Integer Valued Sequences with 2-Level Autocorrelation from Iterative Decimation Hadamard Transform

Guang Gong

Department of Electrical and Computer Engineering University of Waterloo CANADA

<http://comsec.uwaterloo.ca/~ggong>

Fields Institute-Carleton Finite Fields Workshop, July 20-23, 2010

Joint work with Honggang Hu

イロト イポト イラト イラト

- Iterative Decimation Hadamard Transform (DHT)
- Realizations from DHT and Known Binary 2-Level Autocorrelation Sequences
- New Integer Valued Sequences with 2-Level Autocorrelation Constructed from DHT
- New Ternary and Quaternary Sequences with 2-Level Autocorrelation
- Some Remarks on Sequences of DHT

・ 同 ト ・ ヨ ト ・ ヨ ト

Applications

Code Division Multiplexing Access (CDMA)

- Multiple users share a common channel simultaneously by using different *codes*
- Narrowband user information is spread into a much wider spectrum by the spreading code
- The signal from other users will be seen as a background noise: Multiple access interference (MAI)
- The limit of the maximum number of users in the system is determined by interference due to multiple access and multipath fading: Adding one user to CDMA system will only cause graceful degradation of quality

Theoretically, no fixed maximum number of users !

< D > < A > < B >

Code Division Multiplexing Access (CDMA) (Cont.)

2009 4 / 41

Spreading Sequences in CDMA Systems

 $H_n x H_n^T = nI_n$

< ロ > < 同 > < 回 > < 回 >

Walsh Codes: Basic spreading codes in CDMA systems

- > *n* different Walsh codes: each row of an *nxn* Hadamard matrix
- Mutually orthogonal: inner product of different Walsh codes are zero
- Synchronization of all users are required to maintain the orthogonality: Otherwise, produce multiple access interference (MAI)
- Further, delayed copies received from a multipath fading are not orthogonal any more: Multipath fading interference

MAI and multipath interference are major factors to limit the capacity of CDMA systems !

Basic Concepts and Definitions on Sequences

- *p*, a prime; *n*, a positive integer; $q = p^n$.
- f(x), a polynomial function from \mathbb{F}_q to \mathbb{F}_p .
- $Tr(x) = x + x^p + \cdots + x^{p^{n-1}}$, the trace function from \mathbb{F}_q to \mathbb{F}_p .
- α , a primitive element in \mathbb{F}_q .
- A sequence a = {a_i} where a_i = f(αⁱ), i = 0, 1, · · · , is a sequence over 𝔽_p with period q − 1 or dividing q − 1.
- If $f(x) = Tr(x^t)$ where (t, q 1) = 1, then **a** is an **m-sequence** over \mathbb{F}_p , i.e.,

m-sequence $\leftrightarrow Tr(x^t)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Decimation

$$b_i = a_{si}, i = 0, 1, \cdots,$$

is said to be an *s*-decimation of **a**, denoted by $\mathbf{a}^{(s)}$.

$$\mathbf{a} \longleftrightarrow f(x)$$
$$\mathbf{a}^{(s)} \longleftrightarrow f(x^s)$$

E.g.,

$$\mathbf{a} = 1001011 \quad \longleftrightarrow \quad Tr(x)$$
$$\mathbf{a}^{(3)} = 1110100 \quad \longleftrightarrow \quad Tr(x^3)$$

イロト イポト イヨト イヨト

Let ω = e^{2πi/p}, a complex primitive pth root of unity. The canonical additive character χ of *F* is defined by

 $\chi(\mathbf{X}) = \omega^{\mathbf{X}}, \mathbf{X} \in \mathbb{F}_{\boldsymbol{p}}.$

• The autocorrelation of a is defined by

$$C(\tau) = \sum_{i=0}^{N-1} \chi(a_{i+\tau}) \overline{\chi(a_i)}, \ 0 \le \tau \le N-1$$
(1)

where $\overline{\chi}$ be the complex conjugate of χ .

