On the roots of a polynomial connected with Golomb Costas Arrays

John Sheekey

Claude Shannon Institute School of Mathematical Science University College Dublin

23 July 2010 / Fields Institute-Carleton Finite Fields Workshop

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

Outline

John Sheekey **[On the roots of a polynomial connected with Costas Arrays](#page-0-0)**

(ロ) (伊)

→ 重 > → 重

 2990

∍

Definition

A Costas Array *C* (of order *n*) is an *n* × *n* grid containing *n* dots such that

Each row and each column contains precisely one dot (permutation matrix)

All displacement vectors (i.e. vector between two dots) are distinct

In other words, the autocorrelation function of *C* is always either 0 or 1.

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ

Definition

A Costas Array *C* (of order *n*) is an *n* × *n* grid containing *n* dots such that

- **Each row and each column contains precisely one dot** (permutation matrix)
- All displacement vectors (i.e. vector between two dots) are distinct

In other words, the autocorrelation function of *C* is always either 0 or 1.

イロメ イ押 メイヨメ イヨメ

Definition

A Costas Array *C* (of order *n*) is an *n* × *n* grid containing *n* dots such that

- **Each row and each column contains precisely one dot** (permutation matrix)
- All displacement vectors (i.e. vector between two dots) are distinct

In other words, the autocorrelation function of *C* is always either 0 or 1.

イロメ イ押 メイヨメ イヨメ

Construction

Applications in radar and sonar

- The number of Costas Arrays of a given order is not known. In fact, the existence of Costas Arrays for all *n* is an open problem.
- However, there are some constructions.

4 0 8

 $\left\{ \left\vert \phi\right\vert \left\vert x\right\vert \left\vert x\right\$

Construction

- Applications in radar and sonar
- The number of Costas Arrays of a given order is not known. In fact, the existence of Costas Arrays for all *n* is an open problem.
- However, there are some constructions.

4 0 8

K 何 ▶ K 臣 ▶ K

Construction

- Applications in radar and sonar
- The number of Costas Arrays of a given order is not known. In fact, the existence of Costas Arrays for all *n* is an open problem.
- However, there are some constructions.

K 何 ⊁ K ヨ ⊁

Definition (Welch Array)

Let α be a primitive element of \mathbb{F}_p , p a prime. Define a permutation π on $\{1..p-1\}$ by

$$
\pi(i)=\alpha^i
$$

Then π is a Costas permutation

Let α and β be primitive elements of \mathbb{F}_q , q a power of a prime. Define a permutation π on $\{1..q-2\}$ by

$$
\alpha^i + \beta^{\pi(i)} = 1
$$

Then π is a Costas permutation. Denote this by $G_{\alpha\beta}$

. *. .*

Definition (Welch Array)

Let α be a primitive element of \mathbb{F}_p , p a prime. Define a permutation π on $\{1..p-1\}$ by

$$
\pi(i)=\alpha^i
$$

Then π is a Costas permutation

Definition (Golomb Array)

Let α and β be primitive elements of \mathbb{F}_q , q a power of a prime. Define a permutation π on $\{1..q-2\}$ by

$$
\alpha^i + \beta^{\pi(i)} = 1
$$

Then π is a Costas permutation. Denote this by $G_{\alpha,\beta}$

Suppose we had two Golomb arrays of the same order, $G_{\alpha,\beta}$ G_{α',β^s} , where $(r,q-1)=(s,q-1)=1.$ Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

$$
F_{r,s}(z) := z^r + (1-z)^s - 1
$$

in \mathbb{F}_q .

 $\mathsf{F}_{\mathsf{r},s}$ has at most $\frac{q+1}{2}$ roots in \mathbb{F}_q

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ

Suppose we had two Golomb arrays of the same order, $G_{\alpha,\beta}$ and $G_{\!\alpha',\beta^{\mathcal{S}}},$ where $(r,q-1)=(s,q-1)=1.$ Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

$$
F_{r,s}(z) := z^r + (1-z)^s - 1
$$

in \mathbb{F}_q .

 $\mathsf{F}_{\mathsf{r},s}$ has at most $\frac{q+1}{2}$ roots in \mathbb{F}_q

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

Suppose we had two Golomb arrays of the same order, $G_{\alpha,\beta}$ and $G_{\!\alpha',\beta^{\mathcal{S}}},$ where $(r,q-1)=(s,q-1)=1.$ Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

$$
F_{r,s}(z) := z^r + (1-z)^s - 1
$$

in \mathbb{F}_q .

