How Are Irreducible and Primitive Polynomials Distributed over Finite Fields?

Gary L. Mullen

Penn State University

mullen@math.psu.edu

July 21, 2010

Let $q = p^m$ be a prime power

Let $F_q = F_{p^m}$ denote the finite field of order q

Primitive Polynomials

 $f \in F_q[x]$ of deg. n is primitive if every root of f is a prim. ele. in F_{q^n}

Recall that a prim. ele. in F_{q^n} generates the mul. group $F_{q^n}^*$

Cohen (Disc. Math., 90) Let $n \ge 2$ and let $a \in F_q$ (with $a \ne 0$ if n = 2 or if n = 3 and q = 4). Then there exists prim. deg. n over F_q with trace a.

Cohen (Disc. Math., 90) Let $n \ge 2$ and let $a \in F_q$ (with $a \ne 0$ if n = 2 or if n = 3 and q = 4). Then there exists prim. deg. n over F_q with trace a.

Conjecture

Hansen/M (Math. Comp, 92) Conj A: For $n \ge 2, 0 \le j < n$ and given $a \in F_q$, there is prim. $x^n + \dots + ax^j + \dots$ except when (P1) q arb., $j = 0, a \ne (-1)^n \alpha$, α prim. in F_q (P2) q arb., n = 2, j = 1, a = 0(P3) q = 4, n = 3, j = 2, a = 0(P4) q = 4, n = 3, j = 1, a = 0(P5) q = 2, n = 4, j = 2, a = 1 Many papers by various people culminating in

Theorem

Cohen (FFA 06) Conj. A is true for deg. $n \ge 9$.

Many papers by various people culminating in

Theorem

Cohen (FFA 06) Conj. A is true for deg. $n \ge 9$.

Theorem

Cohen/Presern (Lond. Math. Soc. Lect. Note Ser. 07) Conj. A is true!!

Theorem

Han (Math. Comp., 96) For q odd and $n \ge 7$, \exists prim. deg. n with coeffs. of x^{n-1} and x^{n-2} given in advance.

Theorem

Han (Math. Comp., 96) For q odd and $n \ge 7$, \exists prim. deg. n with coeffs. of x^{n-1} and x^{n-2} given in advance.

Theorem

Han (FFA 97) For q even and $n \ge 7$, \exists prim. deg. n with coeff. x^{n-1} and x^{n-2} given in advance.

Theorem

Han (Math. Comp., 96) For q odd and $n \ge 7$, \exists prim. deg. n with coeffs. of x^{n-1} and x^{n-2} given in advance.

Theorem

Han (FFA 97) For q even and $n \ge 7$, \exists prim. deg. n with coeff. x^{n-1} and x^{n-2} given in advance.

Theorem

Cohen/Mills (FFA 03) For q odd and $n = 5, 6 \exists$ prim. deg. n with coeff. x^{n-1} and x^{n-2} given in advance.

Theorem

Han (Math. Comp., 96) For q odd and $n \ge 7$, \exists prim. deg. n with coeffs. of x^{n-1} and x^{n-2} given in advance.

Theorem

Han (FFA 97) For q even and $n \ge 7$, \exists prim. deg. n with coeff. x^{n-1} and x^{n-2} given in advance.

Theorem

Cohen/Mills (FFA 03) For q odd and $n = 5, 6 \exists$ prim. deg. n with coeff. x^{n-1} and x^{n-2} given in advance.

Theorem

Shuqin/Han (FFA 04) For $n \ge 8 \exists$ prim. deg. n with highest three coeff. given in advance.

Find formulas, or good estimates, for the # of prim. deg. n over F_q with given trace, (or even more coeff). specified in advance.

Find formulas, or good estimates, for the # of prim. deg. n over F_q with given trace, (or even more coeff). specified in advance.

Theorem

Chang/Chou/Shiue (FFA 05) Enum. results.

Primitive Normal Polynomials

For $\alpha \in F_{q^n}$, if $A = \{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ is a basis over F_q , A is normal basis.

If $\langle \alpha \rangle = F_{q^n}^*$, A is prim. nor. basis.

Carlitz (Trans. 52) Prim. nor. basis over F_p for suff. large p.

