 2127	T?? I(ii)

Table: Reversed Dickson PPs $D_n(1,x)$ on \mathbb{F}_{p^e} , $p^e < 200$

p^e	n	cyclotomic coset mod $p^{2e}-1$	reference
27	3	3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 8193	
	9	9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 2049, 4098, 8196	T?? I(i)
	33	33, 66, 132, 264, 528, 1056, 2112, 4224, 8448, 513, 1026, 2052,	
		4104, 8208	T?? I(i)
	57	57, 114, 228, 456, 912, 1824, 3648, 7296, 14592, 12801, 9219, 2055,	
		4110, 8220	T?? I(ii)
	543	543, 1086, 2172, 4344, 8688, 993, 1986, 3972, 7944, 15888, 15393,	
		14403, 12423, 8463	T?? I(ii)
3	2	2, 6	C?? (i)
3^{2}	2	2, 6, 18, 54	C?? (i)
	10	10, 30	C?? (i)
	14	14, 42, 46, 58	Т??
3^{3}	2	2, 6, 18, 54, 162, 486	C?? (i)
	10	10, 30, 90, 270, 82, 246	C?? (i)
	122	122, 366, 370, 382, 418, 526	T??
3^{4}	2	2, 6, 18, 54, 162, 486, 1458, 4374	C?? (i)
	14	14, 42, 126, 378, 1134, 3402, 3646, 4378	T??
	82	82, 246, 738, 2214	C?? (i)
	86	86, 258, 774, 2322, 406, 1218, 3654, 4402	?
	122	122, 366, 1098, 3294, 3322, 3406, 3658, 4414	T??
	1094	1094, 3282, 3286, 3298, 3334, 3442, 3766, 4738	T??

Table: continued

p^e	n	cyclotomic coset mod $p^{2e} - 1$	reference
5	2	2, 10	C?? (i)
	3	3, 15	T?? II(i)
	6	6	C?? (i)
5^{2}	2	2, 10, 50, 250	C?? (i)
	3	3, 15, 75, 375	T?? II(i)
	26	26, 130	C?? (i)
	27	27, 135, 51, 255	T?? II(ii)
	63	63, 315, 327, 387	T?? II(iií)
5^{3}	2	2, 10, 50, 250, 1250, 6250	C?? (i)
	3	3, 15, 75, 375, 1875, 9375	T?? II(i)
	6	6, 30, 150, 750, 3750, 3126	C?? (i)
	26	26, 130, 650, 3250, 626, 3130	C?? (i)
	126	126, 630, 3150	C?? (i)
	1536	1563, 7815, 7827, 7887, 8187, 9687	T?? II(iii)
7	2	2, 14	C?? (i)
	3	3, 21	T?? II(i)
	9	9, 15	T?? II(ii)
7^{2}	2	2, 14, 98, 686	C?? (i)
	3	3, 21, 147, 1029	T?? II(i)
	50	50, 350	C?? (i)
	51	51, 357, 99, 693	T?? ÌĬ(ii)

Table: Reversed Dickson PPs $D_n(1,x)$ on $\mathbb{F}_{p^e}\text{, }p^e<200$

Gary L. Mullen (PSU)

Some Basic Results Concerning Permutation

p^e	n	cyclotomic coset mod $p^{2e} - 1$	reference
11	2	2, 22	C?? (i)
	3	3, 33	T?? ÌÌ(i)
11^{2}	2	2, 22, 242, 2662	C?? (i)
	3	3, 33, 363, 3993	T?? II(i)
	122	122, 1342	C?? (i)
	123	123,1353,243,2673	T?? II(i)
13	2	2, 26	C?? (i)
	3	3, 39	T?? II(i)
	14	14	C?? (i)
	15	15, 17	T?? II(ii)
13^{2}	2	2, 26, 338, 4394	C?? (i)
	3	3, 39, 507, 6591	T?? II(i)
	170	170, 2210	C?? (i)
	171	171, 2223, 339, 4407	T?? Ìl(ii)

Table: continued

$e = 1, \ 17 \le p \le 199$				
p	n	cyclotomic coset mod $p^2 - 1$	reference	
$p \equiv 1 \pmod{12}$	2	2, 2p	C?? (i)	
	3	3, 3p	T?? II(i)	
	p + 1	p + 1	C?? (i)	
	p + 2	$p + 2, \ 2p + 1$	T?? II(ii)	
$p \equiv 5 \pmod{12}$	2	2, 2p	C?? (i)	
	3	3, 3p	T?? II(i)	
	p + 1	p + 1	C?? (i)	
$p \equiv 7 \pmod{12}$	2	2, 2p	C?? (i)	
	3	3, 3p	T?? II(i)	
	p + 2	p + 2, 2p + 1	T?? II(ii)	
$p \equiv 11 \pmod{12}$	2	2, 2p	C?? (i)	
	3	3, 3p	T?? II(i)	

Open Questions Related to RDPPs

1. If $D_n(1,x)$ is a PP on $F_{2^e},$ where e is odd, is x^n an APN function on $F_{2^{2e}}?$

Open Questions Related to RDPPs

- 1. If $D_n(1,x)$ is a PP on F_{2^e} , where e is odd, is x^n an APN function on $F_{2^{2e}}$?
- 2. If $D_n(1,x)$ is a PP on F_{p^e} , where p>3 and n is odd, is x^n an APN function on $F_{p^{2e}}$?

