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Fq finite field order q = pe

value set of f ∈ Fq[x], Vf = {f(a)|a ∈ Fq}

f is Perm. Poly. (PP) if |Vf | = q
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Some Basic Properties of PPs over Fq

1 If f(x) is PP, so is af(x+ b) + c for a 6= 0, b, c ∈ Fq

2 q! total; group under comp. mod xq − x iso. Sq, sym. group

3 Normalized if monic, f(0) = 0, and coeff. of xn−1 is 0 if deg. n not
divisible by p

4 L/N p 352 list of all nor. PPs of deg. < 6
5 xn PP on Fq iff (n, q − 1) = 1

6 Linearized polys. f(x) =
∑
aix

pi
PP iff det(Af ) 6= 0

7 If q odd, x(q+1)/2 + ax contains (q − 3)/2 PPs

8 xr(f(xs))(q−1)/s PPs and group structure

9 M, Handbook Combin. Designs, Sec. Ed., (CRC 07), 572-574
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1 |Vxn | = 1 + q−1
(n,q−1)

2 Das/M (Fq 6, Springer, 02) |Vf | ≥ Lf + 2 where Lf is max # 0s in
any col. of matrix Af

3 Mills (Pac. J. Math. 64) If f monic deg. n <
√
q with (n, q) = 1

and |Vf | = b(q − 1)/nc+ 1, then n|(q − 1) and f(x) = (x+ b)n + c
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Dickson Polynomials

Dickson poly. deg. n, parameter a ∈ Fq

Dn(x, a) =
bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i

(i) Let Tn(x) = cos (n arccos x) be Chebyshev poly. first kind.

Then over C, Dn(2x, 1) = 2Tn(x).

(ii) Recurrence: Dn(x, 0) = xn

Dn+2(x, a) = xDn+1(x, a)− aDn(x, a), n ≥ 0 with
D0(x, a) = 2, D1(x, a) = x
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Theorem

(Funct. eq.) Dn(x, a) = yn + an

yn with x = y + a/y, y ∈ Fq2

Theorem

Dickson (Ann Math 1897) If a 6= 0 ∈ Fq, Dn(x, a) PP on Fq iff
(n, q2 − 1) = 1.

Theorem

Chou/Gomez-Calderon/M (JNT 88) For a 6= 0 ∈ Fq

|VDn(x,a)| =
q − 1

2(n, q − 1)
+

q + 1
2(n, q + 1)

+ α

α = 0, 1/2, 1
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Theorem

(i) xn PP on Fp for ∞ ly many primes p iff (n, 2) = 1
(ii) If a 6= 0, Dn(x, a) PP on Fp for ∞ ly many primes p iff (n, 6) = 1.

Conjecture

Schur (1922) If f ∈ Z[x] and f PP on Fp for ∞ ly primes p, then f is a
composition of axk + b and DPs Dn(x, a)
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Theorem

Fried (Mich. Math. J. 70) Schur conj. true

Theorem

Turnwald (J. Austral. Math. Soc., 95) Schur conj. true, no complex.
anal.

See Lidl/M/Turnwald, “Dickson Polys.,” 1993
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A DIFFERENT PERSPECTIVE

Xiang-dong Hou/M/James Sellers/Joe Yucas (FFA 09)

Consider Dn(x, a) but now fix x, and let a be the variable.

Dn(x, a) is a reversed Dickson poly. (RDP)

Problem

When do RDPs yield PPs?

Hereafter, we consider RDPs as functions of x

Consider Dn(a, x) with a ∈ Fq fixed

a = 0: If n is odd, Dn(0, x) = 0 is not PP

If n = 2k is even, q odd, D2k(0, x) = 2(−1)kxk is a PP on Fq iff
(k, q − 1) = 1.
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Funct. eq. implies

Dn(a, x) = anDn

(
1,
x

a2

)
.

Hence for a 6= 0, Dn(a, x) is a PP on Fq if and only if Dn(1, x) is a PP on
Fq.

Suffices to consider the RDP Dn(1, x). The ultimate question is for which
n the poly. Dn(1, x) is a PP on Fq. This question, unlike the same
question for Dickson polys. Dn(x, a), does not seem to have an easy
answer.
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When are Dn1(1, x) and Dn2(1, x) equal as functions on Fpe?

(i) If n1, n2 > 0 are integers such that n1 ≡ n2 (mod p2e − 1), then
Dn1(1, x) = Dn2(1, x) for all x ∈ Fq.