Carlitz (Trans. 52) Prim. nor. basis over F_p for suff. large p.

Theorem

Davenport (J. Lond. M. S. 68) Prim. nor. basis over F_p for any prime p.

Carlitz (Trans. 52) Prim. nor. basis over F_p for suff. large p.

Theorem

Davenport (J. Lond. M. S. 68) Prim. nor. basis over F_p for any prime p.

Theorem

Lenstra-Schoof (Math. Comp., 87) F_{q^n} has prim. nor. basis over F_q .

Carlitz (Trans. 52) Prim. nor. basis over F_p for suff. large p.

Theorem

Davenport (J. Lond. M. S. 68) Prim. nor. basis over F_p for any prime p.

Theorem

Lenstra-Schoof (Math. Comp., 87) F_{q^n} has prim. nor. basis over F_q .

Theorem

Cohen/Huczynska (J. London. M. Soc. 03) Prim. nor. basis without a computer!

 $\phi(q^n-1)$ is # of prim. elem. in F_{q^n}

 $\Phi_q(x^n-1)$ is # of nor. basis elem. in F_{q^n} .

Problem

Find a formula for the number $PN_q(n)$ of prim. nor. elem. in F_{q^n} .

Conjecture

Morgan/Mul. (Math. Comp., 94) For $n \ge 2$ and $a \in F_q^*$, there is a prim. nor. poly. deg. n over F_q with trace a.

True for:

q=2 any n

n=2 any q

(q-1)|n

 $n\leq 6,q\leq 97$

Cohen/Hac. (AAECC, 99) Morgan/M Conj. true

Cohen/Hac. (AAECC, 99) Morgan/M Conj. true

Conjecture

Morgan/Mul. Conj: (Math. Comp., 94) For p prime and $n \ge 2, \exists$ prim. nor. poly. deg. n over F_p with at most 5 nonzero coeffs.

Cohen/Hac. (AAECC, 99) Morgan/M Conj. true

Conjecture

Morgan/Mul. Conj: (Math. Comp., 94) For p prime and $n \ge 2, \exists$ prim. nor. poly. deg. n over F_p with at most 5 nonzero coeffs.

Theorem

Cohen (Pub. Math. Deb. 00) Prim. nor. of deg. $n \ge 5$ with given norm and trace.

Cohen/Hac. (AAECC, 99) Morgan/M Conj. true

Conjecture

Morgan/Mul. Conj: (Math. Comp., 94) For p prime and $n \ge 2, \exists$ prim. nor. poly. deg. n over F_p with at most 5 nonzero coeffs.

Theorem

Cohen (Pub. Math. Deb. 00) Prim. nor. of deg. $n \ge 5$ with given norm and trace.

Theorem

Cohen/Huczynska (Acta Arith, 03) Prim. nor. quartics with given norm and trace

Cohen/Hac. (AAECC, 99) Morgan/M Conj. true

Conjecture

Morgan/Mul. Conj: (Math. Comp., 94) For p prime and $n \ge 2, \exists$ prim. nor. poly. deg. n over F_p with at most 5 nonzero coeffs.

Theorem

Cohen (Pub. Math. Deb. 00) Prim. nor. of deg. $n \ge 5$ with given norm and trace.

Theorem

Cohen/Huczynska (Acta Arith, 03) Prim. nor. quartics with given norm and trace

Theorem

Huczynska/Cohen (*Trans. A.M.S. 03*) *Prim. nor. cubics with given norm and trace*

Gary L. Mullen (PSU)

Fan/Wang (FFA 09) If $n \ge 15$, \exists prim. nor. with any coeff. specified in advance

Completely Normal Bases

$$F_q \subseteq F_{q^d} \subseteq F_{q^n}$$

 $\exists \alpha \in F_{q^n}$ nor. basis over F_q and F_{q^d} ?

 $\exists \alpha \in F_{q^n}$ nor. basis over F_{q^d} for all d|n ?

Theorem

Blessenohl/Johnsen (J. Alg., 86) F_{q^n} has a com. nor. basis.

Conjecture

Morgan/M (Util. Math. 96) For each $n \ge 2$ there is a com. nor. prim. poly. deg. n over F_q .

