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Introduction

I This talk is about strongly regular Cayley graphs, or
equivalently, partial difference sets.

I The constructions we will talk about use finite fields,
semifields, quadratic forms over finite fields (or more generally,
p-ary bent functions), and cyclotomy.

I There are still many problems in this area. We will mention a
few of them.



Definitions and Examples

Strongly Regular Graphs
A strongly regular graph srg (v , k , λ, µ) is a graph with v vertices
that is regular of valency k and that has the following properties:

I For any two adjacent vertices x , y , there are exactly λ vertices
adjacent to both x and y .

I For any two nonadjacent vertices x , y , there are exactly µ
vertices adjacent to both x and y .

For example, a 5-cycle is a (5, 2, 0, 1)-srg, and the Petersen graph
is a (10, 3, 0, 1)-srg. From the point of view of association
schemes, strongly regular graphs are equivalent to 2-class
association schemes.



Theorem. For a simple graph Γ of order v, not complete or
edgeless, with adjacency matrix A, the following are equivalent:

I Γ is strongly regular with parameters (v , k, λ, µ) for certain
integers k , λ, µ,

I A2 = kI + λA+ µ(J − I − A) for certain real numbers k, λ, µ,

I A has precisely two distinct restricted eigenvalues.

Theorem (Hoffman and Singleton). Suppose (v , k, 0, 1) is the
parameter set of a strongly regular graph. Then (v , k) = (5, 2),
(10, 3), (50, 7) or (3250,57).

Long-standing Open Problem. Does there exist an srg
(3250, 57, 0, 1)?



Partial Difference Sets
Let G be a (multiplicative) group of order v . A k-element subset
D of G is called a (v , k, λ, µ) partial difference set in G (PDS)
provided that the list of “differences” d1d

−1
2 , d1, d2 ∈ D, d1 ̸= d2

contains each nonidentity element of D exactly λ times and each
nonidentity element in G \ D exactly µ times.

Using group ring notation, we have D is a (v , k, λ, µ) partial
difference set in G if and only if

DD(−1) = γ1G + λD + µ(G − D),

where γ = k − µ if 1G ̸∈ D and γ = k − λ if 1G ∈ D.

We will usually assume that 1G ̸∈ D and D(−1) = D, in which
case, we have

D2 = (k − µ)1G + (λ− µ)D + µG .



Relationship between SRG and PDS
I An srg (v , k , λ, µ) with a regular automorphism group G is

equivalent to a (v , k , λ, µ) PDS in G .
I PDS in elementary abelian p-groups are also closely related to

2-weight codes and two-intersection sets in finite geometry.

Examples.

I The Paley PDS: Let Fq be the finite field of size q, where
q ≡ 1 (mod 4). Then the set of nonzero squares of Fq is a
(q, q−1

2 , q−5
4 , q−1

4 ) PDS.
I Let Q : F2m

q → Fq be a nonsingular quadratic form, where q is
a prime power, and let D = {x ∈ F2m

q | Q(x) = 0} \ {0}.
Then D is a PDS in (F2m

q ,+). The parameters of D are
(q2m, r(qm − ϵ), ϵqm + r2 − 3ϵr , r2 − ϵr), where ϵ = 1 or −1
according as Q is hyperbolic or elliptic, and r also depends on
the type of Q.

I There are many known constructions, see the survey papers
by Calderbank and Kantor, and by S. L. Ma. (I recommend
highly the NOTES on Spectra of Graphs, by A. E. Brouwer
and W. Haemers.)



Recent Constructions

Theorem (WQWX, Des. Codes and Cryptogr. 2007)
Let (K ,+, ∗) be a presemifield with commutative multiplication.
Then {x ∗ x | x ∈ K , x ̸= 0} is a PDS with Paley parameters or a
skew Hadamard difference set according as |K | ≡ 1 (mod 4) or 3
(mod 4).

I Semifields

Let (K ,+, ∗) be a set equipped with two binary operations + and
∗. We call (K ,+, ∗) a presemifield if the two operations satisfy the
following conditions:
(i) K is an abelian group with respect to +;
(ii) x ∗ (y + z) = x ∗ y + x ∗ z , (x + y) ∗ z = x ∗ z + y ∗ z for all
x , y , z ∈ K ;
(iii) if x ∗ y = 0, then x = 0 or y = 0.
If furthermore there exists 1 ∈ K such that 1 ∗ x = x ∗ 1 = x for all
x ∈ K , then we call (K ,+, ∗) a semifield.



I Dickson semifields: Assume that q is an odd prime power. Let
j be a nonsquare in K = Fq, and let 1 ̸= σ ∈ Aut(K ). The
Dickson semifield (K 2,+, ∗) is defined by

(a, b) ∗ (c , d) = (ac + jbσdσ, ad + bc).

I Ganley semifields: Let K = Fq, q = 3r , with r ≥ 3 odd. The
Ganley semifield (K 2,+, ∗) is defined by

(a, b) ∗ (c , d) = (ac − b9d − bd9, ad + bc + b3d3).

I Cohen-Ganley semifields: Let q ≥ 9 be a power of 3 and let
j ∈ K = Fq be a nonsquare. The Cohen-Ganley semifield
(K 2,+, ∗) is defined by

(a, b) ∗ (c , d) = (ac + jbd + j3(bd)9, ad + bc + j(bd)3).

I Zha-Kyureghyan-Wang semifields: ...

I ...



Affine Polar Graphs

Construction. Let Q : Fn
q → Fq be a nonsingular quadratic form,

where n is even and q is a power of an odd prime p, and let
D = {x ∈ Fn

q | Q(x) is a nonzero square}. Then D is a PDS in
(Fn

q,+). The corresponding strongly regular graph Cay(Fn
q,D) is

the so-called affine polar graph.