イロト イポト イラト イラト

2-level Autocorrelation and Orthogonal Functions

 The sequence a is said to have a 2-level autocorrelation function, if

$$\mathcal{C}(au) = \left\{egin{array}{cc} N & ext{if } au \equiv 0 egin{array}{cc} \mathsf{mod} \ N \ -1 & ext{if } au
eq 0 egin{array}{cc} \mathsf{mod} \ N. \end{array}
ight.$$

- If **a** is also balanced, then we say that **a** has an (ideal) 2-level autocorrelation function.
- When N = q − 1 and a ↔ f(x), a has 2-level autocorrelation if and only if

$$\sum_{x\in\mathbb{F}_q}\chi(f(\lambda x)\overline{\chi(f(x))}=\mathbf{0},\forall\lambda\in\mathbb{F}_q,\lambda\neq\mathbf{1}.$$

f(x) is called an **orthogonal** function from \mathbb{F}_q to \mathbb{F}_p .

Integer Sequences and Complex Valued Sequences

Let C be the complex field, b = {b_i}, b_i ∈ C with period N. The autocorrelation of b is defined as

$$C(\tau) = \sum_{i=0}^{N-1} b_{i+\tau} \overline{b_i}, \ 0 \le \tau \le N-1.$$
 (2)

b has 2-level autocorrelation if

$$C(\tau) = \begin{cases} N & \text{if } \tau \equiv 0 \mod N \\ -1 & \text{if } \tau \not\equiv 0 \mod N. \end{cases}$$

< ロ > < 同 > < 回 > < 回 >

Hadamard Transform

• The Hadamard transform of *f*(*x*) is defined by

$$\widehat{f}(\lambda) = \sum_{\mathbf{x} \in \mathbb{F}_q} \chi(\operatorname{Tr}(\lambda \mathbf{x})) \overline{\chi(f(\mathbf{x}))} = \sum_{\mathbf{x} \in \mathbb{F}_q} \omega^{\operatorname{Tr}(\lambda \mathbf{x}) - f(\mathbf{x})}, \lambda \in \mathbb{F}_q.$$

• The inverse formula is given by

$$\chi(f(\lambda)) = \frac{1}{q} \sum_{x \in \mathbb{F}_q} \chi(Tr(\lambda x))\overline{\widehat{f}(x)}, \lambda \in \mathbb{F}_q.$$

Parseval Formula

$$\sum_{x\in\mathbb{F}_q}\chi(f(\lambda x))\overline{\chi(f(x))}=\sum_{x\in\mathbb{F}_q}\widehat{f}(\lambda x)\overline{\widehat{f(x)}},\lambda\in\mathbb{F}_q.$$

< ロ > < 同 > < 三 > < 三

Iterative Decimation Hadamard Transform (DHT) (Gong-Golomb, 2002)

- h(x), orthogonal; v, t, integer 0 < v, t < q 1, and $\lambda \in \mathbb{F}_q$.
- The first-order DHT

$$\widehat{f}_{h}(v)(\lambda) = \sum_{x \in \mathbb{F}_{q}} \chi(h(\lambda x)) \overline{\chi(f(x^{v}))}$$
$$= \sum_{x \in \mathbb{F}_{q}} \omega^{h(\lambda x) - f(x^{v})}.$$

The second-order DHT

$$\begin{aligned} \widehat{f}_{h}(\boldsymbol{v},t)(\lambda) &= \sum_{\boldsymbol{y}\in\mathbb{F}_{q}}\chi(h(\lambda\boldsymbol{y}))\overline{\widehat{f}_{h}(\boldsymbol{v})(\boldsymbol{y}^{t})} \\ &= \sum_{\boldsymbol{x},\boldsymbol{y}\in\mathbb{F}_{q}}\omega^{h(\lambda\boldsymbol{y})-h(\boldsymbol{y}^{t}\boldsymbol{x})+f(\boldsymbol{x}^{v})}, \lambda\in\mathbb{F}_{q} \end{aligned}$$

Realizations

 In general, for any integer pair (v, t), for x ∈ F_q, a value of *f*_h(v, t)(x) may be just a complex number.

$$\widehat{f}_h(oldsymbol{v},t)(oldsymbol{x})\in\{oldsymbol{q}\omega^i\,|\,i=0,\cdots,oldsymbol{p}-1\},orall x\in\mathbb{F}_{oldsymbol{q}},$$

then we can construct a function, say g(x), from \mathbb{F}_q to \mathbb{F}_p , whose elements are given by

$$\chi(g(x)) = \frac{1}{q}\widehat{f}_h(v,t)(x), x \in \mathbb{F}_q.$$

In this case, we say that (v, t) is **realizable**, and g(x) is a **realization** of f(x).