(ii) If two positive integers n1 and n2 belong to the same p-cyclotomic
coset modulo p2e − 1, then Dn1(1, x) is a PP on Fq if and only if
Dn2(1, x) is a PP on Fq.
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For n1, n2 ∈ {0, 1, . . . , p2e − 1}, we say that n1 ∼ n2 if
Dn1(1, x) ≡ Dn2(1, x) (mod xpe − x). The relation ∼ is an eq. rel.
whose eq. classes can be described:

Theorem

Let p = 2. Then the ∼-eq. classes of {0, 1, . . . , 22e − 1} are

{0},

{2k : 0 ≤ k ≤ 2e− 1},

{(2e + 1)2k : 0 ≤ k ≤ e− 1},

{α+ β2e, β + α2e}, 0 ≤ α, β ≤ 2e − 1,
α+ β2e 6= 0, 2k (0 ≤ k ≤ 2e− 1),
(2e + 1)2k (0 ≤ k ≤ e− 1).
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Theorem

Let p be an odd prime. Then the ∼-eq. classes of {0, 1, . . . , p2e − 1} are

{0},

{pk : 0 ≤ k ≤ 2e− 1},

{p2e−1
2 + pk : 0 ≤ k ≤ 2e− 1},

{α+ βpe, β + αpe}, 0 ≤ α, β ≤ pe − 1, α+ βpe 6= 0,
pk, p2e−1

2 + pk, 0 ≤ k ≤ 2e− 1.
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f : Fq → Fq is called almost perfect nonlinear (APN) if for each a ∈ F ∗q
and b ∈ Fq, the equation f(x+ a)− f(x) = b has at most two sols. in Fq.

xn is an APN fcn. on Fq iff for each b ∈ Fq, the eq. (x+ 1)n − xn = b
has at most two sols. in Fq.

Theorem

(i) xn is an APN func. on F22e ⇒ Dn(1, x) is a PP on F2e ⇒ xn is an
APN function on F2e .
(ii) Let p be an odd prime and n an odd pos. integer. Then xn is an APN
func. on Fp2e ⇒ Dn(1, x) is a PP on Fpe ⇒ xn is an APN func. on Fpe
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Theorem

The RDP Dn(1, x) is a PP on Fpe in each of the following cases:

I. p = 2.

(i) n = 2k + 1, (k, 2e) = 1. (Gold)

(ii) n = 22k − 2k + 1, (k, 2e) = 1. (Kasami)

(iii) n = 28k + 26k + 24k + 22k − 1, e = 5k. (Dobbertin)

Theorem

The RDP Dn(1, x) is a PP on Fpe in each of the following cases:

II. p > 2.

(i) n = 3, p > 3. (D3(1, x) = −3x+ 1, trivial)

(ii) n = pe + 2, pe ≡ 1 (mod 3).

(iii) n = 5k+1
2 p = 5, (k, 2e) = 1.
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Some examples of RDPPs not coming from APN fcns.

Example

(i) p = 2, e = 2, n = 24 + 22 + 1 = 21. Then D21(1, x) is a PP on F24

but x21 is not an APN function on F28 .
(ii) Let p = 2, e = 3, n = 22 + 1 = 5. Then x5 is an APN function on F23

(the Gold case) but D5(1, x) = x2 + x+ 1 is not a PP on F23 .
(iii) Let p > 3 be a prime such that p ≡ −1 (mod 3) and let e = 1,
n = p+ 2. Then xp+2(= x3) is an APN function on Fp but Dp+2(1, x) is
not a PP on Fp.
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Theorem

Let p be an odd prime and k ≥ 0. Then in Fp[x],

Dpk+1(1, x) = 2
(
−x+

1
4

) pk+1
2 +

1
2

Dpk+2(1, x) = 2
(
−x+

1
4

) pk+1
2 +

1
2
− x.

Theorem

Let e be a positive even integer and let n = 2e + 2k + 1, where k is a
positive integer such that (k − 1, e) = 1. Then Dn(1, x) is a PP on F2e .

