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Review of the IB method

A general computational framework for simulations of problems
involving the interaction of fluids and immersed elastic structures

Original example: blood interacts with valve leaflet
(Charles S. Peskin, 1972, flow patterns around heart valves)

Applications

I Computer-assisted design of prothetic valve (Peskin & McQueen)

I Platelet aggregation during blood clotting (Fogelson)

I Flow of particle suspensions (Fogelson & Peskin; Sulsky &
Brackbill)

I Wave propagation in the cochlea (Beyer)



I Swimming organism (Fauci, Dillon, Cortez)

I Arteriolar flow (Arthurs, et. al.)

I Cell and tissue deformation under shear flow (Bottino, Stockie &
Green; Eggleton & Popel)

I Flow around a circular cylinder (Lai & Peskin; Su, Lai & Lin),
Interfacial flow with insoluble surfactant (Lai, Tseng & Huang)

I Valveless pumping (Jung & Peskin)

I Flapping filament in a flowing soap film (Zhu & Peskin), 2D dry
foam (Kim, Lai & Peskin)

I Falling papers, sails, parachutes (Kim & Peskin), insect flight,
(Jane Wang, Miller) . . .

I Many others (Lim, ..)



IB features
Mathematical formulation:

I Treat the elastic material as a part of fluid

I The material acts force into the fluid

I The material moves along with the fluid

Numerical method:

I Finite difference discretization

I Eulerian grid points for the fluid variables

I Lagrangian markers for the immersed boundary

I The fluid-boundary are linked by a smooth version of Dirac delta
function



Mathematical formulation

Consider a massless elastic membrane Γ immersed in viscous
incompressible fluid domain Ω.

Γ : X(s, t), 0 ≤ s ≤ Lb

Lb : unstressed length



Equations of motion

ρ

(
∂u

∂t
+ (u · ∇)u

)
+∇p = µ∆u+ f

∇ · u = 0

f(x, t) =

∫
Γ

F (s, t)δ(x−X(s, t))ds

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
Ω

u(x, t)δ(x−X(s, t))dx

F (s, t) =
∂

∂s
(Tτ ), T = σ(

∣∣∣∣∂X∂s
∣∣∣∣ ; s, t), τ =

∂X/∂s

|∂X/∂s|

FLUID IMMERSED BOUNDARY
u(x, t) : velocity
p(x, t) : pressure

ρ : density
µ : viscosity

X(x, t) : boundary configuration
F (x, t) : boundary force

T : tension
τ : unit tangent



Why F (s, t) = ∂
∂s(Tτ ) ?

total force = force of fluid on boundary seg. + (Tτ )
∣∣s2
s1

boundary is massless ⇒ total force = 0

force of boundary seg. on fluid = (Tτ )
∣∣s2
s1

=

∫ s2

s1

∂

∂s
(Tτ )ds

F =
∂T

∂s
τ + T

∂τ

∂s
=
∂T

∂s
τ + T

∣∣∣∣∂X∂s
∣∣∣∣κn

where κ =
|∂τ/∂s|
|∂X/∂s|

boundary curvature

n =
∂τ/∂s

|∂τ/∂s|
unit normal

T = σ0

(∣∣∣∣∂X∂s
∣∣∣∣− 1

)
σ0 : the stiffness constant



The force density is singular

f(x, t) =

∫
Γ

F (s, t)δ(x−X(s, t))ds.

f behaves like a one-dimensional delta function.

〈f ,w〉 =

∫
Ω

f(s, t)w(x, t)dx

=

∫
Ω

∫
Γ

F (s, t)δ(x−X(s, t))ds ·w(x, t)dx

=

∫
Γ

F (s, t)

∫
Ω

w(x, t)δ(x−X(s, t))dxds

=

∫
Γ

F (s, t)w(X(s, t), t)ds

If w(x, t) = u(x, t), the the total work done by the boundary is equal
to the total work done on the fluid. Thus, the solution is NOT
smooth. In fact the pressure and velocity derivatives are
discontinuous across the boundary.



Theorem (1)
The pressure and the velocity normal derivatives across the boundary
satisfy

[p] =
F · n
|∂X/∂s|

,

µ

[
∂u

∂n

]
= − F · τ
|∂X/∂s|

τ .

Theorem (2)
The normal derivatives of the pressure across the boundary satisfies

[
∂p

∂n

]
=

∂
∂s

(
F ·τ
|∂X/∂s|

)
|∂X/∂s|

.