Open Questions Related to RDPPs

- 1. If $D_n(1,x)$ is a PP on F_{2^e} , where e is odd, is x^n an APN function on $F_{2^{2e}}$?
- 2. If $D_n(1,x)$ is a PP on F_{p^e} , where p > 3 and n is odd, is x^n an APN function on $F_{p^{2e}}$?
- 3. Determine the value set of RDPs.

Problem

Why no other RDPPs over F_p other than those from conj.?

If $n \equiv 1,5 \pmod{6}$, then $D_n(1,0) = D_n(1,1) = 1$ so that $D_n(1,x)$ is not a PP on F_p .

Problem

Why no other RDPPs over F_p other than those from conj.?

If $n \equiv 1,5 \pmod{6}$, then $D_n(1,0) = D_n(1,1) = 1$ so that $D_n(1,x)$ is not a PP on F_p .

Problem

What happens over F_{p^e} , $e \geq 2$?

Hou (JCT, A, to appear) (i) If s even, $D_{3^e+5}(1,x)$ is PP on F_{3^e} .

Hou (JCT, A, to appear) (i) If s even, $D_{3^e+5}(1, x)$ is PP on F_{3^e} . (ii) New func. $g_{n,q}(x)$ defined by

$$\sum_{a \in F_q} (x+a)^n = g_{n,q}(x^q - x)$$

If
$$p = 2$$
, $g_{n,2}(x) = D_n(1,x)$

Hou gives conds. when $g_{n,p}$ is PP on F_p

21 / 26

Hou (preprint) Nec. conds. for RDP to be PP

$$\sum_{a \in F_q} D_n(1,a)^i, i = 1,2$$

Dickson Polynomials Second Kind

Dickson poly. second kind deg. n, parameter $a \in F_q$

$$E_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n-i}{i} (-a)^i x^{n-2i}$$

 $E_n(x,0) = x^n$

$$E_{n+2}(x,a) = xE_{n+1}(x,a) - aE_n(x,a), n \ge 0$$
 with $D_0(x,a) = 1, D_1(x,a) = x$

See Lidl/M/Turnwald (93), "Dickson Polys." for some basic properties

Dickson Polynomials Second Kind

Dickson poly. second kind deg. n, parameter $a \in F_q$

$$E_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n-i}{i} (-a)^i x^{n-2i}$$

 $E_n(x,0) = x^n$

$$\begin{split} E_{n+2}(x,a) &= x E_{n+1}(x,a) - a E_n(x,a), n \geq 0 \text{ with } \\ D_0(x,a) &= 1, D_1(x,a) = x \end{split}$$

See Lidl/M/Turnwald (93), "Dickson Polys." for some basic properties

Problem

When does
$$E_n(x, a)$$
 induce PP on F_q ?

Matthews (Thesis, 82) If q odd, and $n + 1 \equiv \pm 2 \pmod{p}, (q-1)/2, (q+1)/2$ then $E_n(x, 1)$ PP on F_q

Matthews (Thesis, 82) If q odd, and $n + 1 \equiv \pm 2 \pmod{p}, (q-1)/2, (q+1)/2$ then $E_n(x, 1)$ PP on F_q

Conjecture

Conditions also nec.

Matthews (Thesis, 82) If q odd, and $n + 1 \equiv \pm 2 \pmod{p}, (q-1)/2, (q+1)/2$ then $E_n(x, 1)$ PP on F_q

Conjecture

Conditions also nec.

Theorem

Cipu/Cohen (Fq 6, AMS 08) If $p \ge 7$, conj. true for q = p and $q = p^2$.

Problem

Determine value set for $E_n(x,1)$

PPs in Several Variables

Definition

A poly. $f \in F_q[x_1, \ldots, x_k]$ is PP in k variables if the eq. $f(x_1, \ldots, x_k) = \alpha$ has q^{k-1} sols. in F_q^k for each $\alpha \in F_q$

PPs in Several Variables

Definition

A poly. $f \in F_q[x_1, ..., x_k]$ is PP in k variables if the eq. $f(x_1, ..., x_k) = \alpha$ has q^{k-1} sols. in F_q^k for each $\alpha \in F_q$

Definition

Poly. $f_1, \ldots, f_r \in F_q[x_1, \ldots, x_k]$ is orth. sys. in k variables if the sys. of eqs. $f_i(x_1, \ldots, x_k) = \alpha_i$ has q^{k-r} sols. in F_q^k for each $(\alpha_1, \ldots, \alpha_r) \in F_q^r$

See L/N, Sec. 7.5

Appl. to Latin and Frequency Squares and Hypercubes

Theorem

M (Disc. Math., 88) Complete sets of orth. $F(q^i; q^{i-1}, \ldots, q^{i-1})$ freq. squares.

Also see Laywine/M, (Handbook Combin. Designs, 07, 465-471)