Theorem

Let k > 0 be an integer such that (k, 2e) = 1 and let n = 3k+1
2 . Then

Dn(1, x) is a PP on F3e .
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Conjecture

Let p > 3 be a prime and let 1 ≤ n ≤ p2 − 1. Then Dn(1, x) is a PP on
Fp if and only if

n =


2, 2p, 3, 3p, p+ 1, p+ 2, 2p+ 1 if p ≡ 1 (mod 12),
2, 2p, 3, 3p, p+ 1 if p ≡ 5 (mod 12),
2, 2p, 3, 3p, p+ 2, 2p+ 1 if p ≡ 7 (mod 12),
2, 2p, 3, 3p if p ≡ 11 (mod 12).
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pe n cyclotomic coset mod p2e − 1 reference
2 3 3 T?? I(i)

22 3 3, 6, 12, 9 T?? I(i)

23 3 3, 6, 12, 24, 48, 33 T?? I(i)

24 3 3, 6, 12, 24, 48, 96, 192, 129 T?? I(i)
9 9, 18, 36, 72, 144, 33, 66, 132 T?? I(i)
21 21, 42, 84, 168, 81, 162, 69, 138 T??
39 39, 78, 156, 57, 114, 228, 201, 147 T?? I(ii)

25 3 3, 6, 12, 24, 48, 96, 192, 384, 768, 513 T?? I(i)
9 9, 18, 36, 72, 144, 288, 576, 129, 258, 516 T?? I(i)
57 57, 114, 228, 456, 912, 801, 579, 135, 270, 540 T?? I(ii)
213 213, 426, 825, 681, 339, 678, 333, 666, 309, 618 T?? I(iii)

26 3 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 2049 T?? I(i)
33 33, 66, 132, 264, 528, 1056, 2112, 129, 258, 516, 1032, 2064 T?? I(i)
69 69, 138, 276, 552, 1104, 2208, 321, 642, 1284, 2568, 1041, 2082 T??
159 159, 318, 636, 1272, 2544, 993, 1986, 3972, 3849, 3603, 3111, 2127 T?? I(ii)

Table: Reversed Dickson PPs Dn(1, x) on Fpe , pe < 200
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pe n cyclotomic coset mod p2e − 1 reference

27 3 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 8193 T?? I(i)
9 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 2049, 4098, 8196 T?? I(i)
33 33, 66, 132, 264, 528, 1056, 2112, 4224, 8448, 513, 1026, 2052,

4104, 8208 T?? I(i)
57 57, 114, 228, 456, 912, 1824, 3648, 7296, 14592, 12801, 9219, 2055,

4110, 8220 T?? I(ii)
543 543, 1086, 2172, 4344, 8688, 993, 1986, 3972, 7944, 15888, 15393,

14403, 12423, 8463 T?? I(ii)
3 2 2, 6 C?? (i)

32 2 2, 6, 18, 54 C?? (i)
10 10, 30 C?? (i)
14 14, 42, 46, 58 T??

33 2 2, 6, 18, 54, 162, 486 C?? (i)
10 10, 30, 90, 270, 82, 246 C?? (i)
122 122, 366, 370, 382, 418, 526 T??

34 2 2, 6, 18, 54, 162, 486, 1458, 4374 C?? (i)
14 14, 42, 126, 378, 1134, 3402, 3646, 4378 T??
82 82, 246, 738, 2214 C?? (i)
86 86, 258, 774, 2322, 406, 1218, 3654, 4402 ?
122 122, 366, 1098, 3294, 3322, 3406, 3658, 4414 T??
1094 1094, 3282, 3286, 3298, 3334, 3442, 3766, 4738 T??

Gary L. Mullen (PSU) Some Basic Results Concerning Permutation Polynomials over Finite FieldsJuly 23, 2010 18 / 26



Table: continued

pe n cyclotomic coset mod p2e − 1 reference
5 2 2, 10 C?? (i)

3 3, 15 T?? II(i)
6 6 C?? (i)

52 2 2, 10, 50, 250 C?? (i)
3 3, 15, 75, 375 T?? II(i)
26 26, 130 C?? (i)
27 27, 135, 51, 255 T?? II(ii)
63 63, 315, 327, 387 T?? II(iii)

53 2 2, 10, 50, 250, 1250, 6250 C?? (i)
3 3, 15, 75, 375, 1875, 9375 T?? II(i)
6 6, 30, 150, 750, 3750, 3126 C?? (i)
26 26, 130, 650, 3250, 626, 3130 C?? (i)
126 126, 630, 3150 C?? (i)
1536 1563, 7815, 7827, 7887, 8187, 9687 T?? II(iii)

7 2 2, 14 C?? (i)
3 3, 21 T?? II(i)
9 9, 15 T?? II(ii)

72 2 2, 14, 98, 686 C?? (i)
3 3, 21, 147, 1029 T?? II(i)
50 50, 350 C?? (i)
51 51, 357, 99, 693 T?? II(ii)