Physical meaning of the jump conditions.
Ref: Peskin & Printz 1993, LeVeque & Li 1997 (2D), Lai & Li 2001
(3D)



Test Example

∂u

∂t
+ (u · ∇)u+∇p = ∆u+ f + g

∇ · u = 0

f =

∫
Γ

F (s, t)δ(x−X(s, t))ds

∂X(s, t)

∂t
= u(X(s, t), t)

(
X(s), Y (s)

)
=
(
0.5 cos s, 0.5 sin s

)
,

∣∣∣∣∂X∂s
∣∣∣∣ = 0.5

n =
(

cos s, sin s
)
, τ =

(
− sin s, cos s

)



Test Example (cont.)

u(x, y, t) =

{
e−t

(
2y − y

r

)
r ≥ 0.5

0 r < 0.5
,

[
∂u

∂n

]
= 2e−t sin s

v(x, y, t) =

{
e−t

(
−2x+ x

r

)
r ≥ 0.5

0 r < 0.5
,

[
∂v

∂n

]
= −2e−t cos s

p(x, y, t) =

{
0 r ≥ 0.5

1 r < 0.5
, [p] = −1

g1(x, y, t) =

{
e−t

(
y
r − 2y − y

r3

)
+ e−2t

(
4x
r − 4x− x

r2

)
r ≥ 0.5

0 r < 0.5

g2(x, y, t) =

{
−e−t

(
x
r − 2x− x

r3

)
+ e−2t

(
4y
r − 4y − y

r2

)
r ≥ 0.5

0 r < 0.5

Fn = −0.5 F1 = −0.5 cos s− e−t sin s [g · n] = 0

Fτ = e−t F2 = −0.5 sin s+ e−t cos s



Numerical Method

FLUID-Eulerian IMMERSED BOUNDARY-Lagrangian

N ×N lattice points x = (ih, jh) M moving points Xk

un ≈ u(x, n∆t), Un
k ≈ u(Xk, n∆t)

fn ≈ f(x, n∆t), F n
k ≈ F (Xk, n∆t)

pn ≈ p(x, n∆t),



Finite difference operators on lattice points and
immersed boundary points

I The finite difference approximations to the derivative are

D+
x φi,j =

φi+1,j − φi,j
h

, D−x φi,j =
φi,j − φi−1,j

h
,

D0
xφi,j =

φi+1,j − φi−1,j

2h
.

I The upwind difference approximation to the advection term is

ψi,jD
±
x φi,j =

{
ψi,jD

−
x φi,j if ψi,j > 0,

ψi,jD
+
x φi,j if ψi,j < 0.

I The centered difference approximation to the derivative on the
Lagrangian boundary can be defined by

Dsχk =
χk+1/2 − χk−1/2

∆s
,

where χk+1/2 is some boundary quantity defined on

s = (k + 1
2 )∆s.



Numerical algorithm

How to march (Xn,un) to (Xn+1,un+1)?

Step1 Compute the boundary force

Tn
k+1/2 = σ(|DsX

n
k |), τn

k+1/2 =
DsX

n
k

|DsX
n
k |
, F n

k = Ds(Tτ )nk+1/2,

where Tn
k+1/2 and τn

k+1/2 are both defined on s = (k + 1
2 )∆s, and

F n
k is defined on s = k∆s.

Step2 Apply the boundary force to the fluid

fn(x) =
∑
k

F n
kδh(x−Xn

k )∆s.

Step3 Solve the Navier-Stokes equations with the force to update the
velocity

ρ

(
un+1 − un

∆t
+

2∑
i=1

uni D
±
i u

n

)
= −D0pn+1 + µ

2∑
i=1

D+
i D
−
i u

n+1 + fn,

D0 · un+1 = 0,

where Tn
k+1/2 and τn

k+1/2 are both defined on s = (k + 1
2 )∆s, and

F n
k is defined on s = k∆s.



Numerical algorithm, cont.

Step4 Interpolate the new velocity on the lattice into the boundary
points and move the boundary points to new positions.

Un+1
k =

∑
x
un+1δh(x−Xn

k )h2

Xn+1
k = Xn

k + ∆tUn+1
k



Discrete delta function δh

δh(x) = δh(x)δh(y)

1. δh is positive and continuous function.

2. δh(x) = 0, for |x| ≥ 2h.

3.
∑

j δh(xj − α)h = 1 for all α.

(
∑

j even
δh(xj − α)h =

∑
j odd

δh(xj − α)h = 1
2 )

4.
∑

j(xj − α)δh(xj − α)h = 0 for all α.

5.
∑

j (δh(xj − α)h)
2

= C for all α.

(
∑

j δh(xj − α)δh(xj − β)h2 ≤ C)

Uniquely determined: C = 3
8 .

δh(x) =


1

8h

(
3− 2 |x| /h+

√
1 + 4 |x| /h− 4(|x| /h)2

)
|x| ≤ h,

1
8h

(
5− 2 |x| /h−

√
−7 + 12 |x| /h− 4(|x| /h)2

)
h ≤ |x| ≤ 2h,

0 otherwise.