 $\mathsf{F}_{\mathsf{r},s}$ has at most $\frac{q+1}{2}$ roots in \mathbb{F}_q

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

Suppose we had two Golomb arrays of the same order, *G*_{αβ} and $G_{\!\alpha',\beta^{\mathcal{S}}},$ where $(r,q-1)=(s,q-1)=1.$ Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

$$
F_{r,s}(z) := z^r + (1-z)^s - 1
$$

in \mathbb{F}_q .

Conjecture (Rickard)

 $\mathsf{F}_{\mathsf{r},\mathsf{s}}$ has at most $\frac{q+1}{2}$ roots in \mathbb{F}_q

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁


```
0 and 1 are roots for all r.
\bulletF_r(z) = F_r(1 - z) = -z^r F_r(\frac{1}{z})
```
- \bullet If α is a root, then 1 α is a root
- If $\alpha \neq {\bf 0}$ is a root, then $\frac{1}{\alpha}$ is a root
- \bullet So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials

K ロ ト K 何 ト K ヨ ト K ヨ

 Ω

z)

0 and 1 are roots for all *r*.

 \bullet

$$
F_r(z) = F_r(1 - z) = -z^r F_r(\frac{1}{z})
$$

- \bullet If α is a root, then 1 α is a root
- If $\alpha \neq {\bf 0}$ is a root, then $\frac{1}{\alpha}$ is a root
- \bullet So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

0 and 1 are roots for all *r*.

 \bullet

$$
F_r(z) = F_r(1 - z) = -z^r F_r(\frac{1}{z})
$$

- \bullet If α is a root, then 1 α is a root
- If $\alpha \neq {\bf 0}$ is a root, then $\frac{1}{\alpha}$ is a root
- \bullet So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

0 and 1 are roots for all *r*.

 \bullet

$$
F_r(z) = F_r(1 - z) = -z^r F_r(\frac{1}{z})
$$

- If α is a root, then 1 α is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root
- \bullet So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

0 and 1 are roots for all *r*.

 \bullet

$$
F_r(z) = F_r(1 - z) = -z^r F_r(\frac{1}{z})
$$

- If α is a root, then 1 α is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root
- \bullet So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials

K ロ ト K 何 ト K ヨ ト K ヨ

0 and 1 are roots for all *r*.

 \bullet

$$
F_r(z) = F_r(1 - z) = -z^r F_r(\frac{1}{z})
$$

- If α is a root, then 1 α is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root
- \bullet So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials

K ロ ト K 何 ト K ヨ ト K ヨ

0 and 1 are roots for all *r*.

 \bullet

$$
F_r(z) = F_r(1 - z) = -z^r F_r(\frac{1}{z})
$$

- If α is a root, then 1 α is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root
- \bullet So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ

Lemma

Let r be odd. Let S denote the set of non-zero roots of F^r over \mathbb{F}_{q} *. Suppose x and y are in S, with y* \neq *1. Then*

> *x* $\frac{x}{y} \in S \Leftrightarrow \frac{1-x}{1-y}$ $\frac{1}{1-y} \in S$

x and *y* are roots of *F^r* , so

$$
x^{r} + (1 - x)^{r} = 1
$$

$$
y^{r} + (1 - y)^{r} = 1
$$

$$
\Rightarrow x^{r} - y^{r} = (1 - y)^{r} - (1 - x)^{r}
$$

4 ロ) (何) (日) (日)

 $2Q$

ă

Lemma

Let r be odd. Let S denote the set of non-zero roots of F^r over \mathbb{F}_q *. Suppose x and y are in S, with y* \neq *1. Then*

x and *y* are roots of *F^r* , so

$$
x^{r} + (1 - x)^{r} = 1
$$

$$
y^{r} + (1 - y)^{r} = 1
$$

$$
\Rightarrow x^{r} - y^{r} = (1 - y)^{r} - (1 - x)^{r}
$$

4 ロ) (何) (日) (日)