Table: Reversed Dickson PPs Dn(1, x) on Fpe , pe < 200
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pe n cyclotomic coset mod p2e − 1 reference
11 2 2, 22 C?? (i)

3 3, 33 T?? II(i)

112 2 2, 22, 242, 2662 C?? (i)
3 3, 33, 363, 3993 T?? II(i)
122 122, 1342 C?? (i)
123 123,1353,243,2673 T?? II(i)

13 2 2, 26 C?? (i)
3 3, 39 T?? II(i)
14 14 C?? (i)
15 15, 17 T?? II(ii)

132 2 2, 26, 338, 4394 C?? (i)
3 3, 39, 507, 6591 T?? II(i)
170 170, 2210 C?? (i)
171 171, 2223, 339, 4407 T?? II(ii)

Gary L. Mullen (PSU) Some Basic Results Concerning Permutation Polynomials over Finite FieldsJuly 23, 2010 18 / 26



Table: continued

e = 1, 17 ≤ p ≤ 199

p n cyclotomic coset mod p2 − 1 reference
p ≡ 1 (mod 12) 2 2, 2p C?? (i)

3 3, 3p T?? II(i)
p + 1 p + 1 C?? (i)
p + 2 p + 2, 2p + 1 T?? II(ii)

p ≡ 5 (mod 12) 2 2, 2p C?? (i)
3 3, 3p T?? II(i)
p + 1 p + 1 C?? (i)

p ≡ 7 (mod 12) 2 2, 2p C?? (i)
3 3, 3p T?? II(i)
p + 2 p + 2, 2p + 1 T?? II(ii)

p ≡ 11 (mod 12) 2 2, 2p C?? (i)
3 3, 3p T?? II(i)
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Open Questions Related to RDPPs

1. If Dn(1, x) is a PP on F2e , where e is odd, is xn an APN function on
F22e?

2. If Dn(1, x) is a PP on Fpe , where p > 3 and n is odd, is xn an APN
function on Fp2e?

3. Determine the value set of RDPs.
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Problem

Why no other RDPPs over Fp other than those from conj.?

If n ≡ 1, 5 (mod 6), then Dn(1, 0) = Dn(1, 1) = 1 so that Dn(1, x) is not
a PP on Fp.

Problem

What happens over Fpe , e ≥ 2?
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Theorem

Hou (JCT,A, to appear) (i) If s even, D3e+5(1, x) is PP on F3e .

(ii) New func. gn,q(x) defined by∑
a∈Fq

(x+ a)n = gn,q(xq − x)

If p = 2, gn,2(x) = Dn(1, x)

Hou gives conds. when gn,p is PP on Fp
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Theorem

Hou (preprint) Nec. conds. for RDP to be PP∑
a∈Fq

Dn(1, a)i, i = 1, 2
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Dickson Polynomials Second Kind

Dickson poly. second kind deg. n, parameter a ∈ Fq

En(x, a) =
bn/2c∑
i=0

(
n− i
i

)
(−a)ixn−2i

En(x, 0) = xn

En+2(x, a) = xEn+1(x, a)− aEn(x, a), n ≥ 0 with
D0(x, a) = 1, D1(x, a) = x

See Lidl/M/Turnwald (93), “Dickson Polys.” for some basic properties

Problem

When does En(x, a) induce PP on Fq?
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Theorem

Matthews (Thesis, 82) If q odd, and n+ 1 ≡ ±2
(mod p), (q − 1)/2, (q + 1)/2 then En(x, 1) PP on Fq

Conjecture

Conditions also nec.

Theorem

Cipu/Cohen (Fq 6, AMS 08) If p ≥ 7, conj. true for q = p and q = p2.

Problem

Determine value set for En(x, 1)
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PPs in Several Variables

Definition

A poly. f ∈ Fq[x1, . . . , xk] is PP in k variables if the eq.
f(x1, . . . , xk) = α has qk−1 sols. in F k

q for each α ∈ Fq

Definition

Poly. f1, . . . , fr ∈ Fq[x1, . . . , xk] is orth. sys. in k variables if the sys. of
eqs. fi(x1, . . . , xk) = αi has qk−r sols. in F k

q for each (α1, . . . , αr) ∈ F r
q

See L/N, Sec. 7.5
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Appl. to Latin and Frequency Squares and Hypercubes

Theorem

M (Disc. Math., 88) Complete sets of orth. F (qi; qi−1, . . . , qi−1) freq.
squares.

Also see Laywine/M, (Handbook Combin. Designs, 07, 465-471)
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