Methods for primitive and normal polynomials

Stephen D Cohen

University of Glasgow

Fields-Carleton Finite Fields Workshop Ottawa, 21 July, 2010

Preliminaries

Throughout \mathbb{F}_q is the finite field of cardinality q

 \blacktriangleright q is a power of the characteristic, the prime p

 \mathbb{F}_{q^n} is the extension of \mathbb{F}_q of degree *n*

Denote the \mathbb{F}_{q} -trace and norm of elements γ in \mathbb{F}_{q^n} by $\operatorname{Tr}(\gamma)$, $\operatorname{Nm}(\gamma)$

The trace of $\gamma \in \mathbb{F}_{q^n}$ over the ground field \mathbb{F}_p is denoted by $\mathrm{Tr}_0(\gamma)$

▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Polynomials are monic: $f(x) = x^{n} + a_{1}x^{n-1} + \cdots + a_{m}x^{n-m} + \cdots + a_{n} \in \mathbb{F}_{q}[x]$ $a_{m} = m \text{th coefficient}$

For $K \in \mathbb{F}_q[x]$, $|K| = q^{\deg(K)}$

 $W(m) = 2^{\omega(m)} = no.$ of square-free divisors of m($\omega(m)$ is the number of distinct prime factors of m)

Definitions 1

A primitive element of \mathbb{F}_{q^n} is a generator of the multiplicative cyclic group $\mathbb{F}_{q^n}^*$ (of cardinality $q^n - 1$)

A primitive polynomial of degree *n* over \mathbb{F}_q is a (monic irreducible) polynomial whose roots are all primitive elements of \mathbb{F}_{q^n}

- ▶ The number of primitive elements in \mathbb{F}_{q^n} is $\phi(q^n 1)$, where ϕ is Euler's function
- ► For $k \in \mathbb{N}$, set $\theta(k) = \frac{\phi(k)}{k} = \prod_{\text{prime } l \mid k} (1 \frac{1}{l})$
- The proportion of primitive elements in $\mathbb{F}_{q^n}^*$ is $\theta(q^n 1)$

Normal/free elements and polynomials

Definitions 2 A normal polynomial of degree *n* over \mathbb{F}_q is an irreducible polynomial whose roots $\{\alpha, \alpha^q, \dots \alpha^{q^{n-1}}\}$ form a basis of \mathbb{F}_{q^n} over \mathbb{F}_q

A root of such a normal polynomial is a free element of \mathbb{F}_{q^n}

▶ For a polynomial $K \in \mathbb{F}_q[x]$ the polynomial Euler's function is

$$\phi({\mathcal K}) = |{\mathcal K}| \prod_{ ext{irred} \mid {\mathcal P} \mid {\mathcal K}} (1 - rac{1}{|{\mathcal P}|})$$

- The number of free elements is $\phi(x^n 1)$
- ► For $K \in \mathbb{F}_q[x]$, define $\theta(K) = \frac{\phi(K)}{|K|}$

• The proportion of free elements in \mathbb{F}_{q^n} is $\theta(x^n - 1)$

For notational convenience (only), for some divisor k of $q^n - 1$ and some polynomial factor of $x^n - 1 \in \mathbb{F}_q[x]$ we consider a formal product kK Later this may be a contracted to a single symbol k

In this spirit, for such a formal product kK, write

- $\blacktriangleright \phi(kK) = \phi(k)\phi(K)$
- $\blacktriangleright \ \theta(kK) = \frac{\phi(kK)}{k|K|}$
- $\blacktriangleright W(kK) = W(k)W(K)$
- These may be contracted simply to φ(k), θ(k) and W(k), respectively

Problem 1 (PFNT)

Primitive normal polynomials with specified trace and norm

Given $n \ge 3$, does there exist an element $\alpha \in \mathbb{F}_{q^n}$ that is simultaneously primitive and free over \mathbb{F}_q with specified \mathbb{F}_q -trace and norm (necessarily a primitive element of \mathbb{F}_q)?

See: Cohen (2000), $n \ge 5$; Cohen-Huczynska (2003), n = 4, 3Problem 2 (SPNBT)

The strong primitive normal basis problem

Does there exist a primitive element $\alpha \in \mathbb{F}_{q^n}$ such that both α and $1/\alpha$ are free over \mathbb{F}_q ?

See: Cohen-Huczynska (2010)

Problem 3 (Pm)

Primitive polynomials with prescribed coefficient

Given $1 \le m < n$ and $a \in \mathbb{F}_q$, does there exist a primitive polynomial over \mathbb{F}_q with m-th coefficient a?

