Integer Valued Sequences with 2-Level Autocorrelation from Iterative Decimation Hadamard **Transform**

Guang Gong

Department of Electrical and Computer Engineering University of Waterloo **CANADA** <http://comsec.uwaterloo.ca/∼ggong>

Fields Institute-Carleton Finite Fields Workshop, July 20-23, 2010

Joint work with Honggang Hu

 Ω

イロト イ母 トイヨ トイヨト

- **Iterative** Decimation Hadamard Transform (DHT)
- **Realizations** from DHT and Known Binary 2-Level Autocorrelation Sequences
- **New Integer** Valued Sequences with 2-Level Autocorrelation Constructed from DHT
- **New Ternary and Quaternary** Sequences with 2-Level Autocorrelation
- **Some Remarks** on Sequences of DHT

 Ω

イロメ イ何 トマ ヨ トマ ヨ ト

Applications

Code Division Multiplexing Access (CDMA)

- Multiple users share a common channel simultaneously by using different codes
- \triangleright Narrowband user information is spread into a much wider spectrum by the spreading code
- The signal from other users will be seen as a background noise: Multiple access interference (MAI)
- The limit of the maximum number of users in the system is determined by interference due to multiple access and multipath fading: Adding one user to CDMA system will only cause graceful degradation of quality

Theoretically, no fixed maximum number of users !

 Ω

 $($ \Box $)$ $($ \overline{A} $)$ $($ \overline{B} $)$

Code Division Multiplexing Access (CDMA) (Cont.)

 QQ

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Spreading Sequences in CDMA Systems

 $H_n \times H_n^T = nI_n$

 $($ ロ } $($ $($ $)$ } $($ $)$

Walsh Codes: Basic spreading codes in CDMA systems

- *n* different Walsh codes: each row of an *nxn* Hadamard matrix
- Mutually orthogonal: inner product of different Walsh codes are zero
- Synchronization of all users are required to maintain the \blacktriangleright orthogonality: Otherwise, produce multiple access interference (MAI)
- \rightarrow Further, delayed copies received from a multipath fading are not orthogonal any more: Multipath fading interference

MAI and multipath interference are major factors to limit the capacity of **CDMA** systems !

 Ω

Basic Concepts and Definitions on Sequences

- p , **a prime**; *n*, a positive integer; $q = p^n$.
- $f(x)$, **a polynomial** function from \mathbb{F}_q to \mathbb{F}_p .
- $Tr(x) = x + x^p + \cdots + x^{p^{n-1}}$, the trace function from \mathbb{F}_q to \mathbb{F}_p .
- \bullet α , **a primitive** element in \mathbb{F}_q .
- **A sequence** $\mathbf{a} = \{a_i\}$ where $a_i = f(\alpha^i), i = 0, 1, \cdots$, is a sequence over \mathbb{F}_p with period $q-1$ or dividing $q-1$.
- If $f(x) = Tr(x^t)$ where $(t, q 1) = 1$, then **a** is an **m-sequence** over F*p*, i.e.,

 m -sequence \longleftrightarrow $Tr(x^t)$.

 Ω

イロト イ母 トイラ トイラ トーラー

Decimation

$$
b_i=a_{si}, i=0,1,\cdots,
$$

is said to be an *s*-decimation of **a**, denoted by **a** (*s*) .

$$
\begin{array}{rcl} \mathbf{a} & \longleftrightarrow & f(x) \\ \mathbf{a}^{(s)} & \longleftrightarrow & f(x^s) \end{array}
$$

E.g.,

$$
\begin{aligned}\n\mathbf{a} &= 1001011 \quad \longleftrightarrow \quad Tr(x) \\
\mathbf{a}^{(3)} &= 1110100 \quad \longleftrightarrow \quad Tr(x^3)\n\end{aligned}
$$

 QQ

E

メロメメ 御 メメ 差 メメ 差 メ

Let $\omega = e^{2\pi i/p}$, a complex primitive *p*th root of unity. The canonical additive character χ of F is defined by

 $\chi(\mathbf{x}) = \omega^{\mathbf{x}}, \mathbf{x} \in \mathbb{F}_p.$

The autocorrelation of **a** is defined by

$$
C(\tau) = \sum_{i=0}^{N-1} \chi(a_{i+\tau}) \overline{\chi(a_i)}, \ 0 \leq \tau \leq N-1
$$
 (1)

where $\overline{\chi}$ be the complex conjugate of χ .

