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Generalities about entropy

Dynamical entropy of a classical dynamical system is a certain number in [0,∞]
describing the ‘mixing’ behaviour of the system.

Initially studied mainly for measurable dynamical systems on probability spaces
and defined in terms of the growth of the randomness of partitions induced by the
studied evolution, it was soon introduced also in compact topological dynamics,
where one replaces partitions with finite covers and studies the growth of the
cardinality of minimal subcovers.
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Classical topological entropy via spanning sets

(X , d) - compact metric space, T : X → X - continuous map.

A finite set F ⊂⊂ X is called (n, ε)-spanning for T if

∀x∈X ∃f∈F d(T kx ,T k f ) ≤ ε for k = 0, . . . , n.

Compactness of X implies that finite (n, ε)-spanning sets exist. Put

sn,ε(T ) = min{cardF : F − (n, ε)− spanning for T}

Definition (Bowen, 1971)

The topological entropy of T , htop(T ), is defined by:

htop(T ) = sup
ε>0

lim
n→∞

1

n
log(sn,ε(T ))
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What is entropy good for?

Topological and measure entropy have been intensely studied for the last 60
years. They can be used for

recognising chaotic behaviour;

classifying dynamical systems (for certain classes of dynamical systems, in
particular for Bernoulli shifts, measure entropy is a complete invariant).
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Algebraic point of view

If X is compact, and T : X → X is continuous, the map

αT (f ) = f ◦ T , f ∈ C (X )

defines a unital ∗-homomorphism of the C∗-algebra C (X ). Of course all unital
∗-homomorphisms of C (X ) are of this type.

Problem

Let A be a unital C∗-algebra, α : A→ A an automorphism of A (a unital
∗-homomorphism, completely positive map, etc.). How to define the ‘topological
entropy’ of α?

There were many examples of looking at this questions for the measure entropy,
with the most successful definition given by Connes, Narnhofer and Thirring
(after earlier work by Connes and Størmer) – resulting invariant is called the
CNT entropy.
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Approximating triples

Fix a C∗-algebra A. Mn denotes the algebra of n by n complex matrices.

Write (φ, ψ,Mn) ∈ CPA(A) if φ : Mn → A, ψ : A→ Mn are unital and completely
positive.

For Ω ⊂⊂ A and ε > 0 the notation (φ, ψ,Mn) ∈ CPA(A,Ω, ε) means that
(φ, ψ,Mn) ∈ CPA(A) and

∀a∈Ω ‖φ ◦ ψ(a)− a‖ < ε.

A

ψ   A
AA

AA
AA

A
id // A

Mn

φ

>>}}}}}}}}
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Voiculescu’s definition

If A is nuclear, CPA(A,Ω, ε) 6= ∅ for all Ω, ε. Set

rcp(Ω, ε) := min{n ∈ N : (φ, ψ,Mn) ∈ CPA(A,Ω, ε)}.

Definition (Voiculescu, 1995)

Let A be nuclear and let α : A→ A be a unital ∗-homomorphism. The topological
(approximation, Voiculescu) entropy of θ is defined by the formula:

htα = sup
ε>0,Ω⊂⊂A

lim sup
n→∞

1

n
log rcp(Ω(n), ε).

Here Ω(n) =
⋃n

j=0 α
j(Ω).

Adam Skalski (IMPAN) On noncommutative topological entropy
Fields Institute, 9 December 2010 8 /

24



Voiculescu’s definition

If A is nuclear, CPA(A,Ω, ε) 6= ∅ for all Ω, ε. Set

rcp(Ω, ε) := min{n ∈ N : (φ, ψ,Mn) ∈ CPA(A,Ω, ε)}.

Definition (Voiculescu, 1995)

Let A be nuclear and let α : A→ A be a unital ∗-homomorphism. The topological
(approximation, Voiculescu) entropy of θ is defined by the formula:

htα = sup
ε>0,Ω⊂⊂A

lim sup
n→∞

1

n
log rcp(Ω(n), ε).

Here Ω(n) =
⋃n

j=0 α
j(Ω).

Adam Skalski (IMPAN) On noncommutative topological entropy
Fields Institute, 9 December 2010 8 /

24



Voiculescu’s definition

If A is nuclear, CPA(A,Ω, ε) 6= ∅ for all Ω, ε. Set

rcp(Ω, ε) := min{n ∈ N : (φ, ψ,Mn) ∈ CPA(A,Ω, ε)}.

Definition (Voiculescu, 1995)

Let A be nuclear and let α : A→ A be a unital ∗-homomorphism. The topological
(approximation, Voiculescu) entropy of θ is defined by the formula:

htα = sup
ε>0,Ω⊂⊂A

lim sup
n→∞

1

n
log rcp(Ω(n), ε).