See: Cohen (2006), $n \ge 9$ and $n \le 4$; Cohen-Prešern (2006, 2008), $5 \le n \le 8$

Problem 4 (PFm)

Primitive normal polynomials with prescribed coefficient

Given $1 \le m < n$ and $a \in \mathbb{F}_q$, does there exist a primitive normal polynomial over \mathbb{F}_q with m-th coefficient a?

See:

Fan-Wang (2009), $n \ge 15$, Wang-Fan-Wang (2010), $9 \le n \le 14$

Definition 3 For any divisor k of $q^n - 1$, a k-free element γ of $\mathbb{F}_{q^n}^*$ is such that $\gamma = \beta^d \ (\beta \in \mathbb{F}_{q^n}, \ d \mid k)$ implies d = 1

• A primitive element of \mathbb{F}_{q^n} is $(q^n - 1)$ -free

Application to irreducibility

Given any pair $(q, n) \neq (2, 6)$, there exists a prime divisor I_n of $q^n - 1$ that does not divide $q^d - 1$ for any d < n Zsigmondy

Hence: if $\gamma \in \mathbb{F}_{q^n}$ is I_n -free then its minimal polynomial is irreducible of degree n Zsigmondy criterion

Can be used to resolve Problem Im (= irreducible analogue of Problem Pm) Any other applications?

Characteristic function for $\gamma \in \mathbb{F}_{q^n}$ to be k-free

$$\Lambda(k) := \theta(k) \sum_{d|k} \frac{\mu(d)}{\phi(d)} \sum_{\chi_d} \chi_d(\gamma) = \begin{cases} 1, & \gamma \text{ } k \text{-free} \\ 0, & \text{otherwise} \end{cases}$$

• χ_d : multiplicative character of \mathbb{F}_{q^n} of order d

•
$$\sum_{\chi_d}$$
: sum over all such characters

$$\bullet \qquad \qquad \theta(k) := \frac{\phi(k)}{k}$$

Write
$$\Lambda(k)$$
 as $heta(k)\int_{d|k}\chi_d(\gamma)$

Given a polynomial $H = \sum H_i x^i \in \mathbb{F}_q[x], \ H^{\sigma} = \sum H_i x^{q^i}$

The Order of $\gamma \in \mathbb{F}_{q^n}$ is the "least" factor K of $x^n - 1$ such that $K^{\sigma}(\gamma) = 0$. If γ has Order K then $\gamma = H^{\sigma}(\beta)$ for some $\beta \in \mathbb{F}_{q^n}$, where $H = (x^n - 1)/K$

個 と く ヨ と く ヨ と …

Definition 4 For any factor K of $x^n - 1$, $\gamma \in \mathbb{F}_{q^n}^*$ is K-free if $\gamma = H^{\sigma}(\beta) \ (\beta \in \mathbb{F}_{q^n}, \ H|K) \implies H = 1$

•
$$\gamma \in \mathbb{F}_{q^n}$$
 is free \iff it is $x^n - 1$ -free

Characteristic function for $\gamma \in \mathbb{F}_{q^n}$ to be *K*-free

$$\Lambda(K) := \theta(K) \sum_{D \mid K} \frac{\mu(D)}{\phi(D)} \sum_{\delta_D \in \Delta_D} \psi(\delta_D \gamma) = \begin{cases} 1, & \gamma \text{ } K \text{-free} \\ 0, & \text{otherwise} \end{cases}$$

• $\psi = \psi_n = \text{canonical additive character of } \mathbb{F}_{q^n}$, i.e.

$$\psi(\alpha) = \exp\left(\frac{2\pi \mathrm{Tr}_{0}(\alpha)}{p}\right)$$

• $\Delta_D \subseteq \mathbb{F}_{q^n}$ is such that $\{\psi(\delta_D \gamma) : \delta_D \in \Delta_D\} = \text{set of all characters of Order } D$

Write
$$\Lambda(K)$$
 as $\theta(K) \int_{D|K} \psi(\delta_D \gamma)$

 $\begin{array}{l} \psi = \text{canonical additive character on } \mathbb{F}_{q^n} \\ \chi = \text{a multiplicative character on } \mathbb{F}_{q^n} \text{ of order } d>1 \end{array}$

Lemma

Let $h(x) \in \mathbb{F}_{q^n}$ be a polynomial (rational function) of degree D. Then

$$\left|\sum_{\alpha\in\mathbb{F}_{q^n}}\psi(h(\alpha))\chi(\alpha)\right|\leq Dq^{n/2}$$

Referred to as the Weil bound

Definitive reference?