 Ω

イロト イ何 トイラ トイラト

2-level Autocorrelation and Orthogonal Functions

The sequence **a** is said to have a *2-level autocorrelation function*, if

$$
C(\tau) = \begin{cases} N & \text{if } \tau \equiv 0 \text{ mod } N \\ -1 & \text{if } \tau \not\equiv 0 \text{ mod } N. \end{cases}
$$

- **•** If **a** is also balanced, then we say that **a** has an (ideal) 2-level autocorrelation function.
- **When** *N* = *q* − 1 and **a** ↔ *f*(*x*), **a** has 2-level autocorrelation if and only if

$$
\sum_{x\in\mathbb{F}_q}\chi(f(\lambda x)\overline{\chi(f(x)}=0,\forall\lambda\in\mathbb{F}_q,\lambda\neq 1.
$$

 $f(x)$ is called an **orthogonal** function from \mathbb{F}_q to \mathbb{F}_q .

 Ω

イロメ イ母 トイラ トイラ

Integer Sequences and Complex Valued Sequences

• Let C be the complex field, $\mathbf{b} = \{b_i\}, b_i \in \mathbb{C}$ with period *N*. The autocorrelation of **b** is defined as

$$
C(\tau)=\sum_{i=0}^{N-1}b_{i+\tau}\overline{b_i},\ 0\leq \tau\leq N-1. \hspace{1.5cm} (2)
$$

b has 2-level autocorrelation if

$$
C(\tau) = \begin{cases} N & \text{if } \tau \equiv 0 \text{ mod } N \\ -1 & \text{if } \tau \not\equiv 0 \text{ mod } N. \end{cases}
$$

 Ω

The Hadamard transform of *f*(*x*) is defined by

$$
\widehat{f}(\lambda)=\sum_{x\in\mathbb{F}_q}\chi(\pi(\lambda x))\overline{\chi(f(x))}=\sum_{x\in\mathbb{F}_q}\omega^{\pi(\lambda x)-f(x)},\lambda\in\mathbb{F}_q.
$$

The inverse formula is given by

$$
\chi(f(\lambda))=\frac{1}{q}\sum_{x\in\mathbb{F}_q}\chi(\textit{Tr}(\lambda x))\overline{\hat{f}(x)}, \lambda\in\mathbb{F}_q.
$$

Parseval Formula

$$
\sum_{x\in\mathbb{F}_q}\chi(f(\lambda x))\overline{\chi(f(x))}=\sum_{x\in\mathbb{F}_q}\widehat{f}(\lambda x)\overline{\widehat{f}(x)},\lambda\in\mathbb{F}_q.
$$

 Ω

イロト イ母ト イヨト イヨ

Iterative Decimation Hadamard Transform (DHT) (Gong-Golomb, 2002)

• *h*(*x*), orthogonal; *v*, *t*, integer $0 < v, t < q - 1$, and $\lambda \in \mathbb{F}_q$. **The first-order DHT**

$$
\hat{f}_h(v)(\lambda) = \sum_{x \in \mathbb{F}_q} \chi(h(\lambda x)) \overline{\chi(f(x^v))}
$$

$$
= \sum_{x \in \mathbb{F}_q} \omega^{h(\lambda x) - f(x^v)}.
$$

The second-order DHT \bullet

$$
\hat{f}_h(v, t)(\lambda) = \sum_{y \in \mathbb{F}_q} \chi(h(\lambda y)) \overline{\hat{f}_h(v)(y^t)}
$$

$$
= \sum_{x, y \in \mathbb{F}_q} \omega^{h(\lambda y) - h(y^t x) + f(x^v)}, \lambda \in \mathbb{F}_q
$$

 Ω

Realizations

o If

- **In general**, for any integer pair (v, t) , for $x \in \mathbb{F}_q$, a value of $f_h(v, t)(x)$ may be just a complex number.
	- $\widehat{f}_h(v, t)(x) \in \{q\omega^i \mid i = 0, \cdots, p-1\}, \forall x \in \mathbb{F}_q,$

then we can construct a function, say $g(x)$, from \mathbb{F}_q to \mathbb{F}_p , whose elements are given by

$$
\chi(g(x))=\frac{1}{q}\widehat{f}_h(v,t)(x), x\in \mathbb{F}_q.
$$

In this case, we say that (v, t) is *realizable*, and $g(x)$ is a *realization* of *f*(*x*).

• Hadamard Equivalence: If $g(x)$ is realized by $f(x)$, then $g(x)$ and *f*(*x*) are Hadamard equivalent respect to *h*(*x*).