Here Ω(n) =
⋃n

j=0 α
j(Ω).

Adam Skalski (IMPAN) On noncommutative topological entropy
Fields Institute, 9 December 2010 8 /

24



Voiculescu’s definition

If A is nuclear, CPA(A,Ω, ε) 6= ∅ for all Ω, ε. Set

rcp(Ω, ε) := min{n ∈ N : (φ, ψ,Mn) ∈ CPA(A,Ω, ε)}.

Definition (Voiculescu, 1995)

Let A be nuclear and let α : A→ A be a unital ∗-homomorphism. The topological
(approximation, Voiculescu) entropy of θ is defined by the formula:

htα = sup
ε>0,Ω⊂⊂A

lim sup
n→∞

1

n
log rcp(Ω(n), ε).

Here Ω(n) =
⋃n

j=0 α
j(Ω).

Adam Skalski (IMPAN) On noncommutative topological entropy
Fields Institute, 9 December 2010 8 /

24



Basic properties of htα

if A = C (X ) for a compact X , T : X → X is a homeomorphism, then
htαT = htop(T )

the entropy ht has a natural modification/extension due to Brown allowing
for considering transformations of exact (and not only nuclear) C∗-algebras

ht is monotone under passing to invariant subalgebras (but it is not clear
what happens to quotients!)

the idea of ‘approximation entropies’ can be successfully applied outside the
C∗-world - see the work of Kerr and Li on entropy of Banach space
isomorphisms.
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As stated above, in the case of a commutative dynamical system (i.e. a
continuous map T : X → X ), the Voiculescu entropy of the map αT coincides
with htop(T ). Actually

htαT ≤ htop(T )

is easy, but no direct proof of

htαT ≥ htop(T )

is known!

Voiculescu’s proof requires using the CNT entropy, classical measure entropy and
the classical variational principle. The problem is related to understanding
precisely the nature of matrix approximations on C (X ).
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Strategy for computing Voiculescu entropy

Given α : A→ A

(i) find explicit approximations showing that htα ≤ M

(ii) find an invariant subalgebra B ⊂ A and try to prove htα|B ≥ M

(iii) if B is commutative, we can use the classical entropy to compute htα|B.

There is also a ‘geometric’ way of deducing that the Voiculescu entropy is
positive, due to David Kerr and Hanfeng Li and inspired by the local geometry of
Banach spaces (one needs to look for long orbits yielding isomorphic copies of l1

inside A); their work suggests the need for ‘local spectral commutativity’.
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Non-zero entropy vs commutative subsystems

There are other indications that ‘high noncommutativity’ ≈ zero Voiculescu
entropy:

Haagerup and Størmer showed that occurrence of maximal (CNT type)
entropy for a system of subalgebras is related to existence of suitable
maximally abelian subalgebras;

Størmer proved that free shifts (i.e. ‘very noncommutative’ systems) have
0-entropy.

Question

Are there any pairs (A, α) such that htα is strictly bigger than

htc α := sup{htα|B : B− α− invariant commutative subalgebra of A}?
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Bitstream shifts

Let S ⊂ N (think of it as a sequence of 0s and 1s).
Consider a unital ∗-algebra generated by elements (ui )i∈Z satisfying the following
conditions:

ui = u∗i , u2
i = 1, (ui are selfadjoint unitaries),

uiuj = ujui (−1)χS (|i−j|), i , j ∈ Z.

AS – universal C∗-completion of the ∗-algebra introduced above.

The transformation given by

σ(ui ) = ui+1, i ∈ Z

extends in a unique way to a ∗-preserving unital automorphism of AS .

The pair (σ, αS) is called a noncommutative bitstream (or binary) shift
associated to S (and was introduced and first studied by Powers).
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Properties of bitstream shifts

Let us list some properties of bitstream shifts (due to Størmer, Neshveyev,
Golodets, Sauvageot, Narnhofer, Thirring):

AS is always nuclear (it can be realised as a twisted group C∗-algebra of a
group

∏∞
i=1 Z2);

AS admits a tracial state τ ;

τ is σ-invariant: τ ◦ σ = τ .

Moreover if S is ‘sufficiently chaotic’ we also have

τ is a unique σ-invariant state on AS ;

the CNT entropy hτ (σ) = 0;

the CNT entropy hτ⊗τ (σ ⊗ σ) = log 2.
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Theorem (AS)

Let S ⊂ N be ‘sufficiently chaotic’. Then

htc(σ) = 0 <
log 2

2
≤ ht(σ).

So the Voiculescu entropy is genuinely noncommutative. What other methods
can we use to compute it? We will consider this problem for endomorphisms of
Cuntz algebras.

