# Conductivity imaging from one interior measurement

Amir Moradifam

(University of Toronto)

Fields Institute, July 24, 2012

#### A convergent algorithm to solve

$$u = \operatorname{argmin} \{ \int_{\Omega} |J| |\nabla v| : v \in H^1(\Omega), \ v|_{\partial \Omega} = f \}.$$

#### Joint work with A. Nachman and A. Timonov

Let  $u_f \in H^1(\Omega)$  with  $u_f \mid_{\Omega} = f$ . Then our weighted minimization problem can be written as

(P) 
$$\inf_{v\in H^1_0(\Omega)}\int_{\Omega}|J||\nabla v+\nabla u_f|.$$

The dual problem is

 $(D) \quad \sup\{<\nabla u_f, b>: \ b\in (L^2(\Omega))^n, \ |b(x)|\leq |J(x)| \ a.e. \ \text{and} \ \nabla\cdot b\equiv 0\}.$ 

# Theorem (M, A. Nachman, A. Timonov (2011))

Assume that the data (|J|, f) is admissible. Then

$$\inf_{v\in H_0^1(\Omega)}\int_{\Omega}|J||\nabla v+\nabla u_f|$$

 $= \\ \sup\{ < \nabla u_f, b >: b \in (L^2(\Omega))^n, |b(x)| \le |J(x)| \text{ a.e. and } \nabla \cdot b \equiv 0 \}$ 

and the current density J corresponding to the voltage potential f on  $\partial\Omega$  is the unique solution of the dual problem.

Let  $E: (L^2(\Omega))^n \to \mathbb{R}$  and  $G: H^1_0(\Omega) \to \mathbb{R}$  be defined by

$$E(d) = \int_{\Omega} |J| |d + \nabla u_f|$$
 and  $G(v) \equiv 0$ .

Then the dual problem can be written in the form

$$(D) \quad -\min_{b\in (L^2(\Omega))^n} \{E^*(b) + G^*(-\nabla \cdot b)\}.$$

Since J is the solution of the dual problem

$$0 \in \partial E^*(J) + \partial [G^*o(-\nabla \cdot)](J).$$

Let  $A := \partial E^*(J)$  and  $B := \partial [G^*o(-\nabla \cdot)]$ . Then above can be written as

$$0\in A(J)+B(J),$$

where A and B are maximal monotone set-valued operators.

To solve

$$0 \in A(J) + B(J)$$

we apply a Douglas-Rachford algorithm. This algorithm produces two sequences  $p_k$  and  $x_k$  such that

$$p_k 
ightarrow J$$
 and  $x_k 
ightarrow \nabla u$ .

# Theorem (Lions and Mercier (1979), Svaiter (2010))

Let H be a Hilbert space and A, B be maximal monotone operators and assume that a solution of (1) exists. Then, for any initial elements  $x_0$  and  $p_0$  the sequences  $p_k$  and  $x_k$  generated by the following algorithm

$$x_{k+1} = R_A(2p_k - x_k) + x_k - p_k$$
  
 $p_{k+1} = R_B(x_{k+1}),$ 

converges weakly to some  $\hat{x}$  and  $\hat{p}$  respectively. Furthermore,  $\hat{p}=R_B(\hat{x})$  and  $\hat{p}$  satisfies

$$0 \in A(\hat{p}) + B(\hat{p}). \tag{1}$$

$$R_A = (Id + A)^{-1}$$

Let  $u_f \in H^1(\Omega)$  with  $u_f|_{\partial\Omega} = f$ , and initialize  $b^0, d^0 \in (L^2(\Omega))^n$ . For  $k \ge 1$ :

$$\Delta u^{k+1} = \nabla \cdot (d^k(x) - b^k(x)), \quad u^{k+1}|_{\partial \Omega} = f.$$

$$d^{k+1} := \begin{cases} \max\{|\nabla u^{k+1} + b^k| - |J|, 0\} \frac{\nabla u^{k+1} + b^k}{|\nabla u^{k+1} + b^k|} & \text{if } |\nabla u^{k+1}(x) + b^k(x)| \neq 0, \\ 0 & \text{if } |\nabla u^{k+1}(x) + b^k(x)| = 0. \end{cases}$$

$$\textbf{3} \text{ Let}$$

$$b^{k+1}(x) = b^k(x) + \nabla u^{k+1}(x) - d^{k+1}(x).$$

This is an alternating split Bregman algorithm of Goldstein and Osher applied to the primal problem (P).

#### Theorem (M, A. Nachman, A. Timonov (2011))

The sequences  $b^k$ ,  $d^k$ , and  $u^k$  produced by the above algorithm converge weakly to J,  $\nabla u$ , and u, respectively.

#### So we are simultaneously solving the primal and the dual problem.

# Numerical simulations

To simulate the internal data |J| we use a CT (Computed Tomography) image of human abdomen rescaled to a realistic range of tissue conductivities.





Figure: Original image (left) and reconstructed image with 60 iterations (right).



Figure: Conductivity reconstruction with the boundary condition f(x, y) = y for N = 1, 5, 10, 30, 50, 100 iterations.



Figure: Magnitude of the current density |J| for the non two-to-one boundary data  $f(x, y) = y + 2\sin(7\pi y)$ .



Figure: Conductivities constructed using the alternating split Bregman algorithm with N = 1, 5, 10, 30, 50, 100 iterates for the non two-to-one boundary data  $f(x, y) = y + 2\sin(7\pi y)$ .

#### Numerical errors for 100 iterations.

| Low Noise (Level=0.01) | Moderate Noise ( Level=0.035) | Higher Noise ( Level=0.06) |
|------------------------|-------------------------------|----------------------------|
| 0.026                  | 0.080                         | 0.152                      |





Figure: Reconstruction in the presence of the perfectly conducting (right) and insulating (left) inclusions.