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

Important remark

For two functions which are Hadamard equivalent, if one of them has 2-level autocorrelation, so does the other.

 Ω

イロト イ母ト イヨト イヨ

Example

• Let
$$
p = 2
$$
, $n = 4$, $h(x) = f(x) = \pi(x)$,

 \mathbb{F}_{2^4} be defined by $t(x)=x^4+x+1,$ and α a root of $t(x)$ in $\mathbb{F}_{2^4}.$ Let

 $f(x) \leftrightarrow a = 000100110101111$.

The first-order DHT of *f*(*x*) (or **a**)

$$
\widehat{f}_h(v)(\lambda)=\sum_{x\in\mathbb{F}_{2^4}}(-1)^{\pi(\lambda x)+\pi(x^v)},
$$

 QQQ

KONKAPPKENTENTEN

Example (cont.)

The second-order DHT, $f_h(7, 7)$ and $f_h(7, 5)$, are given by

$$
\widehat{f}_h(7,t)(\lambda)=\sum_{x,y\in\mathbb{F}_{2^4}}(-1)^{\pi(\lambda y)+\pi(y^tx)+\pi(x^7)},\ t\in\{5,7\}
$$

and

$$
{\hat{f}_h(7,7)(\alpha')} = -16, -16, -16, 16, -16, 24, 16, 8, -16, 16, 24, 8, 16, 8, 8
$$

$$
{\hat{f}_h(7,5)(\alpha')} = 16, -16, -16.
$$

Thus, (7, 7) **is not a realizable pair**, while (7, 5) is a realizable pair which realizes the sequence 011 of period 3.

 Ω

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Hadamard Equivalent Classes for Known 2-Level Autocorrelation Sequences

- **Experimental** results on the realizations of all the known *p*-ary sequences with 2-level autocorrelation of period *p ⁿ* − 1 have been done:
	- **Binary case**: for odd *n* ≤ 17 (Gong-Golomb, 2002), and even *n* ≤ 16 (Yu-Gong, 2005, 2009).
	- **Ternary Case**: for odd *n* ≤ 15 (Ludkovski-Gong, 2001, Gong-Helleseth, 2004).
	- *p***-ary**: *p* > 3, some data.

 Ω

イロト イ母 トイヨ トイヨ トーヨー

Hadamard Equivalent Classes for Known 2-Level Autocorrelation Sequences (Cont.)

G. Gong (University of Waterloo) [New Integer Valued 2-Level AC Sequences](#page-0-0) 2009 18 / 41

重

 QQ

New Integer Valued Sequences with 2-Level Autocorrelation Constructed from DHT

New Observation

• Recall

$$
{si} = { $\widehat{t}_{h}(7,7)(\alpha^{i})$ }
$$

= -16, -16, -16, 16, -16, 24, 16, 8, -16, 16, 24, 8, 16, 8, 8

The sequence $\{s_i\}$ is not a realization, but it is an integer sequence with 2-level autocorrelation!

 Ω

イロト イ押 トイラト イラトー

Construction of New Integer Valued Sequences

For integers 0 < *v*, *t* < *q* − 1, we define the sequence $\mathbf{s}'(\mathbf{v}, t) = \{\mathbf{s}'_i\}$ by

 $s'_{i} = \hat{f}_{h}(v, t)(\alpha^{i}), \ s_{i} = s'_{i}/q, i = 0, 1, 2, \cdots$

- **Then s'**(v, t) is an integer valued sequence for $p = 2$ and a complex valued sequence for *p* > 2.
- **s**(v, t) **is normalized** from $\mathbf{s}'(v, t)$.

 Ω

イロト イ母 トイラ トイラ トーラ

Theorem

If the sequence $\mathbf{a} \leftrightarrow f(x)$ **has two-level autocorrelation, then the** autocorrelation function $C_{\mathbf{s}(v,t)}(\tau)$ of $\mathbf{s}(v,t),$ the normalized version, satisfies

$$
C_{s(v,t)}(\tau) = \sum_{i=0}^{q-2} s_{i+\tau} \overline{s_i}
$$

=
$$
\begin{cases} q-1, & \text{if } \tau \equiv 0 \text{ mod } (q-1); \\ -1, & \text{otherwise.} \end{cases}
$$

for any (v, t) which co-prime with $q - 1$.

Question: For which (v, t) , does the sequence $s(v, t)$ have "nice" values?