True for: n = 4

 $q^n \leq 2^{31}, q \leq 97$

Theorem

Shparlinski/Mul. (*Finite Fields Appl.*, CUP, 96) For $q \ge Cn\log n$, \exists com. nor. prim. basis of F_{q^n} over F_q .

Conjecture

Morgan/M (Util. Math. 96) For each $n \ge 2$ there is a com. nor. prim. poly. deg. n over F_q .

True for: n = 4

 $q^n \leq 2^{31}, q \leq 97$

Theorem

Shparlinski/Mul. (*Finite Fields Appl.*, CUP, 96) For $q \ge Cn\log n$, \exists com. nor. prim. basis of F_{q^n} over F_q .

Problem

Find formula for the number $CN_q(n)$ of com. nor. bases of F_{q^n} over F_q .

Irreducibles

Conjecture

Hansen/M (Math. Comp. 92) Conj B: For $n \ge 2$, $0 \le j < n$ and given $a \in F_q$ there is irr. $x^n + \cdots + ax^j + \cdots$ except (11) q arb. j = a = 0(12) $q = 2^m, n = 2, j = 1, a = 0$

Irreducibles

Conjecture

Hansen/M (Math. Comp. 92) Conj B: For $n \ge 2$, $0 \le j < n$ and given $a \in F_q$ there is irr. $x^n + \cdots + ax^j + \cdots$ except (11) q arb. j = a = 0(12) $q = 2^m$, n = 2, j = 1, a = 0

Theorem

Wan (Math. Comp., 97) If either q > 19 or $n \ge 36$, Conj. B is true.

Irreducibles

Conjecture

Hansen/M (Math. Comp. 92) Conj B: For $n \ge 2$, $0 \le j < n$ and given $a \in F_q$ there is irr. $x^n + \cdots + ax^j + \cdots$ except (11) q arb. j = a = 0(12) $q = 2^m$, n = 2, j = 1, a = 0

Theorem

Wan (Math. Comp., 97) If either q > 19 or $n \ge 36$, Conj. B is true.

Theorem

Ham/Mul. (Math. Comp. 97) Conj. B is true.

Hsu (J. Numb. Thy., 96) (i) If f has even deg. n and $q \ge n/2 + 1$, \exists irr. P of deg. n with deg. (P - f) at most n/2. (ii) If f has odd deg. n and $q \ge ((n+3)/2)^2$, \exists irr. P of deg. n with deg. (P - f) at most (n - 1)/2.

Exact Formulas

 $N_q(n) = \#$ monic irr. deg. n

$$= \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}$$

monic irr. deg. n trace 1

$$\frac{1}{2n}\sum_{d|n,dodd}\mu(d)2^{n/d}$$

Fix
$$1 \leq j \leq n, \beta \in F_{2^n}$$

$$T_{j}(\beta) = \sum_{0 \le i_{1} < i_{2} < \dots < i_{j} \le n} \beta^{2^{i_{1}}} \beta^{2^{i_{2}}} \cdots \beta^{2^{i_{j}}}$$

 $T_j: F_{2^n} \to F_2$

$$T_1(\beta) = \beta + \beta^2 + \beta^{2^2} + \dots + \beta^{2^{n-1}}$$

$$F(n,t_1,\ldots,t_r)=\#eta\in F_{2^n}$$
 with $T_j(eta)=t_j,j=1,\ldots,r$

 $P(n, t_1, \ldots, t_r) = \#$ irr. deg n with coeff. $x^{n-j} = t_j, j = 1, \ldots, r$

$$P(n, 0, 0, 1) = \#x^{n} + 0x^{n-1} + 0x^{n-2} + 1x^{n-3} + \dots$$

$$nP(n, 0, 0, 1) = \sum_{d|n, dodd} \mu(d)F(n/d, 0, 0, 1)$$

July 21, 2010 19 / 28

Cattell/Miers/Ruskey/Serra/Sawada (JCMCC 03) $F(n, t_1, t_2) = 2^{n-2} + G(n, t_1, t_2),$

Theorem

Kuz'min (Sov. Math. Dokl. 91)

Yucas/M (Disc. Math. 04) For n even, $F(n, t_1, t_2, t_3) = 2^{n-3} + G(n, t_1, t_2, t_3),$