The corresponding problem for the CNT entropy for an automorphism of the
hyperfinite II1 factor is open.
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Cuntz algebra

Fix N ∈ N. Let ON – Cuntz algebra. with generating isometries S1, . . . ,SN .
Use µ to denote a {1, . . . ,N}-valued multiindex and let

Sµ := Sµ1 Sµ2 . . . Sµk
,

|µ| =
k∑

i=1

µi .

ON contains a diagonal masa (maximal abelian subalgebra) CN := Lin{SµS∗µ},
isomorphic to the algebra of continuous functions on a Cantor set (equivalently, a
full Markov shift on N letters).
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Natural inclusions

The inclusion CN ⊂ ON can be viewed as a part of the

CN =
∞⊗
n=1

DN ⊂
∞⊗
n=1

MN ⊂ ON .

By ‘changing coordinates’ in MN and replacing diagonals DN by U∗DNU
(U ∈ MN - a unitary) we can construct other masas in ON . We will call them
standard masas.
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Canonical shift

Let Φ : ON → ON be the canonical shift endomorphism:

Φ(a) =
N∑
i=1

SiaS∗i , a ∈ ON .

It leaves FN , CN (and each other standard masa) invariant; on each standard
masa it reduces to the classical full Markov shift.We have (as shown by Choda,
see also Evans)

ht Φ = log N = ht Φ|CN .
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Endomorphisms of ON vs unitaries in ON

Cuntz showed that there is a 1-1 correspondence between unitaries in ON and
unital endomorphisms of ON , given by formulas

ρU(Si ) = USi , i = 1, . . . ,N

and

Uρ =
n∑

i=1

ρ(Si )S∗i .

In particular

UΦ =
N∑

i,j=1

SiSjS
∗
i S∗j .

This correspondence has been used in the recent intensive study of
endomorphisms of ON in the series of papers by Conti, Szymański and their
collaborators.

Adam Skalski (IMPAN) On noncommutative topological entropy
Fields Institute, 9 December 2010 19 /

24



Endomorphisms of ON vs unitaries in ON

Cuntz showed that there is a 1-1 correspondence between unitaries in ON and
unital endomorphisms of ON , given by formulas

ρU(Si ) = USi , i = 1, . . . ,N

and

Uρ =
n∑

i=1

ρ(Si )S∗i .

In particular

UΦ =
N∑

i,j=1

SiSjS
∗
i S∗j .

This correspondence has been used in the recent intensive study of
endomorphisms of ON in the series of papers by Conti, Szymański and their
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Computing Voiculescu entropy of endomorphisms of Cuntz
algebras

From the entropy point of view we have the following result:

Theorem (AS + J.Zacharias)

If U ∈ U(ON), U ∈ span{SµS∗ν : |µ| = |ν| ≤ k}, then

ht ρU ≤ (k − 1) log N.

It can happen that ρU leaves CN invariant and ht ρU > ht ρU |CN
(in fact in our example ρU looks like shift on some standard masas, and
degenerates in others).

So it can happen that we are looking at a ‘wrong’ Cantor set in ON . But it can
be even worse...
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Examples of endomorphisms which do not preserve any
standard masa

Consider an endomorphism ρ′ (one of the class studied by M. Izumi with relations
to index theory):

ρ′(S0) =
1√
2

(S0 + S1), ρ′(S1) =
1√
2

(S0S0S∗0 + S1S1S∗1 − S1S0S∗0 − S0S1S∗1 ).

Proposition (AS)

ht ρ′ =
1

2
log 2.

Theorem (J.H.Hong, W.Szymański + AS)

The endomorphism ρ′ leaves no standard masa invariant.
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The entropy computation from the last slide is in fact very easy, and uses the fact
that ρ′2 has a simple form. The following result however generalises and in a way
explains last statement. It uses some basic index theory for subfactors and its
connections with CNT entropy.

Theorem (AS)

Let V be an irreducible multiplicative unitary on H⊗ H, where H is an
N-dimensional Hilbert space; view it as a matrix in MN ⊗MN and further via the
usual isomorphism MN ⊗MN ⊂ ON as a unitary in ON . Let F be the flip unitary
in MN ⊗MN . The topological entropy of the endomorphism of ON associated
with VF is equal to log N.
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Conclusion and the general framework

The question of types of masas in a given von Neumann algebra (and, to a
smaller extent, C∗-algebra) has been intensely studied for over 60 years, with a
lot of progress and interest in the last 10 years mainly due to Sorin Popa and his
collaborators. This line of investigation can be called

the search for classical subspaces of quantum spaces

Very little is known about the existence and properties of invariant masas for a
given automorphism (or endomorphism). In this talk we tried to argue that this is
an important and natural question, which can be called

the search for classical subsystems of quantum evolutions
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