 $2Q$

ă

Lemma

Let r be odd. Let S denote the set of non-zero roots of F^r over \mathbb{F}_q *. Suppose x and y are in S, with y* \neq *1. Then*

$$
\frac{x}{y} \in S \Leftrightarrow \frac{1-x}{1-y} \in S
$$

x and *y* are roots of *F^r* , so

$$
x^{r} + (1 - x)^{r} = 1
$$

$$
y^{r} + (1 - y)^{r} = 1
$$

$$
\Rightarrow x^{r} - y^{r} = (1 - y)^{r} - (1 - x)^{r}
$$

4 ロ) (何) (日) (日)

 $2Q$

ă

Lemma

Let r be odd. Let S denote the set of non-zero roots of F^r over \mathbb{F}_q *. Suppose x and y are in S, with y* \neq *1. Then*

$$
\frac{x}{y} \in S \Leftrightarrow \frac{1-x}{1-y} \in S
$$

Proof.

x and *y* are roots of *F^r* , so

$$
x^{r} + (1 - x)^{r} = 1
$$

y^r + (1 - y)^r = 1

$$
\Rightarrow x^{r} - y^{r} = (1 - y)^{r} - (1 - x)^{r}
$$

John Sheekey [On the roots of a polynomial connected with Costas Arrays](#page-0-0)

4 ロ) 4 何) 4 ミ) 4 ミ)

ă

Lemma

Let r be odd. Let S denote the set of non-zero roots of F^r over \mathbb{F}_q *. Suppose x and y are in S, with y* \neq *1. Then*

$$
\frac{x}{y} \in S \Leftrightarrow \frac{1-x}{1-y} \in S
$$

Proof.

x and *y* are roots of *F^r* , so

$$
x^{r} + (1 - x)^{r} = 1
$$

$$
y^{r} + (1 - y)^{r} = 1
$$

$$
\Rightarrow x^{r} - y^{r} = (1 - y)^{r} - (1 - x)^{r}
$$

4 ロ) 4 何) 4 ミ) 4 ミ)

 $2Q$

ă.

Proof(contd.)

Then $\frac{x}{y}$ is a root $(\frac{x}{y})^r + (1 - \frac{x}{y})^r$ $(\frac{x}{y})^r = 1$ \Leftrightarrow $x^r + (y - x)^r = y^r$ \Leftrightarrow $x^r - y^r = (x - y)^r$ \Leftrightarrow $(1 - y)^r - (1 - x)^r = (x - y)^r$ \Leftrightarrow $(1 - x)^r + (x - y)^r = (1 - y)^r$ ⇔ (1−*x* $\frac{1-x}{1-y}$)^{*r*} + $(\frac{x-y}{1-y})$ ^{*r*} = 1 ⇔ ¹−*^x* 1−*y* is a root of *F^r*

イロメ イ押 メイヨメ イヨメ

÷. QQ

Proof(contd.)

Then $\frac{x}{y}$ is a root ⇔ (*x* $(\frac{x}{y})^r + (1 - \frac{x}{y})^r$ $(\frac{x}{y})^r = 1$ \Leftrightarrow $x^r + (y - x)^r = y^r$ \Leftrightarrow $x^r - y^r = (x - y)^r$ \Leftrightarrow $(1 - y)^r - (1 - x)^r = (x - y)^r$ \Leftrightarrow $(1 - x)^r + (x - y)^r = (1 - y)^r$ ⇔ (1−*x* $\frac{1-x}{1-y}$)^{*r*} + $(\frac{x-y}{1-y})$ ^{*r*} = 1 ⇔ ¹−*^x* 1−*y* is a root of *F^r*

イロメ イ押 メイヨメ イヨメ

B

Proof(contd.)

Then $\frac{x}{y}$ is a root ⇔ (*x* $(\frac{x}{y})^r + (1 - \frac{x}{y})^r$ $(\frac{x}{y})^r = 1$ \Leftrightarrow $x^r + (y - x)^r = y^r$ \Leftrightarrow $x^r - y^r = (x - y)^r$ \Leftrightarrow $(1 - y)^r - (1 - x)^r = (x - y)^r$ \Leftrightarrow $(1 - x)^r + (x - y)^r = (1 - y)^r$ ⇔ (1−*x* $\frac{1-x}{1-y}$)^{*r*} + $(\frac{x-y}{1-y})$ ^{*r*} = 1 ⇔ ¹−*^x* 1−*y* is a root of *F^r*

イロメ イ押 メイヨメ イヨメ

B

Proof(contd.)