Character sum expression in Problem 1 (PFTN)

Given
$$k|q^n - 1, K|x^n - 1$$
, $a, b \in \mathbb{F}_q$
 $N_{k,K}(a, b) :=$ no. of kK -free $\gamma \in \mathbb{F}_{q^n}$ with norm a , trace b .
Then $q(q-1)N_{k,K}(a, b) = \theta(kK)(q^n + S)$ where $S =$
 $\int_{d|k} \int_{D|K} \sum_{\nu \in \mathbb{F}_q^*} \sum_{c \in \mathbb{F}_q} \bar{\nu}(b)\bar{\lambda}(ac) \sum_{\alpha \in \mathbb{F}_{q^n}} (\chi_d \nu)(\alpha)\psi((\delta_D + c)\alpha)$

Here

- $\nu =$ multiplicative character on \mathbb{F}_q
- $\lambda = \text{canonical additive character on } \mathbb{F}_q$

Thus $q(q-1)N_{k,K}(a,b) = \theta(kK)(q^n + S)$ where $S = \int_{d|k} \int_{D|K} \sum_{\nu \in \mathbb{F}_q^*} \sum_{c \in \mathbb{F}_q} C(c,\nu)(\nu)G_n(\chi\nu) + \cdots$

Here

3

$$\blacktriangleright |G_n(\chi_d) \le q^{n/2} \qquad (d > 1)$$

• Easily $S \leq W(kK)q^{\frac{n}{2}+2}$

► Recall
$$S = \int_{d|k} \int_{D|K} \sum_{\nu \in \mathbb{F}_q^*} \sum_{c \in \mathbb{F}_q} \bar{\nu}(b) \bar{\lambda}(ac) \sum_{\alpha \in \mathbb{F}_q^n} (\chi_d \nu)(\alpha) \psi((\delta_D + c)\alpha)$$

Typically, replace δ_D by $c\delta_D$ and α by $\alpha/(c(\delta_D + 1))$ to yield $C(\nu, c) = C_1(\nu)G_1(\nu), |C_1(\nu)| \le 1$:

so
$$|S| \leq W(kK)q^{\frac{n+3}{2}}$$

► Use
$$\left| \sum_{\substack{\alpha \in \mathbb{F}_{q^n} \\ \operatorname{Tr}(\alpha) = \operatorname{Nm}(\alpha) = 1}} \chi(\alpha) \right| \le nq^{(n-2)/2}$$
 Katz, 1993 to yield

$$|S| \le nW(k)q^{rac{n}{2}+1}; \quad K = 1, a = b = 1$$

Katz result (+ special considerations) vital for n = 3, 4. Improvement by Moisio and Wan (2010) ...

Character sum expression in Problem 2 (SPNBT)

Let $Q_n = \frac{q^n - 1}{(q-1) \operatorname{gcd}(n, q-1)}$. It suffices to show that the existence of $\alpha \in \mathbb{F}_{q^n}$ which is Q_n -free such that both α and $1/\alpha$ are free

Given $k|Q_n, K_1|x^n - 1, K_2|y^n - 1$, let $N(k, K_1, K_2)$ be the number of $\alpha \in \mathbb{F}_{q^n}$ with α k-free and K_1 -free and $1/\alpha$ K_2 -free.

$$N(k, K_1, K_2) = \theta(kK_1K_2) \int_{d|k} \int_{D_1|K_1} \int_{D_2|K_2} K(\delta_{D_1}, \delta_{D_2}; \chi_d)$$

where

$$\mathcal{K}(\alpha,\beta;\chi) = \sum_{\gamma \in \mathbb{F}_{q^n}^*} \psi(\alpha \gamma + \beta \gamma^{-1}) \chi(\gamma) \quad \text{generalized Kloosterman sum}$$

Since

$$N(k, K_1, K_2) = \theta(kK_1K_2) \int_{d|k} \int_{D_1|K_1} \int_{D_2|K_2} K(\delta_{D_1}, \delta_{D_2}; \chi_d)$$

then

$$\left|\frac{N(k, K_1, K_2)}{\theta(kK_1K_2)} - q^n\right| \leq 2W(kK_1K_2)q^{n/2}$$