Numerical issues of IB method

I Simple and easy to implement
I Embedding complex structure into Cartesian domain, no

complicated grid generation
I Fast elliptic solver (FFT) on Cartesian grid can be applied
I Numerical smearing near the immersed boundary
I First-order accurate, accuracy of 1D IB model (Beyer & LeVeque

1992, Lai 1998), formally second-order scheme (Lai & Peskin
2000, Griffith & Peskin 2005)

I Adaptive IB method, (Roma, Peskin & Berger 1999, Griffith et.
al. 2007)

I Immersed Interface Method (IIM, LeVeque & Li 1994), 3D jump
conditions (Lai & Li 2001)

I High-order discrete delta function in 2D, 3D
I Numerical stability tests, different semi-implicit methods (Tu &

Peskin 1992, Mayo & Peskin 1993, Newren, Fogelson, Guy &
Kirby 2007, 2008)

I Stability analysis (Stockie & Wetton 1999, Hou & Shi 2008)
I Convergence analysis (Y. Mori 2008)



Review articles

I C. S. Peskin, The immersed boundary method, Acta Numerica,
pp 1-39, (2002)

I R. Mittal & G. Iaccarino, Immersed boundary methods, Annu.
Rev. Fluid Mech. 37:239-261, (2005), Flow around solid bodies

Accuracy, stability and convergence

I R. P. Beyer & R. J. LeVeque, Analysis of a one-dimensional
model for the immersed boundary method, SIAM J. Numer.
Anal., 29:332-364, (1992)

I E. P. Newren, A. L. Fogelson, R. D. Guy & R. M. Kirby,
Unconditionally stable discretizations of the immersed boundary
equations, JCP, 222:702-719, (2007)

I Y. Mori, Convergence proof of the velocity field for a Stokes flow
immersed boundary method, CPAM, vol LXI 1213-1263, (2008)



Application: Flow around a solid body

Figure: The fluid feels the force along the surface body to stop it.

∂u

∂t
+ (u · ∇)u+∇p =

1

Re
∆u+ f

∇ · u = 0

f(x, t) =

∫ Lb

0

F (X(s), t)δ(x−X(s))ds

0 = ub(X(s), t) =

∫
Ω

u(x, t)δ(x−X(s))dx

u(x, t)→ u∞ as |x| → ∞



un+1 − un

∆t
+ (un · ∇)un = −∇pn+1 +

1

Re
∆un+1 + fn+1,

∇ · un+1 = 0,

fn+1(x) =

M∑
j=1

F n+1(Xj)δh(x−Xj)∆s , for all x,

Un+1
b (Xk) =

∑
x
un+1(x)δh(x−Xk)h2, k = 1, . . . ,M.

One can solve the above linear system directly or approximately (A
projection approach, Taira & Colonius, 2007).



Feedback forcing approach
Goldstein, et. al. 1993; Saiki & Biringen 1996; Lai & Peskin 2000

∂u

∂t
+ (u · ∇)u+∇p =

1

Re
∆u+

∫
Γ

F (s, t)δ(x−X(s, t))ds

∇ · u = 0

F (s, t) = K

∫ t

0

(U e(s, t
′)−U(s, t′))dt′ +R(U e(s, t)−U(s, t))

or F (s, t) = K(Xe(s)−X(s, t)), K � 1

∂X(s, t)

∂t
= U(s, t) =

∫
Ω

u(x, t)δ(x−X(s, t))dx

u(x, t)→ u∞ as |x| → ∞

I Treat the body surface as a nearly rigid boundary (stiffness is
large) embedded in the fluid

I Allow the boundary to move a little but the force will bring it
back to the desired location

I Be able to handle complicated geometry with known boundary
velocity



Interpolating forcing approach
Su, Lai & Lin 2007
Idea: To compute the boundary force F ∗(Xk) accurately so the
prescribed boundary velocity can be achieved in the intermediate step
of projection method.

1. Distribute the force to the grid by the discrete delta function

f∗(x) =

M∑
j=1

F ∗(Xj)δh(x−Xj)∆s

2.
u∗∗ − u∗

∆t
= f∗, thus, u∗∗(Xk) = ub(Xk).

ub(Xk)− u∗(Xk)

∆t
=
∑
x
f∗(x)δh(x−Xk)h2

=
∑
x

 M∑
j=1

F ∗(Xj)δh(x−Xj)∆s

 δh(x−Xk)h2

=
M∑
j=1

(∑
x
δh(x−Xj)δh(x−Xk)h2∆s

)
F ∗(Xj)



Re Su et al. Lai & Peskin Silva et al. Ye et al. Willimson(exp)
80 0.153 - 0.15 0.15 0.15
100 0.168 0.165 0.16 - 0.166
150 0.187 0.184 0.18 - 0.183

Table: The comparison of Strouhal number for different Reynolds numbers.
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