Two Generalizations of the Affine Polar Graphs

I Theorem (FWXY, 2010) Let p be a prime, e ≥ 2, q = p2jγ ,
where γ ≥ 1, e|(pj + 1) and j is the smallest such positive
integer. Let Ci , 0 ≤ i ≤ e − 1, be the cyclotomic classes of Fq

of order e, and Q : V = F2m
q → Fq be a nonsingular quadratic

form. Then each of the sets

DCi
:= {x ∈ V | Q(x) ∈ Ci}, 0 ≤ i ≤ e − 1,

is a PDS in (V ,+) with parameters

(q2m, (qm − ϵ)r , ϵn + r2 − 3ϵr , r2 − ϵr), where r = qm−1(q−1)
e ,

and ϵ = 1 or −1 according as Q is hyperbolic or elliptic.

I In the second generalization we replace the quadratic form in
the affine polar graph construction by weakly regular p-ary
bent functions



Remarks on the first generalization

I It is interesting to note that the first generalization is valid
when p = 2 while the Construction of affine polar graph only
works when p is odd.

I When the quadratic form Q in the first generalization is of
elliptic type, the PDS DCi

, 0 ≤ i ≤ (e − 1), have negative
Latin square type parameters. Negative Latin square type
PDS are harder to come by than Latin square type PDS.
Besides the examples arising from elliptic quadrics and the
PDS arising from the affine polar graph Construction, there is
one more general class of negative Latin square type PDS in
elementary abelian p-groups coming from the “difference of
two quadrics” construction by Andries Brouwer. The negative
Latin square type PDS arising from the first generalization
have very different parameters from those known examples
since there is quite a bit of freedom to choose the parameter
f = (q − 1)/e.



p-ary Bent Functions

I f : Fn
p → Fp

I The Walsh coefficient of f at b ∈ Fn
p is defined by

Wf (b) =
∑
x∈Fn

p

ωf (x)+b·x ,

where ω is a complex primitive pth root of unity.

I We say that f is bent if |Wf (b)|2 = pn for all b ∈ Fn
p.

I When p = 2, we get the usual bent functions.

I These generalized bent functions were introduced by Kumar,
Scholtz and Welch in 1985, who (actually) considered
f : (Z/qZ)n → Z/qZ, q not necessarily a prime power.



Regular, weakly regular bent functions

Let f : Fn
p → Fp be a p-ary bent function.

I We say that f is regular if p−n/2Wf (b) is a pth root of unity
for all b ∈ Fn

p.

I We say that f is weakly regular if there exists a complex u
such that |u| = 1 and up−n/2Wf (b) is a pth root of unity for
all b ∈ Fn

p.

I For examples of weakly regular p-ary bent functions that are
not quadratic forms, see the recent paper “Proofs of two
conjectures on ternary weakly regular bent functions” (by
HHKWX), IEEE Trans. Inform. Theory, 55 (2009),
5272–5283.



The Second Generalization

I The following relationship between (binary) bent functions
and difference sets is well known: Let f : Fn

2 → F2 and
Df = {x ∈ Fn

2 | f (x) = 1} (i.e., Df is the inverse image of 1
under f ). Then f is a bent function if and only if Df is a
(2n, 2n−1 ± 2n/2−1, 2n−2 ± 2n/2−1) difference set in (Fn

2,+).

I Note that since (Fn
2,+) is an elementary abelian 2-group, any

difference set in (Fn
2,+) is automatically a partial difference

set.

I Let p be an odd prime, and let f : Fn
p → Fp be a weakly

regular bent function. Then

Df = {x ∈ Fn
p | f (x) is a nonzero square}

is a partial difference set in (Fn
p,+). This is a theorem by

FWXY (2010), and independently by Tan, Chee and Zhang
(2010).



Open Problems

I p-ranks

I Theorem (Brouwer and Van Eijl, 1992) Let q = pt be a
prime power congruent to 1 modulo 4, and let A be the
adjacency matrix of the Paley graph P(q). Then

rkp(2A+ I ) = (
p + 1

2
)t .



It is an open problem to compute the p-ranks of 2A+ I , where A
are adjacency matrices of the pseudo-Paley graphs from semifields.

Order Paley graphs Dickson Ganley

34 16 20 N/A

36 64 85 88

38 256 376 N/A

310 1024 1654 1534



Open Problems

Let q = 3t , let A be the adjacency matrix of Cay(K 2,D(3t , σ)),
and let rt = rk3(2A+ I ). The first five terms of the sequence
(rt)t≥1 were computed by both Guobiao Weng and David
Saunders. After computing two more terms of the 3-ranks of
2A+ I (r1 = 4, r2 = 20, r3 = 85, r4 = 376, r5 = 1654, r6 =
7283, r7 = 32064), the following conjecture emerges.

I Conjecture (Dave Saunders). Let rt be defined as above.
Then

rt = 4rt−1 + 2rt−2 − rt−3,

for all t ≥ 4.



Open Problems on Constructions

I Construct PDS (Latin square type or negative Latin square
type) in groups of non-prime-power orders. (Some work in
this direction was done recently by John Polhill.)

I (Edwin van Dam and Xiang) Does there exist an infinite
family of PDS with parameters
(v = 23e , k = 22e + 2e + 1, λ = 2e + 4, µ = 2e + 2)?.

I (Harold N. Ward) Does there exist an infinite family of PDS

with parameters (v = q4, k = 3(q2+1)(q−1)
2 , λ, µ, r , s),

r = 3(q−1)
2 , s = 3(q−1)

2 − q2? When q = 3 or 5, it is known
that PDS with these parameters exist.