In this problem, the further ingredient required is not an improvement in the character sum estimate but skill in handling the "sieving techniques" available (see later)

Prescribing the *m*th coefficient (m < p)

 $f(x) = x^n + a_1 x^{n-1} + \dots + a_m x^{n-m} + \dots + a_n \in \mathbb{F}_q[x]$ $a_m = (-1)^m \sigma_m \text{ is the } m \text{th coefficient } (1 \le m \le n)$

Write $s_m = \sum_{\gamma \text{ a root of } f} \gamma^m$; $\sigma_m = m$ th symmetric fn of roots

Lemma (Newton's identities)

 $ra_r + a_{r-1}s_1 + a_{r-2}s_2 + \cdots + s_r = 0, \ r \le n$

- ► Specifying the first *m* coefficients (*m* < *p*) {*a*₁,..., *a_m*} can be specified by specifying {*s*₁,..., *s_m*}
- ▶ zero criterion for specifying $a_m = a$ (m < p)Set $s_t = 0$ $(t \le m^* := \lfloor m/2 \rfloor)$, $s_m = -ma$. Then $a_m = a$.
- ▶ z criterion for specifying $a_m = a$, m(< p) even Set $s_t = 0$, $t < m^*$, $s_{m^*} = z (∈ \mathbb{F}_q)$, $s_m = z^2 - ma$. Then $a_m = a$.

Character sum expression in Problem 3 (Pm), m < p

$$N_m(k) :=$$
 No. of k-free $\gamma \in \mathbb{F}_{q^n}$ with $a_m = a$
By the **zero criterion**

$$q^{m^*+1}N_m(k) = \theta(k) \int_{d|k} \sum_{\substack{c_t \in \mathbb{F}_q \\ t \le m^* \text{ or } t=m}} \psi(-c_m a) S_n(c_t \gamma^t, \chi_d),$$

where, for
$$h(x) \in \mathbb{F}_{q^n}[x]$$
, $S_n(h,\chi) = \sum_{\alpha \in \mathbb{F}_{q^n}} \psi(h(\alpha))\chi(\alpha)$

• Generally
$$|S_n(c_t\gamma^t,\chi)| \le tq^{n/2}$$

• So
$$\left|\frac{N_m(k)}{q^{n/2}\theta(k)} - q^{\frac{n}{2}-m^*-1}\right| \le mW(k)$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

▶ When $a \neq 0$, squeezing $S_1(-cax^m, \hat{\chi_d})$ into the expression for $N_m(k)$ yields

$$\left| rac{N_m(k)}{q^{(n+1)/2} heta(k)} - q^{rac{n}{2} - m^* - rac{1}{2}}
ight| \leq m' m W(k), \quad m' = (m, q-1) \; (a
eq 0)$$

Useful when $n = 5, m = 3; n/2 - m^* - 1/2 = 1$

► Alternatively, when m is even, using z-criterion and averaging over z ∈ F_q

$$\left|\frac{N_m(k)}{q^{(n+1)/2}\theta(k)}-q^{\frac{n-m-1}{2}}\right|\leq mW(k)$$

Useful when n = 8, m = 4; (n - m - 1)/2 = 3/2

All these estimates for $N_m(k)$ are less useful (even useless!) as m approaches n (even assuming n < p)

- In practice, use them for $m \leq (n+1)/2$
- If m > (n + 1)/2 fix constant term as primitive b ∈ F_q and look for a (monic) primitive polynomial of the reciprocal form b⁻¹xⁿf(1/x) with prescribed (n − m)th coefficient a/b. If now N_m(k) := No. of k-free γ ∈ F_{qⁿ} with a_m = a and a₀ = b then

$$\left|\frac{N_m(k)}{q^{n/2}\theta(k)}-q^{\frac{n}{2}-m^*-2}\right|\leq mW(k)$$

- 《圖》 《문》 《문》 - 문

Sieving

In any problem let N(k) denote the number of relevant k-free $\alpha \in \mathbb{F}_{q^n}$. Here k is a formal divisor of the relevant formal product $q^n - 1$ or $(q^n - 1)(x^n - 1)$, etc.

> N(k) is unaffected if k is replaced by its "square-free" radical

Take a set of complementary divisors, i.e. a set $\{k_1, \ldots, k_r\}$ of formal divisors of k such that, for $i \neq j$, $gcd(k_i, k_j) = k_0$ (the core) and (the radical of) the lcm of $\{k_1, \ldots, k_r\}$ is (the radical of) k Lemma (Sieving Lemma)

$$N(k) \ge \sum_{i=1}^{r} N(k_i) - (r-1)N(k_0)$$

In practice, usually k_i = k₀p_i where p_i is a prime dividing k; thus a prime number or irreducible polynomial {p₁,..., p_r} can be a mixture of both types of prime
 k₀ is the core; p₁,..., p_r are the sieving primes.