• Hadamard Equivalence: If g(x) is realized by f(x), then g(x) and f(x) are Hadamard equivalent respect to h(x).

Important remark

For two functions which are Hadamard equivalent, if one of them has 2-level autocorrelation, so does the other.

A (1) > A (2) > A

Example

• Let
$$p = 2$$
, $n = 4$, $h(x) = f(x) = Tr(x)$,

• \mathbb{F}_{2^4} be defined by $t(x) = x^4 + x + 1$, and α a root of t(x) in \mathbb{F}_{2^4} . Let

 $f(x) \leftrightarrow \mathbf{a} = 000100110101111.$

The first-order DHT of f(x) (or a)

$$\widehat{f}_{h}(v)(\lambda) = \sum_{x \in \mathbb{F}_{2^{4}}} (-1)^{\overline{t}(\lambda x) + \overline{t}(x^{v})},$$

V	$\{\widehat{f}_h(\boldsymbol{v})(\alpha^i)\}, i = 0, 1, \cdots, s-1$	$S = \frac{15}{gcd(v,15)}$
3	8,0,0,0,0	5
5	0,0,0	3
7	0, 0, 0, 4, 0, 8, 4, -4, 0, 4, 8, -4, 4, -4, -4	15

Example (cont.)

• The second-order DHT, $\hat{f}_h(7,7)$ and $\hat{f}_h(7,5)$, are given by

$$\widehat{f}_{h}(7,t)(\lambda) = \sum_{x,y \in \mathbb{F}_{2^{4}}} (-1)^{Tr(\lambda y) + Tr(y^{t}x) + Tr(x^{7})}, \ t \in \{5,7\}$$

and

$$\{ \widehat{f}_h(7,7)(\alpha^i) \} = -16, -16, -16, 16, -16, 24, 16, 8, -16, 16, 24, 8, 16, 8, 8 \\ \{ \widehat{f}_h(7,5)(\alpha^i) \} = 16, -16, -16.$$

• Thus, (7, 7) is not a realizable pair, while (7, 5) is a realizable pair which realizes the sequence 011 of period 3.

イロン イボン イヨン イヨン

Hadamard Equivalent Classes for Known 2-Level Autocorrelation Sequences

- Experimental results on the realizations of all the known *p*-ary sequences with 2-level autocorrelation of period *pⁿ* 1 have been done:
 - **Binary case**: for odd $n \le 17$ (Gong-Golomb, 2002), and even $n \le 16$ (Yu-Gong, 2005, 2009).
 - Ternary Case: for odd n ≤ 15 (Ludkovski-Gong, 2001, Gong-Helleseth, 2004).
 - *p*-ary: *p* > 3, some data.

Hadamard Equivalent Classes for Known 2-Level Autocorrelation Sequences (Cont.)

イロト イポト イヨト イヨト

New Integer Valued Sequences with 2-Level Autocorrelation Constructed from DHT

New Observation

Recall

 $\{s_i\} = \{\widehat{f}_h(7,7)(\alpha^i)\} \\ = -16, -16, -16, 16, -16, 24, 16, 8, -16, 16, 24, 8, 16, 8, 8\}$

• The sequence {*s_i*} is not a realization, but it is an integer sequence with 2-level autocorrelation!

Construction of New Integer Valued Sequences

• For integers 0 < v, t < q - 1, we define the sequence $\mathbf{s}'(v, t) = \{\mathbf{s}'_i\}$ by

$$\mathbf{s}'_i = \widehat{f}_h(\mathbf{v}, t)(\alpha^i), \ \mathbf{s}_i = \mathbf{s}'_i/\mathbf{q}, i = 0, 1, 2, \cdots$$

- Then s'(v, t) is an integer valued sequence for p = 2 and a complex valued sequence for p > 2.
- s(v, t) is normalized from s'(v, t).

Theorem

If the sequence $\mathbf{a} \leftrightarrow f(x)$ has two-level autocorrelation, then the autocorrelation function $C_{\mathbf{s}(v,t)}(\tau)$ of $\mathbf{s}(v,t)$, the normalized version, satisfies

$$\begin{array}{lll} C_{\mathbf{s}(v,t)}(\tau) &=& \sum_{i=0}^{q-2} s_{i+\tau} \overline{s_i} \\ &=& \left\{ \begin{array}{ll} q-1, & \text{if } \tau \equiv 0 \ \text{mod} \ (q-1); \\ -1, & \text{otherwise.} \end{array} \right. \end{array}$$

for any (v, t) which co-prime with q - 1.