Then $\frac{x}{y}$ is a root ⇔ (*x* $(\frac{x}{y})^r + (1 - \frac{x}{y})^r$ $(\frac{x}{y})^r = 1$ \Leftrightarrow $x^r + (y - x)^r = y^r$ \Leftrightarrow $x^r - y^r = (x - y)^r$ \Leftrightarrow $(1 - y)^r - (1 - x)^r = (x - y)^r$ \Leftrightarrow $(1 - x)^r + (x - y)^r = (1 - y)^r$ ⇔ (1−*x* $\frac{1-x}{1-y}$)^{*r*} + $(\frac{x-y}{1-y})$ ^{*r*} = 1 ⇔ ¹−*^x* 1−*y* is a root of *F^r*

イロメ イ押 メイヨメ イヨメ

B

Proof(contd.)

Then $\frac{x}{y}$ is a root ⇔ (*x* $(\frac{x}{y})^r + (1 - \frac{x}{y})^r$ $(\frac{x}{y})^r = 1$ \Leftrightarrow $x^r + (y - x)^r = y^r$ \Leftrightarrow $x^r - y^r = (x - y)^r$ \Leftrightarrow $(1 - y)^r - (1 - x)^r = (x - y)^r$ \Leftrightarrow $(1 - x)^r + (x - y)^r = (1 - y)^r$ ⇔ (1−*x* $\frac{1-x}{1-y}$)^{*r*} + $(\frac{x-y}{1-y})$ ^{*r*} = 1 ⇔ ¹−*^x* 1−*y* is a root of *F^r*

イロメ イ押 メイヨメ イヨメ

÷. QQ

Proof(contd.)

Then $\frac{x}{y}$ is a root

$$
\Leftrightarrow (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1
$$

\n
$$
\Leftrightarrow x^r + (y - x)^r = y^r
$$

\n
$$
\Leftrightarrow x^r - y^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - y)^r - (1 - x)^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - x)^r + (x - y)^r = (1 - y)^r
$$

\n
$$
\Leftrightarrow (\frac{1 - x}{1 - y})^r + (\frac{x - y}{1 - y})^r = 1
$$

$$
\Leftrightarrow \frac{1-x}{1-y}
$$
 is a root of F_r

メロメメ 倒 メメ きょくきょ

ă

Proof(contd.)

Then $\frac{x}{y}$ is a root

$$
\Leftrightarrow (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1
$$

\n
$$
\Leftrightarrow x^r + (y - x)^r = y^r
$$

\n
$$
\Leftrightarrow x^r - y^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - y)^r - (1 - x)^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - x)^r + (x - y)^r = (1 - y)^r
$$

\n
$$
\Leftrightarrow (\frac{1 - x}{1 - y})^r + (\frac{x - y}{1 - y})^r = 1
$$

$$
\Leftrightarrow \frac{1-x}{1-y}
$$
 is a root of F_r

メロメメ 御きメ ミカメ モド

ă

Proof(contd.)

Then $\frac{x}{y}$ is a root

$$
\Leftrightarrow (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1
$$

\n
$$
\Leftrightarrow x^r + (y - x)^r = y^r
$$

\n
$$
\Leftrightarrow x^r - y^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - y)^r - (1 - x)^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - x)^r + (x - y)^r = (1 - y)^r
$$

\n
$$
\Leftrightarrow (\frac{1 - x}{1 - y})^r + (\frac{x - y}{1 - y})^r = 1
$$

$$
\Leftrightarrow \frac{1-x}{1-y}
$$
 is a root of F_r

メロメメ 御きメ ミカメ モド

ă

Proof(contd.)

Then $\frac{x}{y}$ is a root

$$
\Leftrightarrow (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1
$$

\n
$$
\Leftrightarrow x^r + (y - x)^r = y^r
$$

\n
$$
\Leftrightarrow x^r - y^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - y)^r - (1 - x)^r = (x - y)^r
$$

\n
$$
\Leftrightarrow (1 - x)^r + (x - y)^r = (1 - y)^r
$$

\n
$$
\Leftrightarrow (\frac{1 - x}{1 - y})^r + (\frac{x - y}{1 - y})^r = 1
$$

⇔ ¹−*^x* 1−*y* is a root of *F^r*

メロメメ 御きメ ミカメ モド

 \Box

ă.

