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Definition
A Costas Array C (of order n) is an n × n grid containing n dots
such that

Each row and each column contains precisely one dot
(permutation matrix)
All displacement vectors (i.e. vector between two dots) are
distinct

In other words, the autocorrelation function of C is always either
0 or 1.
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Construction

Applications in radar and sonar
The number of Costas Arrays of a given order is not
known. In fact, the existence of Costas Arrays for all n is an
open problem.
However, there are some constructions.
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Definition (Welch Array)
Let α be a primitive element of Fp, p a prime. Define a
permutation π on {1..p − 1} by

π(i) = αi

Then π is a Costas permutation

Definition (Golomb Array)
Let α and β be primitive elements of Fq, q a power of a prime.
Define a permutation π on {1..q − 2} by

αi + βπ(i) = 1

Then π is a Costas permutation. Denote this by Gα,β
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Suppose we had two Golomb arrays of the same order, Gα,β

and Gαr ,βs , where (r ,q − 1) = (s,q − 1) = 1. Then the
maximum cross-correlation between the two arrays can be
shown to equal the number of roots of the polynomial

Fr ,s(z) := zr + (1− z)s − 1

in Fq.

Conjecture (Rickard)

Fr ,s has at most q+1
2 roots in Fq
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We consider the case r = s, r odd, and denote by Fr .

0 and 1 are roots for all r .

Fr (z) = Fr (1− z) = −zr Fr (
1
z

)

If α is a root, then 1− α is a root
If α 6= 0 is a root, then 1

α is a root
So there is an action by S3 on the roots of the polynomial
This polynomial also arises in the cross-correlation of
m-sequences, and in the study of APN functions
It is related to Cauchy-Mirimanoff polynomials
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Lemma
Let r be odd. Let S denote the set of non-zero roots of Fr over
Fq. Suppose x and y are in S, with y 6= 1. Then

x
y
∈ S ⇔ 1− x

1− y
∈ S

Proof.
x and y are roots of Fr , so

x r + (1− x)r = 1
y r + (1− y)r = 1

⇒ x r − y r = (1− y)r − (1− x)r
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Proof(contd.)

Then x
y is a root

⇔ ( x
y )r + (1− x

y )r = 1
⇔ x r + (y − x)r = y r

⇔ x r − y r = (x − y)r

⇔ (1− y)r − (1− x)r = (x − y)r

⇔ (1− x)r + (x − y)r = (1− y)r

⇔ (1−x
1−y )r + ( x−y

1−y )r = 1

⇔ 1−x
1−y is a root of Fr
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Applying this result to 1
x and 1

y , we also have

Corollary
Suppose x and y are in S, with y 6= 1. Then

x
y
∈ S ⇔ y

x
(
1− x
1− y

) ∈ S
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Suppose now that c is any non-root of Fr . Consider the set

1
c

S = {x | Fr (cx) = 0}

Let x ∈ S ∩ 1
c S, i.e. x and cx are both roots of Fr . Then by the

previous lemma,
1− x
1− cx

and
c(

1− x
1− cx

)

are both non-roots of Fr (as c = cx
x is not a root). Hence for

every element x of S ∩ 1
c S, there is an element 1−x

1−cx which is
not in S ∪ 1

c S.
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So if we set
U = { 1− x

1− cx
| x ∈ S ∩ 1

c
S}

we have that |U| = |S ∩ 1
c S|, and hence

|U ∪ S ∪ 1
c

S| = 2|S| ≤ q − 1

proving the result:

Theorem
If r is odd and p − 1 does not divide r − 1, then the polynomial

zr + (1− z)r − 1

has at most q+1
2 roots in Fq.
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Summary

We have proved Rickard’s Conjecture for the case r = s

Future work
r 6= s?
Exact number of roots?
Fr irreducible over Z[z]?
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