$\underline{m(mod12)}$	<u>000</u>	<u>001</u>	<u>010</u>	<u>011</u>
<u>0</u>	$-2^m - 2^{m-2}$	$2^{m-1} + 2^{m-2}$	2^{m-2}	2^{m-2}
$\underline{1or5}$	2^{m-2}	-2^{m-2}	2^{m-2}	-2^{m-2}
$\underline{2or10}$	0	2^{m-1}	0	-2^{m-1}
<u>3</u>	2^{m-2}	-2^{m-2}	2^{m-2}	-2^{m-2}
4 or 8	-2^{m-1}	0	-2^{m-1}	2^m
<u>6</u>	$2^{m-1} + 2^{m-2}$	-2^{m-2}	$-2^{m-1}-2^{m-2}$	2^{m-2}
$\underline{7or11}$	2^{m-2}	-2^{m-2}	2^{m-2}	-2^{m-2}
<u>9</u>	2^{m-2}	-2^{m-2}	2^{m-2}	-2^{m-2}

m(mod12)	<u>100</u>	<u>101</u>	<u>110</u>	<u>111</u>	
<u>0</u>	0	0	0	0	
1 or 5	-2^{m-2}	-2^{m-2}	$2^{m-1} + 2^{m-2}$	-2^{m-2}	
2or10	2^{m-1}	-2^{m-1}	-2^{m-1}	2^{m-1}	
3	2^{m-1}	0	2^{m-1}	-2^{m}	
4 or 8	0	0	0	0	
<u>6</u>	2^{m-1}	-2^{m-1}	-2^{m-1}	2^{m-1}	
$\overline{7or11}$	-2^{m-2}	$2^{m-1} + 2^{m-2}$	-2^{m-2}	-2^{m-2}	
9	-2^{m}	2^{m-1}	0	2^{m-1}	

Conjecture

Yucas/Mul If n = 2m, $F(n, t_1, \ldots, t_r) =$

$$2^{n-r} + a_{m-s+1}2^{m-s+1} + \dots + a_m2^m$$

$$1 \le s \le m, a_i = -1, 0, 1$$

Fitzgerald/Yucas (FFA 03) Formula for $F(n, t_1, t_2, t_3)$ for odd n. non-deg., alt., sym., bil., quad. forms

Extend to more than three coeff. over F_2 .

Extend to more than three coeff. over F_2 .

Problem

Extend two coeff. case to F_q for $q \ge 2$.

Extend to more than three coeff. over F_2 .

Problem

Extend two coeff. case to F_q for $q \ge 2$.

Problem

Extend to j coeff. over F_q .

Several Variables

Theorem

Corteel/Savage/Wilf/Zeilberger, (JCT,A 98) The # of pairs of polys. f(x) and g(x) of deg. m over F_2 with (f,g) = 1 is the same as the # of pairs of polys. of deg. m with $(f,g) \neq 1$.

Several Variables

Theorem

Corteel/Savage/Wilf/Zeilberger, (JCT,A 98) The # of pairs of polys. f(x) and g(x) of deg. m over F_2 with (f,g) = 1 is the same as the # of pairs of polys. of deg. m with $(f,g) \neq 1$.

Theorem

Benjamin/Bennett, (Math. Mag. 07), Euclid algor. biject.

Let $f \in F_q[x_1, \ldots, x_k]$ with $k \ge 2$

Two notions: total deg. and vector deg. of \boldsymbol{f}

Problem

Count # of irr. polys. of a given deg. in $F_q[x_1, \ldots, x_k]$

Let $f \in F_q[x_1, \ldots, x_k]$ with $k \geq 2$

Two notions: total deg. and vector deg. of \boldsymbol{f}

Problem

Count # of irr. polys. of a given deg. in $F_q[x_1, \ldots, x_k]$

Problem

Count # of pairs of relatively prime polys. of a given deg. in $F_q[x_1,\ldots,x_k]$

Each problem has a total deg. version and a vector deg. version

Hou/Mul. (FFA 09) Results for several variables

Hou/Mul. (FFA 09) Results for several variables

Bodin (FFA 10) Generating series for # irr. of given deg. and for indecomp. polys.