Question: For which (v, t), does the sequence $\mathbf{s}(v, t)$ have "nice" values?

Some Examples

•
$$p = 2$$
, $f(x) = h(x) = Tr(x)$.

Table: n = 5

(<i>v</i> , <i>t</i>)	$\widehat{T}r(\mathbf{v},t)(\lambda)/2^n$
(3, 11)	{-1,0,2}
(15, 3)	$\{-1, 0, 2\}$
(3, 7)	$\{-1, 0, 1, 4\}$
(3, 15)	$\{-2,-1/2,0,1/2,1,3/2\}$
(5, 15)	$\{-7/2,-1,-1/2,0,1/2,3/2\}$
(15, 15)	$\{-1,-3/4,-1/4,1/2,3/2,11/4\}$
maximum magnitude	4

<ロ> <同> <同> <同> < 同> < 同>

Some Examples (Cont.)

Table: n = 6

(<i>v</i> , <i>t</i>)	$\widehat{T}r(\mathbf{v},t)(\lambda)/2^n$
(5, 13)	{-1,0,1,4}
(5, 23)	{-1,0,1,3}
(5, 5)	$\{-2, -1, 0, 1, 2\}$
(5, 31)	$\{-3/2,-1,-1/2,0,1/2,1,3\}$
(11, 23)	$\{-2,-1,-1/2,0,1/2,1,2\}$
(31, 31)	$\{-1,-7/8,-5/8,-1/4,1/4,7/8,13/8,5/2\}$
(11, 31)	$\{-7/2, -5/4, -1, -3/4, -1/2, -1/4, 1/4, 1/2, 1, 5/4, 3/2, 2\}$
maximum magnitude	4

< ロ > < 回 > < 回 > < 回 > < 回 >

Some Examples (Cont.)

(<i>v</i> , <i>t</i>)	$\widehat{Tr}(v,t)(\lambda)/2^n$
(3, 43)	$\{-1, 0, 2\}$
(5, 27)	$\{-1, 0, 2\}$
(9, 15)	$\{-1, 0, 2\}$
(3, 19)	$\{-1, 0, 1, 2\}$
(3, 29)	$\{-1, 0, 1, 2\}$
(5, 13)	$\{-1, 0, 1, 2\}$
(5, 21)	$\{-1, 0, 1, 2\}$
(7, 13)	$\{-1, 0, 1, 2\}$
(7, 21)	$\{-1, 0, 1, 2\}$
(9, 9)	$\{-1, 0, 1, 2\}$
(9, 23)	$\{-1, 0, 1, 2\}$
(11, 29)	$\{-1, 0, 1, 2\}$
(3, 23)	$\{-1, 0, 1, 3\}$
(7, 11)	$\{-1, 0, 1, 3\}$
(7, 19)	$\{-1, 0, 2, 6\}$
maximum magnitude	6

Table: n = 7

G. Gong (University of Waterloo) New Integer Valued 2-Level AC Sequences

▶ E ∽へC 2009 24/41

ヘロト ヘロト ヘビト ヘビト

Some Examples (Cont.)

Table: n = 8

(<i>v</i> , <i>t</i>)	$\widehat{Tr}(\mathbf{v},t)(\lambda)/2^n$
(11, 47)	$\{-1, 0, 1, 3\}$
(13, 53)	$\{-1, 0, 1, 3\}$
(11, 31)	$\{-1, 0, 1, 2, 3\}$
(23, 43)	$\{-1, 0, 1, 2, 3\}$
(13, 23)	$\{-1, 0, 1, 2, 9\}$
(7, 23)	$\{-1, 0, 1, 2, 3, 5\}$
(7, 31)	$\{-1.5,-1,-0.5,0,0.5,1,1.5,4\}$
(11, 61)	$\{-2,-1.5,-1,-0.5,0,0.5,1,2\}$
(11, 91)	$\{1, 0.5, -2.5, -0.5, 0, -1, 2, 2.5, -2\}$
(13, 31)	$\{1,0,0.5,-0.5,-1,2,-2,-1.5,1.5\}$
(23, 91)	$\{1,-0.5,0.5,1.5,0,2.5,-1,-1.5,2\}$
(7, 19)	$\{5, 0.5, 1.5, -1, 1, -0.5, 0, -1.5, 3, -2\}$
(7, 47)	$\{-3,-0.5,0,2,-1,-1.5,1,0.5,1.5,3\}$
(11, 53)	$\{5,0,-1.5,0.5,-0.5,2,-3,1.5,1,-1\}$
(13, 47)	$\{1, 0.5, -1.5, -1, 0, 3, -0.5, 1.5, -2.5, 2.5\}$
maximum magnitude	9