The Sieving Lemma can be written

Lemma (Sieving Lemma)

$$\begin{split} N(k) &\geq \sum_{i=1}^{r} N(k_0 p_i) - (r-1)N(k_0) \\ N(k) &\geq \delta N(k_0) + \sum_{i=1}^{r} \left(N(k_0 p_i) - \left(1 - \frac{1}{|p_i|}\right) N(k_0) \right), \end{split}$$

where $\delta = 1 - \sum_{i=1}^{r} \frac{1}{|p_i|}$ ($|p_i| = p_i$ for p_i a prime number)

- ▶ In applications, k may be $q^n 1$ or $Q_n(x^n 1)$, etc.
- ▶ Because estimates for N(k) have factor θ(k) and θ(k₀p_i) = (1 − 1/|p_i|)θ(k₀), differences in Sieving Lemma can be efficiently estimated

< 注 > < 注 > □ 注

Essential to choose complementary divisors so that $\delta > 0$

Focusing on the additive sieve: SPBNT problem

For theoretical arguments, the more regular pattern of the irreducible factors of $x^n - 1$ over the prime factorisation of $q^n - 1$ favours additive sieving wherever possible

$$\left|\frac{N(k,K_1,K_2)}{\theta(kK_1K_2)}-q^n\right|\leq 2W(kK_1K_2)q^{n/2}$$

Key strategy $(p \nmid n)$

Define s minimal such that n|q^s - 1
 s = maximal degree of irreducible factors of xⁿ - 1

►
$$x^n - 1 = g(x)G(x)$$
 G prod. of irred. factors $l_i(x)$ of deg s

- Core: $k_0 = Q_n g(x) g(y)$
- Sieving primes p_i : all $I_i(x)$ and $I_i(y)$

•
$$\delta = 1 - \frac{2(n-d)}{sq^s}$$
 $d = \deg g$

Then
$$\frac{N(k)}{q^{n/2}\theta(Q_ng^2)} > q^{n/2} - 2W(Q_ng^2) \left(\frac{q^s 2((n-d)-s)}{sq_s^s - 2(n-d)} + 2\right)$$

The multiplicative sieve for the Pm problem

$$\frac{N_m(k)}{q^{(n+1)/2}\theta(k)} - q^{\frac{n-m-1}{2}} \bigg| \le mW(k) \qquad (\text{e.g. } a \ne 0, m \text{ even})$$

▶ Worst case: $q, n \equiv 3 \mod 4, m = (n+1)/2$ For set of r compl. divisors of $q^n - 1$ with core k_0 , $N(q^n - 1)$ positive whenever

$$q^{(n-3)/4} > \left(\frac{n+1}{2}\right) W(k_0) \left(\frac{r-1}{\delta} + 2\right)$$

Outline strategy $\omega := \omega(q^n - 1)$

. . .

- (1) Assume $\omega \ge 1547$. Then $W(q^n 1) < q^{n/12}$ and $q^{\frac{n}{6}-1} > n/2$ suffices without sieving
- (2) Assume $\omega \leq 1546$ with $n \geq 16, q \geq 5$. Take k_0 = product of 10 least primes in $q^n 1$: then $r \leq 1536, \delta > 0.00267$ and OK unless $q \leq 821$ and $\omega \leq 79$

(3) Assume $\omega \leq 79, q \leq 821$: $k_0 = \text{prod. of least 4 primes}$

Further tool

Fan and Wang (inherited from Lenstra-Schoof PNBT)

Lemma

Let S_h be the set of primes < h such that each prime divisor of $q^n - 1 \in S_h$. Set $H = \prod_{h \in S_h} h$. Then

$$\omega(q^n-1) \leq rac{\log(q^n-1) - \log H}{\log h} + |\mathcal{S}_h|$$

◆□ ▶ ◆□ ▶ ◆ 目 ▶ ◆ 目 ◆ ⑦ � ?

p-adic method

For r = 1, n:

- ► R_r: ring of integers in splitting field of x^{qr} x over the p-adic field Q_p, i.e. the completion of Q w.r.t. p-adic metric
 - *R_r* has characteristic zero
 - $R_1 \subseteq R_n$
- ► Γ_r : roots of $x^{q^r} x$ Teichmüller points ► Γ_r may be identified with \mathbb{F}_{q^r} r = 1, n► Γ_r^* is cyclic of order $q^r - 1$ ► $R_r = \sum_{i=0}^{\infty} \gamma_i p^i, \ \gamma_i \in \Gamma_n$
- ► Lift primitive $f[x] \in \mathbb{F}_q[x]$ to unique primitive $\hat{f}(x) \in R_1[x]$ If f is normal over \mathbb{F}_q , then \hat{f} is normal over R_1

►
$$f \equiv \hat{f} \pmod{p}$$
; $\sigma_i \equiv \hat{\sigma}_i \pmod{p}$; roots $\hat{\gamma}$ of $\hat{f} \in \Gamma_n$

Define $\Gamma_{n,e} = \Gamma_n \pmod{p^e}$ (e positive integer)

• $\Gamma_{r,e}$ (like Γ_r) can be identified with \mathbb{F}_{q^r}

Define
$$R_{n,e} = \sum_{i=0}^{e-1} \gamma_i p^i, \ \gamma_i \in \Gamma_{n,e}$$

• $R_{n,e}$ has cardinality q^{ne} and characteristic p^{e}

• R(n,1) is effectively \mathbb{F}_{q^n}

- ▶ Lift primitive or normal $f(x) \in \mathbb{F}_q(x)$ to primitive or normal $\hat{f}(x) \in R_{1,e}$
- ► Roots $\hat{\gamma} \in R_{n,e}$

Consider roots of lifted irreducible pol. $\hat{f}(x) \in R_1(x)$ or $R_{1,e}[x]$

Definitions 5 $s_l = R_1$ -trace of the *l*th powers of roots (strictly \hat{s}_l) In particular assume $p \nmid t$ $s_t = \sum_{j=0}^{\infty} s_{t,j} p^j$ ($s_{t,j} \in \Gamma_1 \cong \Gamma_{1,e} \cong \mathbb{F}_q$) $s_t^{(i)} = \sum_{j=0}^{\infty} s_{t,j}^{p^j} p^j$

▶ $s_{t,j} \longrightarrow tp^j$ yields a bijection $\mathbb{N} \longleftrightarrow \{s_{t,j}; p \nmid t, j \ge 0\}$

Specifying coefficients up to the *m*th, even when $p \leq m$

Proposition (*p*-adic Identity) With $\hat{f}(x) \in R_1[x]$ irreducible and *p* odd

$$\begin{aligned} f^*(x) &:= x^n \hat{f}\left(\frac{1}{x}\right) &= 1 - \sigma_1 x + \sigma_2 x^2 + \dots + (-1)^n \sigma_n x^n \\ &\equiv \prod_{\substack{t=1\\p \nmid t}}^{\infty} \prod_{j=0}^{\infty} \prod_{\substack{r=1\\p \nmid r}}^{\infty} \left(1 - \left(-\frac{s_{t,j}^{p^j}}{t}\right)^r x^{rtp^j}\right)^{-\frac{\mu(r)}{r}} \pmod{p} \end{aligned}$$

• There is an alternative expression for p = 2

Proof

$$f^*(x) = \prod_{i=0}^{n-1} (1 - \hat{\gamma}^{q^i} x), \quad \hat{f}(\hat{\gamma}) = 0$$

$$f^*(x) = \exp\left(-\sum_{l=1}^{\infty} \frac{\operatorname{Tr}(\hat{\gamma})^l x^l}{l}\right) = \exp\left(-\sum_{l=1}^{\infty} \frac{s_l x^l}{l}\right)$$
$$= \exp\left(-\sum_{\substack{t=1\\p \nmid t}}^{\infty} \sum_{i=0}^{\infty} \frac{s_t^{(i)} x^{tp^i}}{tp^i}\right) = \prod_{\substack{t=1\\p \nmid t}}^{\infty} \exp\left(-\sum_{i=0}^{\infty} \frac{s_t^{(i)} x^{tp^i}}{tp^i}\right)$$
$$= \prod_{\substack{t=1\\p \nmid t}}^{\infty} \prod_{j=0}^{\infty} \prod_{i=0}^{\infty} \exp\left(-\frac{s_{t,j}^{p^j} p^{j-i} x^{tp^i}}{t}\right)$$

Next, for each $t, p \nmid t$, consider the contribution of the terms with $i \ge j$