Applying this result to $\frac{1}{x}$ and $\frac{1}{y}$, we also have

Suppose x and y are in S, with $y \neq 1$ *. Then*

$$
\frac{x}{y} \in S \Leftrightarrow \frac{y}{x}(\frac{1-x}{1-y}) \in S
$$

John Sheekey **C** [On the roots of a polynomial connected with Costas Arrays](#page-0-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

B

Applying this result to $\frac{1}{x}$ and $\frac{1}{y}$, we also have

Corollary

Suppose x and y are in S, with $y \neq 1$ *. Then*

$$
\frac{x}{y} \in S \Leftrightarrow \frac{y}{x}(\frac{1-x}{1-y}) \in S
$$

John Sheekey **[On the roots of a polynomial connected with Costas Arrays](#page-0-0)**

 4 ロ } 4 6 } 4 \pm } 4 \pm

 $2Q$

э

Suppose now that *c* is any non-root of *F^r* . Consider the set

$$
\frac{1}{c}S=\{x \mid F_r(cx)=0\}
$$

Let $x \in S \cap \frac{1}{c}$ *c S*, i.e. *x* and *cx* are both roots of *F^r* . Then by the previous lemma,

$$
\frac{1-x}{1-cx}
$$

and

$$
c(\frac{1-x}{1-cx})
$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ $\frac{2X}{X}$ is not a root). Hence for every element *x* of $S \cap \frac{1}{6}$ $\frac{1}{c}$ *S*, there is an element $\frac{1-x}{1-cx}$ which is not in *S* ∪ 1 $\frac{1}{c}$ *S*.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Suppose now that *c* is any non-root of *F^r* . Consider the set

$$
\frac{1}{c}S=\{x \mid F_r(cx)=0\}
$$

Let $x \in S \cap \frac{1}{c}$ *c S*, i.e. *x* and *cx* are both roots of *F^r* . Then by the previous lemma,

$$
\frac{1-x}{1-cx}
$$

and

$$
c(\frac{1-x}{1-cx})
$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ $\frac{2X}{X}$ is not a root). Hence for every element *x* of $S \cap \frac{1}{6}$ $\frac{1}{c}$ *S*, there is an element $\frac{1-x}{1-cx}$ which is not in *S* ∪ 1 $\frac{1}{c}$ *S*.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Suppose now that *c* is any non-root of *F^r* . Consider the set

$$
\frac{1}{c}S=\{x \mid F_r(cx)=0\}
$$

Let $x \in \mathcal{S} \cap \frac{1}{c}$ *c S*, i.e. *x* and *cx* are both roots of *F^r* . Then by the previous lemma,

$$
\frac{1-x}{1-cx}
$$

and

$$
c(\frac{1-x}{1-cx})
$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ $\frac{2X}{X}$ is not a root). Hence for every element *x* of $S \cap \frac{1}{6}$ $\frac{1}{c}$ *S*, there is an element $\frac{1-x}{1-cx}$ which is not in *S* ∪ 1 $\frac{1}{c}$ *S*.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Suppose now that *c* is any non-root of *F^r* . Consider the set

$$
\frac{1}{c}S=\{x \mid F_r(cx)=0\}
$$

Let $x \in \mathcal{S} \cap \frac{1}{c}$ *c S*, i.e. *x* and *cx* are both roots of *F^r* . Then by the previous lemma,

$$
\frac{1-x}{1-cx}
$$

and

$$
c(\frac{1-x}{1-cx})
$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ $\frac{2X}{X}$ is not a root). Hence for every element *x* of $S \cap \frac{1}{6}$ $\frac{1}{c}$ *S*, there is an element $\frac{1-x}{1-cx}$ which is not in *S* ∪ 1 $\frac{1}{c}$ *S*.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Suppose now that *c* is any non-root of *F^r* . Consider the set

$$
\frac{1}{c}S=\{x \mid F_r(cx)=0\}
$$

Let $x \in \mathcal{S} \cap \frac{1}{c}$ *c S*, i.e. *x* and *cx* are both roots of *F^r* . Then by the previous lemma,

$$
\frac{1-x}{1-cx}
$$

and

$$
c(\frac{1-x}{1-cx})
$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ $\frac{2X}{X}$ is not a root). Hence for every element *x* of $S \cap \frac{1}{6}$ $\frac{1}{c}$ *S*, there is an element $\frac{1-x}{1-cx}$ which is not in *S* ∪ 1 $\frac{1}{c}$ *S*.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Suppose now that *c* is any non-root of *F^r* . Consider the set

