# Operational Aspects of Tsunami Modeling and Detection

Diego Arcas, Vasily Titov

NOAA/PMEL Seattle



### **Operational Tsunami Modeling**

1-Long-term Forecasting:

Hazzard Assessment

**Evacuations Maps** 

Can be probabilistic or deterministic

### 2- Short-term Forecasting

Real-time modeling of an occurring tsunami event

## **Operational Tsunami Modeling**

1- Source Design/Detection

2- Modeling Propagation (Linear Regime)

3-Modeling Inundation (Non-Linear Regime)

4- Inundation Calculations.

# Long Term Modeling

### Advantages:

1-Computation time is not a major concern.

2- Very high resolution DEMs can be used (1-1/3 arcsec).

3-Solution is available long before the event occurs.

4- Emergency planning can be done based on a long term forecast

### **Disadvantages:**

1-Modeled events are always hypothetical whether deterministic or probabilistic.

## Long Term Modeling: Source Design





Central Longitude: 235.06 deg.

Central latitude: 47.324 N deg.

Elliptical Gaussian Asperity Parameters:

Orientation of main axis: 0 deg. (Clockwise with respect to North)

Maximun height: 4.5 meters

Main aris. 28 155 Km / Minor aris. 75 625 Km

### Long Term Modeling: Propagation



*Time from EQ* = 00:00:00 *Time from EQ* = 00:07:53 *Time from EQ* = 00:19:08

# Long Term Modeling: Inundation for TsunamiReady Program



# Operational Short Term Modeling: Forecasting

### Advantages:

1-Modeled events are NOT hypothetical. They are always deterministic. Less chance of over or underestimation.

### Disadvantages:

- 1-Computation time IS a major concern.
- 2- Very high resolution DEMs CANNOT be used (1-3 arcsec).
- 3-Solution is NOT available before the tsunami is generated but should be available before it makes landfall.
- 4- Event-dependent emergency planning is not possible.

### **Operational Short Term Modeling: Forecasting**

### Implications:

From and emergency management standpoint: We need to forecast: Arrival time, Max/Min wave amplitude, Decay. (Approximate solution)

2- Sources of error:

a-Inaccurate topo/bathy data.

b-Insufficient knowledge about the IC's (Sea surface elevation can be reported by instruments, but there is

no data on IC's for the velociy components.

c-Errors in the assumptions of the mathematical model: Shallow Water Wave, Boussinesq, N-S.

d-Errors in the numerical algorithm: Dispersion/Dissipation

e-Errors in the forecast methodology: Unit sources,

Inversion,

### Sources of error: Uniformity of velocity profiles

#### Kuril 2006: Honolulu Velocity Profiles (depth=10 m)







### Sources of error: Error in the bathy/topo data

Ocean Shores, WA



Ocean Shores, WA



Characteristic Form of the Non-linear Shallow Water Equations.

$$h_{t} + (uh)_{x} = 0$$

$$u_{t} + uu_{x} + gh_{x} = gd_{x}$$

$$v_{t} + uv_{x} = 0$$

$$p_{t} + \lambda_{1}p_{x} = gd_{x}$$

$$q_{t} + \lambda_{2}q_{x} = gd_{x}$$

$$v'_{t} + \lambda_{3}v'_{x} = 0$$

*Riemann invariants* 

$$p = u + 2\sqrt{gh}$$
$$q = u - 2\sqrt{gh}$$
$$v' = v$$

Eigenvalues

$$\lambda_{1} = u + \sqrt{gh}$$
$$\lambda_{2} = u - \sqrt{gh}$$
$$\lambda_{3} = u$$

In deep water the equations are linear!!

We can do propagation database!!

Locations of the unit sources for pre-computed tsunami events.



#### West Pacific

East Pacific

Locations of the unit sources for pre-computed tsunami events.



#### Indian Ocean

Atlantic Ocean

Unit source propagation of a tsunami event in the Caribbean



### Forecasting Method: Detection

### Tsunami Warning: DART Systems



## Forecasting Method: DART Positions





## Forecasting Method: Detection

Tsunami Inversion based on satellite altimetry . Sumatra 2004 tsunami

![](_page_18_Figure_2.jpeg)

### Forecasting Method: Detection

#### Tsunami Inversion based on satellite altimetry . Japan 2010 tsunami

![](_page_19_Figure_2.jpeg)

### Ground Motion Vectors and Modeled Displacement for the 2010 Chile Earthquake

(detection from GPS and InSAR imagery).

![](_page_20_Picture_2.jpeg)

![](_page_20_Figure_3.jpeg)

**Courtesy of Anthony Sladen** 

# Forecasting Method: Detection

![](_page_21_Figure_1.jpeg)

![](_page_22_Picture_0.jpeg)

### Comparison of DART forecasted with surveyed inundation

![](_page_24_Figure_0.jpeg)

### Comparison of land based GPS forecasted with surveyed inundation

![](_page_25_Picture_1.jpeg)

### Comparison of DART forecasted with surveyed inundation

### Forecasting Method: Inversion from DART

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_0.jpeg)

A connected solution is not possible at this point.

![](_page_29_Figure_1.jpeg)

An uncombined connected solution is possible now.  $t_{3}$ 

 $t_{l}$ 

DART 1

 $t_4$ 

 $t_2$ 

DART 2

 $\wedge$ 

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

### Example : Forecasted Max Amplitude Distribution (Japan 2010)

![](_page_33_Picture_1.jpeg)

![](_page_34_Picture_1.jpeg)

-1/3 arc sec resolution is necessary for high quality simulations.

-Grids should cover deep (1000 m) and shallow areas.

-DEM is generated in partnership with NGDC, USGS...

#### Historical Test Cases

![](_page_35_Figure_2.jpeg)

#### Artificial Test Cases

![](_page_36_Figure_2.jpeg)

#### Comparison of the and SIM (10 mins) Reference (5.2 hours)

![](_page_37_Figure_2.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)