 Ω

イロト イ母 トイラ トイラ トーラー

Some Examples

•
$$
p = 2
$$
, $f(x) = h(x) = \pi(x)$.

Table: $n = 5$

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君

Some Examples (Cont.)

Table: $n = 6$

(v, t)	$\widehat{Tr}(v, t)(\lambda)/2^n$
(5, 13)	$\{-1, 0, 1, 4\}$
(5, 23)	$\{-1, 0, 1, 3\}$
(5, 5)	$\{-2, -1, 0, 1, 2\}$
(5, 31)	$\{-3/2, -1, -1/2, 0, 1/2, 1, 3\}$
(11, 23)	$\{-2, -1, -1/2, 0, 1/2, 1, 2\}$
(31, 31)	$\{-1, -7/8, -5/8, -1/4, 1/4, 7/8, 13/8, 5/2\}$
(11, 31)	$\{-7/2, -5/4, -1, -3/4, -1/2, -1/4, 1/4, 1/2, 1, 5/4, 3/2, 2\}$
maximum magnitude	4

 299

メロメメ 御きメ モンメモン

Some Examples (Cont.)

Table: $n = 7$

G. Gong (University of Waterloo) [New Integer Valued 2-Level AC Sequences](#page-0-0) 2009 24 / 41

 \Rightarrow

 299

イロメ イ団メ イモメ イモメー

Some Examples (Cont.)

Table: $n = 8$

 299

メロメメ 御きメ モンメモン

New Ternary Sequences with 2-Level Autocorrelation

Theorem

- **1** Let $p = 2$, *n* be an odd integer, $1 \leq k < n$ with gcd $(k, n) = 1$, and $f(x) = h(x) = \textit{Tr}(x).$ Let $v = 2^{n-1} - 1,$ and $t = 2^k + 1.$ Then **s**(*v*, *t*) has two-level autocorrelation, and the *sⁱ* 's take **three distinct values** −1, 0, **or** 2.
- **2** Let N_n denote the number of η within one period of $s(v, t)$, where $\eta = -1, 0,$ or 2. Then

$$
N_{-1} = (2^n + 1)/3, N_0 = 2^{n-1} - 1, \text{ and } N_2 = (2^{n-1} - 1)/3.
$$

 Ω

 $(1 + 4 - 1)$

In order to prove

$$
\widehat{Tr}(v,t)(\alpha^i)/2^n=-1,0,\text{or }2,
$$

we need to prove the following lemma:

Lemma

Let n be an odd integer, and $1 \leq k < n$ with gcd $(k, n) = 1$. Let $v = 2^{n-1} - 1$, and $t = 2^k + 1$. Then for any $\lambda \in \mathbb{F}_{2^n}^*$, we have

$$
\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{\pi(\lambda y+y^tx+x^v)}=-2^n, 0, \text{ or } 2^{n+1}.
$$

 Ω

イロト イ母ト イヨト イヨ

Variable Changes

By changing variables, we have

$$
\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{\pi(\lambda y+y^tx+x^v)}=\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{\pi(x^t+y^t+\lambda xy)}.
$$

In details,

$$
\sum_{x,y \in \mathbb{F}_{2^n}} (-1)^{\pi(\lambda y + y^t x + x^v)} = \sum_{x \in \mathbb{F}_{2^n}^*, y \in \mathbb{F}_{2^n}} (-1)^{\pi(\lambda y + y^t x + x^v)} = \sum_{x \in \mathbb{F}_{2^n}^*, y \in \mathbb{F}_{2^n}} (-1)^{\pi(\lambda y + y^t x + 1/x)}
$$
\n
$$
= \sum_{x \in \mathbb{F}_{2^n}^*, y \in \mathbb{F}_{2^n}} (-1)^{\pi(\lambda y + y^t / x + x)} (x \leftarrow 1/x)
$$
\n
$$
= \sum_{x_1 \in \mathbb{F}_{2^n}^*, y \in \mathbb{F}_{2^n}} (-1)^{\pi(\lambda y + (y/x_1)^t + x_1^t)} (x_1^t \leftarrow x)
$$
\n
$$
= \sum_{x_1 \in \mathbb{F}_{2^n}^*, z \in \mathbb{F}_{2^n}} (-1)^{\pi(\lambda zx_1 + z^t + x_1^t)} (z \leftarrow y/x_1)
$$
\n
$$
= \sum_{x_1, z \in \mathbb{F}_{2^n}} (-1)^{\pi(z^t + x_1^t + \lambda zx_1)}.
$$