$$
\frac{1}{c}S=\{x \mid F_r(cx)=0\}
$$

Let $x \in \mathcal{S} \cap \frac{1}{c}$ *c S*, i.e. *x* and *cx* are both roots of *F^r* . Then by the previous lemma,

$$
\frac{1-x}{1-cx}
$$

and

$$
c(\frac{1-x}{1-cx})
$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ *x* is not a root). Hence for every element *x* of $S \cap \frac{1}{6}$ $\frac{1}{c}$ *S*, there is an element $\frac{1-x}{1-cx}$ which is not in *S* ∪ 1 $\frac{1}{c}$ *S*.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Suppose now that *c* is any non-root of *F^r* . Consider the set

$$
\frac{1}{c}S=\{x \mid F_r(cx)=0\}
$$

Let $x \in \mathcal{S} \cap \frac{1}{c}$ *c S*, i.e. *x* and *cx* are both roots of *F^r* . Then by the previous lemma,

$$
\frac{1-x}{1-cx}
$$

and

$$
c(\frac{1-x}{1-cx})
$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ $\frac{2X}{X}$ is not a root). Hence for every element *x* of $S \cap \frac{1}{C}$ $\frac{1}{c}$ *S*, there is an element $\frac{1-x}{1-cx}$ which is not in $\mathcal{S} \cup \frac{1}{C}$ *c S*.

イロメ 不優 トイヨメ イヨメー

So if we set

$$
U=\{\frac{1-x}{1-cx}\mid x\in S\cap \frac{1}{c}S\}
$$

we have that $|U|=|{\mathcal S}\cap \frac{1}{\mathcal S}$ $\frac{1}{c}$ *S* \vert , and hence

$$
|U\cup S\cup \frac{1}{c}S|=2|S|\leq q-1
$$

proving the result:

If r is odd and p − 1 *does not divide r* − 1*, then the polynomial*

$$
z^r + (1-z)^r - 1
$$

has at most $\frac{q+1}{2}$ roots in F_q.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

ă

So if we set

$$
U=\{\frac{1-x}{1-cx}\mid x\in S\cap \frac{1}{c}S\}
$$

we have that $|U|=|{\mathcal S}\cap \frac{1}{\mathcal C}|$ *c S*|, and hence

$$
|U\cup S\cup \frac{1}{c}S|=2|S|\leq q-1
$$

proving the result:

If r is odd and p − 1 *does not divide r* − 1*, then the polynomial*

$$
z^r + (1-z)^r - 1
$$

has at most $\frac{q+1}{2}$ roots in F_q.

K ロ ト K 何 ト K ヨ ト K ヨ

ă.

So if we set

$$
U=\{\frac{1-x}{1-cx}\mid x\in S\cap \frac{1}{c}S\}
$$

we have that $|U|=|{\mathcal S}\cap \frac{1}{\mathcal C}|$ $\frac{1}{c}$ *S* \vert , and hence

$$
|U\cup S\cup \frac{1}{c}S|=2|S|\leq q-1
$$

proving the result:

If r is odd and p − 1 *does not divide r* − 1*, then the polynomial*

$$
z^r + (1-z)^r - 1
$$

has at most $\frac{q+1}{2}$ roots in F_q.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

ă.

So if we set

$$
U=\{\frac{1-x}{1-cx}\mid x\in S\cap \frac{1}{c}S\}
$$

we have that $|U|=|{\mathcal S}\cap \frac{1}{\mathcal C}|$ $\frac{1}{c}$ *S* \vert , and hence

$$
|U\cup S\cup \frac{1}{c}S|=2|S|\leq q-1
$$

proving the result:

Theorem

If r is odd and p − 1 *does not divide r* − 1*, then the polynomial*

$$
z^r + (1-z)^r - 1
$$

has at most $\frac{q+1}{2}$ roots in F_q.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 \equiv

We have proved Rickard's Conjecture for the case *r* = *s*

• Future work

- $r \neq s$?
- Exact number of roots?
- *Fr* irreducible over Z[*z*]?

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ

We have proved Rickard's Conjecture for the case *r* = *s*

• Future work

$$
\bullet \ \ r \neq s?
$$

- Exact number of roots?
- F_r irreducible over $\mathbb{Z}[z]$?

4 0 8

4 伊 ▶

÷.

- 4 周 8 3 4