G. Gong (University of Waterloo) New Integer Valued 2-Level AC Sequences

< ロ > < 回 > < 回 > < 回 > < 回 >

New Ternary Sequences with 2-Level Autocorrelation

Theorem

- Let p = 2, n be an odd integer, $1 \le k < n$ with gcd(k, n) = 1, and f(x) = h(x) = Tr(x). Let $v = 2^{n-1} 1$, and $t = 2^k + 1$. Then s(v, t) has two-level autocorrelation, and the s_i 's take three distinct values -1, 0, or 2.
- 2 Let N_{η} denote the number of η within one period of $\mathbf{s}(\mathbf{v}, t)$, where $\eta = -1, 0, \text{ or } 2$. Then

$$N_{-1} = (2^n + 1)/3, N_0 = 2^{n-1} - 1, \text{ and } N_2 = (2^{n-1} - 1)/3.$$

In order to prove

$$\widehat{Tr}(\mathbf{v},t)(\alpha^i)/2^n = -1, 0, \text{ or } 2,$$

we need to prove the following lemma:

Lemma

Let n be an odd integer, and $1 \le k < n$ with gcd(k, n) = 1. Let $v = 2^{n-1} - 1$, and $t = 2^k + 1$. Then for any $\lambda \in \mathbb{F}_{2^n}^*$, we have

$$\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{Tr(\lambda y+y^tx+x^v)}=-2^n, 0, \text{ or } 2^{n+1}.$$

< D > < P > < E > < E</p>

Variable Changes

By changing variables, we have

$$\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{\operatorname{Tr}(\lambda y+y^tx+x^v)}=\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{\operatorname{Tr}(x^t+y^t+\lambda xy)}.$$

In details,

$$\begin{split} \sum_{x,y\in\mathbb{F}_{2^{n}}}(-1)^{Tr(\lambda y+y^{t}x+x^{v})} &= \sum_{x\in\mathbb{F}_{2^{n}}^{*},y\in\mathbb{F}_{2^{n}}}(-1)^{Tr(\lambda y+y^{t}x+x^{v})} = \sum_{x\in\mathbb{F}_{2^{n}}^{*},y\in\mathbb{F}_{2^{n}}}(-1)^{Tr(\lambda y+y^{t}x+1/x)} \\ &= \sum_{x\in\mathbb{F}_{2^{n}}^{*},y\in\mathbb{F}_{2^{n}}}(-1)^{Tr(\lambda y+y^{t}/x+x)} \quad (x\leftarrow 1/x) \\ &= \sum_{x_{1}\in\mathbb{F}_{2^{n}}^{*},y\in\mathbb{F}_{2^{n}}}(-1)^{Tr(\lambda y+(y/x_{1})^{t}+x_{1}^{t})} \quad (x_{1}^{t}\leftarrow x) \\ &= \sum_{x_{1}\in\mathbb{F}_{2^{n}}^{*},z\in\mathbb{F}_{2^{n}}}(-1)^{Tr(\lambda zx_{1}+z^{t}+x_{1}^{t})} \quad (z\leftarrow y/x_{1}) \\ &= \sum_{x_{1},z\in\mathbb{F}_{2^{n}}}(-1)^{Tr(z^{t}+x_{1}^{t}+\lambda zx_{1})}. \end{split}$$

2009 28 / 41

Thus, we need to prove the lemma below:

Lemma

Let n be an odd integer, and $1 \le k < n$ with gcd(k, n) = 1. Then for any $\lambda \in \mathbb{F}_{2^n}^*$, we have

$$\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{Tr(x^{2^{k}+1}+y^{2^k+1}+\lambda xy)}=-2^n,0,\text{or }2^{n+1}$$

(日)