G. Gong (University of Waterloo) [New Integer Valued 2-Level AC Sequences](#page-0-0) 2009 28 / 41

Thus, we need to prove the lemma below:

Lemma

Let n be an odd integer, and $1 \leq k < n$ with gcd $(k, n) = 1$. Then for $\mathsf{any} \ \lambda \in \mathbb{F}_{2^n}^*$, we have

$$
\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{\pi(x^{2^k+1}+y^{2^k+1}+\lambda xy)}=-2^n, 0, \text{or } 2^{n+1}.
$$

 Ω

イロメ イ何メ イヨメイヨ

Proof Sketch

• Set
$$
L_{\lambda}(\omega) = \omega^{2^{2k}} + \lambda^{2^k} \omega^{2^k} + \omega + \lambda^{2^{k-1}}
$$
. The we have

$$
\sum_{x,y \in \mathbb{F}_{2^n}} (-1)^{\pi (x^{2^k+1} + y^{2^k+1} + \lambda xy)} = 2^n \sum_{\omega: L_{\lambda}(\omega) = 0} (-1)^{\pi (\omega^{2^k+1})}.
$$

• Hence we need to study the roots of $L_{\lambda}(\omega) = 0$. √

Let $z=\omega$ $\overline{\lambda}$, and $a = \frac{1}{\lambda^{2k-1}}$ $\frac{1}{\lambda^{2^{k-1}+1/2}}$. Then $L_{\lambda}(\omega)=0$ if and only if

$$
h_a(z) = a^{2^k} z^{2^{2k}} + z^{2^k} + az + 1 = 0.
$$

 QQQ

KORKOVKEX (EXIDE

The proof can be divided into **two cases**.

Case 1: $a \neq \beta^{2^k+1} + \beta$ for any $\beta \in \mathbb{F}_{2^n}$.

- $h_{a}(z)=0$ has precisely one solution $z_{0}=R_{k,k^{\prime}}(1/a),$ where $R_{k,k'}(\cdot)$ is Hans Dobbertin's polynomial. Then $L_\lambda(\omega)=0$ has precisely one solution $\omega_0 = z_0/\sqrt{\lambda}$.
- We have $\textit{Tr}(z_0)=1$ because $x^{2^k+1}+x+a=0$ has no solution in F2 *n* .
- According to Hans Dobbertin's result,

$$
\omega_0^{2^k+1}=(z_0/\sqrt{\lambda})^{2^k+1}=az_0^{2^k+1}=\sum_{i=1}^{k'}z_0^{2^{ik}}+k^{'}+1,
$$

KEL KALK LELKEL ARA

• Thus

$$
\text{Tr}(\omega_0^{2^k+1}) = \text{Tr}\left(\sum_{i=1}^{k'} z_0^{2^{ik}}\right) + k' + 1 = k' \cdot \text{Tr}(z_0) + k' + 1 = 1.
$$

• It follows that

$$
\sum_{\omega:L_{\lambda}(\omega)=0}(-1)^{\text{Tr}(\omega^{2^{k}+1})}=(-1)^{\text{Tr}(\omega_{0}^{2^{k}+1})}=-1.
$$

 299

メロメメ 御きメ モンメモン

Case 2: $a = \beta^{2^k+1} + \beta$ for some $\beta \in \mathbb{F}_{2^n}$.

Set $Q(z) = az^{2^k} + \beta^2 z + \beta$, $\Gamma = \beta^{2^k - 1} + 1/\beta$, and $\Delta = \Gamma^{-\frac{1}{2^k - 1}}$. Then we have

$$
h_a(z) = Q(z)^{2^k} + \Gamma Q(z) = Q(z)(Q(z)^{2^k-1} + \Delta^{-(2^k-1)}).
$$

- **•** $h_a(z) = 0$ if and only if $Q(z) = 0$ or $Q(z) + 1/\Delta = 0$. • We can show that
	- *Q*(*z*) = 0 has **none or precisely two** solutions, and
	- *Q*(*z*) + 1/∆ = 0 has **precisely two** solutions.