▲□> ▲圖> ▲目> ▲目> 三目 - のへで

Finally, when i < j,

$$\exp\left(-\frac{s_{t,j}^{p^{i}}p^{j-i}x^{tp^{i}}}{t}\right) \equiv 1 \pmod{p}, \quad i < j,$$

and so such terms contribute a multiplier of 1

This proves the *p*-adic Identity

Criteria for specifying *m*th coefficient

 ▶ a₁,..., a_m can be specified by specifying s_{t,j} for all tp^j ≤ m m conditions as before

• When *m* is even and *p* is odd, a_m can be specified by

s_{t,j} = 0 tp^j ≤ ^m/₂ - 1
 s_{T₀,J₀} = z ∈ Γ₁ ^m/₂ = T₀p^{J₀}, p ∤ T₀
 s_{T₀,J} = (²/_T)^{1/p^j} z² - (Ta)^{1/p^j} z criterion

 $\left\lfloor \frac{m}{2} \right\rfloor + 1$ conditions as before

Characters over Galois rings

Only multiplicative characters over $\Gamma_{n,e}^* \cong \mathbb{F}_{q^n}^*$ required: derived from those on \mathbb{F}_{q^n} , again denoted by χ_d , $d|q^n - 1$

Additive characters are needed over $R_{n,e}$: canonical additive character: ψ where $\psi(\alpha) = \exp\left(\frac{2\pi \text{Tr}_0(\alpha)}{p^e}\right)$

▶ Let *T* be a set of positive integers indivisible by *p*

► For a polynomial
$$h(x) = \sum_{t \in T} \alpha_t x^t \ (\alpha_t \in R_{n,e}) \in R_{n,e}[x]$$
, write
 $h(x) = \sum_{j=0}^{e-1} h_j(x) p^j \quad h_j(x) \in \Gamma_{n,e}[x]$
The weighted degree of h is $d_h := \max_{0 \le j \le e-1} (\deg(h_j) p^{e-1-j})$

• Set
$$S_n(h, \chi) = \sum_{\alpha \in \Gamma_{n,e}} h(\alpha) \chi(\alpha)$$

$$S_n(h,\chi) = \sum_{\alpha \in \Gamma_{n,e}} h(\alpha)\chi(\alpha)$$

Lemma (W Li)
Generally
$$|S_n(h, \chi)| \leq d_h q^{n/2}$$

Application to Problem 3 (Pm)

$$N_m(k) :=$$
 No. of k-free $\gamma \in \mathbb{F}_{q^n}$ with $a_m = a$

Define

• $T = \{t \le m^*, p \nmid t\} \cup \{T\}$, where $m = Tp^J = Tp^{e_T - 1}$

▶ e^t = smallest integer such that $tp^{e_t} > m^*$, $t \le m^*$, $p \nmid t$,

 $\bullet \ e = e_1 = \max_{t \in \mathcal{T}} e_t$

By the zero criterion, for $a \in \mathbb{F}_q$ interpreted as in $R_{1,1}$,

$$q^{m^*+1}N_m(k) = \theta(k) \int_{d|k} \sum_{\substack{\alpha_{t,j} \in \Gamma_{1,1} \\ t \in \mathcal{T}, \ 0 \le j \le e_t - 1}} \psi(-p^{e-1}\alpha_{\mathcal{T},0}a)S_n(h,\chi_d),$$

where
$$h(x) = \sum_{t \in \mathcal{T}} \left(\sum_{j=0}^{e_t-1} \alpha_{t,j} p^{e-e_t+j} \right) x^t$$

For comparison:

From before, when p > m

$$q^{m^*+1}N_m(k) = \theta(k) \int_{d|k} \sum_{\substack{c_t \in \mathbb{F}_q \\ t \leq m^* \text{ or } t=m}} \psi(-c_m a) S_n(c_t \gamma^t, \chi_d),$$

► Now, more generally,

$$q^{m^*+1}N_m(k) = \theta(k) \int_{d|k} \sum_{\substack{\alpha_{t,j} \in \Gamma_{1,1} \\ t \in \mathcal{T}, \ 0 \le j \le e_t - 1}} \psi(-p^{e-1}\alpha_{T,0}a)S_n(h,\chi_d),$$

where $h(x) = \sum_{t \in \mathcal{T}} \left(\sum_{j=0}^{e_t-1} \alpha_{t,j}p^{e-e_t+j}\right) x^t$