Proof Sketch

• Set
$$L_{\lambda}(\omega) = \omega^{2^{2k}} + \lambda^{2^k} \omega^{2^k} + \omega + \lambda^{2^{k-1}}$$
. The we have
$$\sum_{x,y \in \mathbb{F}_{2^n}} (-1)^{Tr(x^{2^k+1}+y^{2^k+1}+\lambda xy)} = 2^n \sum_{\omega: L_{\lambda}(\omega)=0} (-1)^{Tr(\omega^{2^k+1})}.$$

- Hence we need to study the roots of $L_{\lambda}(\omega) = 0$.
- Let $z = \omega \sqrt{\lambda}$, and $a = \frac{1}{\lambda^{2^{k-1}+1/2}}$. Then $L_{\lambda}(\omega) = 0$ if and only if

$$h_a(z) = a^{2^k} z^{2^{2^k}} + z^{2^k} + az + 1 = 0.$$

<ロ> <同> <同> < 同> < 同> < 同> = 三目

The proof can be divided into two cases.

Case 1: $a \neq \beta^{2^k+1} + \beta$ for any $\beta \in \mathbb{F}_{2^n}$.

- $h_a(z) = 0$ has precisely one solution $z_0 = R_{k,k'}(1/a)$, where $R_{k,k'}(\cdot)$ is Hans Dobbertin's polynomial. Then $L_{\lambda}(\omega) = 0$ has precisely one solution $\omega_0 = z_0/\sqrt{\lambda}$.
- We have $Tr(z_0) = 1$ because $x^{2^k+1} + x + a = 0$ has no solution in \mathbb{F}_{2^n} .
- According to Hans Dobbertin's result,

$$\omega_0^{2^{k}+1} = (z_0/\sqrt{\lambda})^{2^{k}+1} = az_0^{2^{k}+1} = \sum_{i=1}^{k'} z_0^{2^{ik}} + k' + 1,$$

Thus

$$Tr(\omega_{0}^{2^{k}+1}) = Tr\left(\sum_{i=1}^{k'} z_{0}^{2^{ik}}\right) + k' + 1 = k' \cdot Tr(z_{0}) + k' + 1 = 1.$$

It follows that

$$\sum_{\omega: L_{\lambda}(\omega)=0} (-1)^{Tr(\omega^{2^{k}+1})} = (-1)^{Tr(\omega_{0}^{2^{k}+1})} = -1.$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Case 2: $a = \beta^{2^k+1} + \beta$ for some $\beta \in \mathbb{F}_{2^n}$.

• Set $Q(z) = az^{2^k} + \beta^2 z + \beta$, $\Gamma = \beta^{2^k-1} + 1/\beta$, and $\Delta = \Gamma^{-\frac{1}{2^k-1}}$. Then we have

$$h_a(z) = Q(z)^{2^k} + \Gamma Q(z) = Q(z)(Q(z)^{2^k-1} + \Delta^{-(2^k-1)}).$$

- *h_a(z)* = 0 if and only if *Q(z)* = 0 or *Q(z)* + 1/Δ = 0.
 We can show that
 - Q(z) = 0 has **none or precisely two** solutions, and
 - $Q(z) + 1/\Delta = 0$ has precisely two solutions.

<ロ> (日) (日) (日) (日) (日) (日) (0)

• If $h_a(z) = 0$ has four solutions, then we can show that

$$\sum_{\omega:L_{\lambda}(\omega)=0} (-1)^{Tr(\omega_{2}^{2^{k}+1})}$$

= $(-1)^{Tr(\omega_{0}^{2^{k}+1})} + (-1)^{Tr(\omega_{1}^{2^{k}+1})} + (-1)^{Tr(\omega_{2}^{2^{k}+1})} + (-1)^{Tr(\omega_{3}^{2^{k}+1})}$
= 2.

• If $h_a(z) = 0$ has two solutions, then we show that

$$\sum_{\omega: L_{\lambda}(\omega)=0} (-1)^{Tr(\omega^{2^{k}+1})} = (-1)^{Tr(\omega^{2^{k}+1})} + (-1)^{Tr(\omega^{2^{k}+1})} = 0.$$

<ロ> (日) (日) (日) (日) (日)

Using the following lemma, we can obtain the element distribution of $\mathbf{s}(\mathbf{v}, t)$.

Property.