KEL KALK LELKEL ARA

 \bullet If $h_a(z) = 0$ has **four solutions**, then we can show that

$$
\sum_{\omega:L_{\lambda}(\omega)=0} (-1)^{\pi(\omega^{2^{k}+1})}
$$
\n
$$
= (-1)^{\pi(\omega_0^{2^{k}+1})} + (-1)^{\pi(\omega_1^{2^{k}+1})} + (-1)^{\pi(\omega_2^{2^{k}+1})} + (-1)^{\pi(\omega_3^{2^{k}+1})}
$$
\n
$$
= 2.
$$

• If $h_a(z) = 0$ has two solutions, then we show that

$$
\sum_{\omega:L_{\lambda}(\omega)=0}(-1)^{\pi(\omega^{2^{k}+1})}=(-1)^{\pi(\omega_{0}^{2^{k}+1})}+(-1)^{\pi(\omega_{1}^{2^{k}+1})}=0.
$$

KORKARYKERKE PROGRAM

Using the following lemma, we can obtain the element distribution of **s**(*v*, *t*).

Property.

Let $f(x) = h(x) = Tr(x)$, and two integers $0 < v, t < 2^n - 1$ satisfy $gcd(vt, q - 1) = 1$. Then we have

> \sum $\widehat{f}(v, t)(\lambda) = 0$ ^λ∈F² *n*

$$
\sum_{\lambda\in\mathbb{F}_{2^n}}\widehat{f}(v,t)(\lambda)^2=2^{3n}.
$$

 Ω

イロト イ押 トイヨ トイヨト

New Quaternary Sequences with 2-Level Autocorrelation

Construction: Let *n* **be an integer**, and 1 ≤ *k* < *n* with $gcd(k, n) = d$ and $\frac{n}{d}$ **is odd**. Let $f(x) = h(x) = \frac{Tr(x)}{f(x)}$, $v = 2^{n-1} - 1$, and $t = 2^k + 1$. Then $s(v, t)$ has ideal two-level autocorrelation, and the *sⁱ* 's take at most **four distinct values** $-1, 0, 1,$ or 2^d .

Distribution:

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Some Remarks on Sequences of 2nd Order DHT

SIMILARITIES TO THE BINARY CASE

Note that $2^{n-1} - 1$ and −1 are in the same coset modulo $2^n - 1$.

 Ω

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

New Hadamard Matrices with Entries –1, 0, 2

- **The new ternary sequences** yield new Hadamard matrixes with entries ${-1, 0, 2}.$
- Using the standard construction from binary 2-level autocorrelation sequences to Hadamard matrices, let

$$
A = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & s_0 & s_1 & \cdots & s_{q-3} & s_{q-2} \\ 1 & s_1 & s_2 & \cdots & s_{q-2} & s_0 \\ \vdots & & & & & \\ 1 & s_{q-2} & s_0 & \cdots & s_{q-4} & s_{q-3} \end{pmatrix}
$$

Then

$$
AA^T=I
$$

where $\mathcal{A}^{\mathcal{T}}$ is the transpose of \mathcal{A} and \mathnormal{I} is the identity matrix of q by q $(q=2^n)$.

Similarly, we have new $2^n \times 2^n$ **Hadamard matrixes with entries** $\{-1, 0, 1, 2\}$.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Example

• $n = 5$, $v = 15$, $t = 3$, and

$$
s = s(15,3)
$$

= -1 0 0 2 0 0 2 -1 0 0

0 0 2 0 -1 -1 0 2 0 -1

0 0 0 -1 2 -1 0 -1 -1 -1
-1

● Let *L* be the left (cyclic) shift operator, and

$$
A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & s & & \\ 1 & Ls & & \\ \vdots & & & \\ 1 & L^{30}s & & \end{bmatrix} \implies AA^{T} = I_{32}
$$

 299

メロメメ 御きメ モンメモン

H.G. Hu and G. Gong, New Ternary and Quaternary Sequences with Two-Level Autocorrelation, *the Proceedings of International Symposium of Information Theory (ISIT) 2010*, Austin Texas, June 13-18. Technical Report, CACR 2009-16, 2009, University of Waterloo, Canada.

 Ω

イロメ イ何メ イラメイラメー

- How to prove the other **ternary or quaternary** sequences with two-level autocorrelation from the second order DHT of **binary sequences** (shown by experiments)?
- Are **all the binary 2-level** autocorrelation sequences from the second order DHT of binary sequences (at least the experimental results confirm it)?
- How to prove **conjectured ternary** 2-level autocorrelation sequences from the second order DHT of ternary sequences?
- How to determine **analogue classes of** *p***-ary** 2-level autocorrelation sequences for *p* > 3?

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \emptyset \right\} & \rightarrow & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \emptyset \right\} & \rightarrow & \square \end{array} \right. \end{array} \right.$