A ■

-≣->

Details proceed as before

PFm: Primitive, normal, mth coefficient problem

 ▶ zero criterion (specifies a_m with m^{*} = ⌊m/2⌋ + 1 conditions) cannot be used: it can only produce a polynomial with a₁ = 0, so not-normal

Alternative approach (taking p > m for simplicity)

- (1) Specify $s_1 = 1, s_2 = \cdots = s_{m-1} = 0, s_m = a$ to force $a_m = a$: thereby find a primitive normal polynomial *m* conditions
- (2) reciprocal zero criterion Use the zero criterion on the reciprocal polynomial $a_n^{-1}x^n f(1/x)$ to find a primitive normal polynomial with specified n mth coefficient and constant

term $\left|\frac{n-m}{2}\right| + 2$ conditions

So use (1) for $m \le \frac{n+4}{3}$ and (2) for $m > \frac{n+4}{3}$ For $m = \frac{n+4}{3}$, need $\frac{n}{2} + \frac{n+4}{3} < n$ to work, i.e. n > 8• e.g. Method must fail if n = 8, m = 4 In worst case use of (1) and (2) would lead to

$$\left|\frac{N_m(k)}{q^{n/2}\theta(k)}-q^{\frac{n-8}{6}}\right| \leq \left(\frac{n}{3}\right)W(k)$$

where k is a formal divisor of $(q^n - 1)(x^n - 1)$ (not just $q^n - 1$)

Use of improved character sum expressions/estimates could lead to

$$\left|\frac{N_m(k)}{q^{n/2}\theta(k)}-q^{\frac{n-5}{6}}\right|\leq nW(k)$$

which would offer hope down to n = 6

► Wang, Fan and Wang, 2010 use the z criterion in both strategies (1) and (2) for 9 ≤ n ≤ 14

Additive sieving also needed: sometimes Fan and Wang use all the irreducible factors of $x^n - 1$ as sieving "primes". Is there a superior strategy? Small values of *n*: e.g. n = 3, m = 2; n = 4, m = 2, 3

For these, special arguments to reduce the number of conditions might be tried!!

Conjecture (Fan-Wang, 2010) For $n \ge 2$ ($a \ne 0$ if m = 1), $N_m(q^n - 1)$ is positive, except when (q, n, m, a) = (2, 3, 2, 1), (2, 4, 2, 1), (2.4, 3, 1), (2, 6, 3, 1) (3, 4, 2, 2), (5, 3, 4, 3), (4, 3, 2, 1 + c),where $c \in \mathbb{F}_4$ satisfies $c^2 + c + 1 = 0$

- (1) Resolve the Fan-Wang Conjecture
- (2) Use the Zsigmondy criterion (or similar) to resolve questions on the distribution of irreducible polynomials
- (3) Existence of strong primitive normal polynomials with specified trace, norm, etc.
- (4) Formalise the *p*-adic method and character sum estimates over Galois rings
- (5) Alternative criteria for specifying a_m with approx. m/2 conditions
- (6) Specify (say) 2 coefficients ($\leq m$ th) with εm conditions, where $\varepsilon < 1$. Hence resolve associated existence questions
- (7) Investigate and apply further sieving strategies

S D Cohen

Gauss sums and a sieve for generators of finite fields Publ. Math Debrecen, 56 (2000), 293-312

S D Cohen and S Huczynska Primitive free quartics with specified norm and trace Acta Arith., 109 (2003), 359-385

S D Cohen and S Huczynska Primitive free cubics with specified norm and trace Trans. Amer. Math. Soc., 355 (2003), 3099-3116

S D Cohen and S Huczynska The strong primitive normal basis theorem Acta Arith., 143 (2010), 299–332

S D Cohen

Primitive polynomials with a prescribed coefficient Finite Fields Appl., 12 (2006), 425–491

S D Cohen and M Prešern The Hansen-Mullen primitivity conjecture: completion of proof LMS Lecture Notes, 352 (2008), 89–120

- ∢ ≣ ▶

S Fan and X Wang Primitive normal polynomials with a prescribed coefficient

Finite Fields Appl., 15 (2009), 682–730

X Wang, S Fan and Z Wang

Primitive normal polynomials of degree $\leq n \leq 14$ with a prescribed coefficient Preprint 2010

See also

M Moisio and D Wan

On Katz's bound for the number of elements with given trace and norm

イロト イヨト イヨト イヨト

æ

J. Reine Angew. Math., 638 (2010), 69-74