Let f(x) = h(x) = Tr(x), and two integers $0 < v, t < 2^n - 1$ satisfy gcd(vt, q - 1) = 1. Then we have

 $\sum_{\lambda\in\mathbb{F}_{2^n}}\widehat{f}(v,t)(\lambda)=0$

$$\sum_{\lambda\in\mathbb{F}_{2^n}}\widehat{f}(v,t)(\lambda)^2=2^{3n}.$$

< ロ > < 同 > < 回 > < 回 >

New Quaternary Sequences with 2-Level Autocorrelation

• Construction: Let *n* be an integer, and $1 \le k < n$ with gcd(k, n) = d and n/d is odd. Let f(x) = h(x) = Tr(x), $v = 2^{n-1} - 1$, and $t = 2^k + 1$. Then s(v, t) has ideal two-level autocorrelation, and the s_i 's take at most four distinct values $-1, 0, 1, or 2^d$.

Distribution:

Element	Frequency
-1	$\frac{2^{(m+1)d}+2^d}{2(2^d+1)}$
0	$2^{(m-1)d} - 1$
1	$\frac{(2^d-2)(2^{md}-1)}{2(2^d-1)}$
2 ^d	$\frac{2^{(m-1)d}-1}{2^{2d}-1}$

Some Remarks on Sequences of 2nd Order DHT

SIMILARITIES TO THE BINARY CASE

(<i>v</i> , <i>t</i>)	$\widehat{Tr}(\mathbf{v},t)(\lambda)/2^n$	Conditions	Comments
$(3, 2^k + 1)$	$\{-1,1\}$	gcd(k, n) = 1	Dillon-Dobbertin, 2004
$(-1, 2^k + 1)$	$\{-1, 0, 2\}$	gcd(k, n) = 1	Hu-Gong, 2009
$(-1, 2^k + 1)$	$\{-1, 0, 1, 2^d\}$	gcd(k, n) = d	Hu-Gong, 2009
		<i>n/d</i> odd	

Note that $2^{n-1} - 1$ and -1 are in the same coset modulo $2^n - 1$.

New Hadamard Matrices with Entries -1, 0, 2

- The new ternary sequences yield new Hadamard matrixes with entries $\{-1, 0, 2\}$.
- Using the standard construction from binary 2-level autocorrelation sequences to Hadamard matrices, let

$$A = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & s_0 & s_1 & \cdots & s_{q-3} & s_{q-2} \\ 1 & s_1 & s_2 & \cdots & s_{q-2} & s_0 \\ \vdots & & & & \\ 1 & s_{q-2} & s_0 & \cdots & s_{q-4} & s_{q-3} \end{pmatrix}$$

Then

$$AA^T = I$$

where A^{T} is the transpose of A and I is the identity matrix of q by q ($q = 2^{n}$).

• Similarly, we have new $2^n \times 2^n$ Hadamard matrixes with entries $\{-1, 0, 1, 2\}$.

Example

• n = 5, v = 15, t = 3, and

$$s = s(15,3)$$

$$= -1 \ 0 \ 0 \ 2 \ 0 \ 0 \ 2 \ -1 \ 0 \ 0$$

$$0 \ 0 \ 2 \ 0 \ -1 \ -1 \ 0 \ 2 \ 0 \ -1$$

$$0 \ 0 \ 0 \ -1 \ 2 \ -1 \ 0 \ -1 \ -1$$

• Let L be the left (cyclic) shift operator, and

$$A = \begin{bmatrix} 1 & 1 \cdots 1 \\ 1 & s \\ 1 & Ls \\ \vdots \\ 1 & L^{30}s \end{bmatrix} \implies AA^{T} = I_{32}$$

<ロ> <同> <同> <同> < 同> < 同>

Reference

 H.G. Hu and G. Gong, New Ternary and Quaternary Sequences with Two-Level Autocorrelation, *the Proceedings of International Symposium of Information Theory (ISIT) 2010*, Austin Texas, June 13-18. Technical Report, CACR 2009-16, 2009, University of Waterloo, Canada.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- How to prove the other ternary or quaternary sequences with two-level autocorrelation from the second order DHT of binary sequences (shown by experiments)?
- Are all the binary 2-level autocorrelation sequences from the second order DHT of binary sequences (at least the experimental results confirm it)?
- How to prove conjectured ternary 2-level autocorrelation sequences from the second order DHT of ternary sequences?
- How to determine analogue classes of *p*-ary 2-level autocorrelation sequences for *p* > 3?