Numerical stroboscopic averaging for ODEs and DAEs

M. P. Calvo Universidad de Valladolid, Spain

Joint work with Ph. Chartier, A. Murua, J. M. Sanz-Serna

SciCADE 2011

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- 2 [Stroboscopic averaging](#page-7-0)
- 3 [SAM: a numerical method based on stroboscopic averaging](#page-14-0)
- 4 [Error analysis](#page-20-0)

 \sim

医单侧 医单侧

э

[Highly oscillatory problems](#page-2-0)

[Stroboscopic averaging](#page-7-0) [SAM: a numerical method based on stroboscopic averaging](#page-14-0) [Error analysis](#page-20-0) [Numerical results](#page-23-0)

- 2 [Stroboscopic averaging](#page-7-0)
- 3 [SAM: a numerical method based on stroboscopic averaging](#page-14-0)
- **[Error analysis](#page-20-0)**
- 5 [Numerical results](#page-23-0)

a mills

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

• Consider the oscillatory IVP

 $\frac{dy}{dt} = f(y, \frac{t}{\epsilon})$ $\frac{1}{\epsilon}$; ϵ), $t_0 \le t \le t_0 + L$, $y(t_0) = y_0 \in \mathbb{R}^d$,

where $f(y, \tau; \epsilon)$ is 2π -periodic in $\tau = t/\epsilon$. (ie f is $2\pi\epsilon$ -prdc in t).

• We are interested in the case $\epsilon \ll 1$, $L = \mathcal{O}(1)$ (solution computed over many periods). Direct numerical solution may be very costly.

• In some applications and for the analysis, system may appear in re-scaled format:

dy $\frac{dy}{d\tau} = \epsilon f(y, \tau; \epsilon)$

with integration interval of length L/ϵ .

 2990

∢ ロ ▶ (何 ▶ (日 ▶ (日 ▶) ヨ ヨ

• Denote by $\varphi_{t_0,t}$ the solution operator $y_0 \mapsto y(t)$. Note dependence on t_0 and t (system is not autonomous). It satisfies the property

$$
\varphi_{t_1,t_2}\circ\varphi_{t_0,t_1}=\varphi_{t_0,t_2}.
$$

• $\Psi_{t_0} = \varphi_{t_0,t_0+2\pi\epsilon}$ is the one-period or Poincaré map. Its *n*-th power satisfies $\Psi_{t_0}^n = \varphi_{t_0,t_0+2\pi n\epsilon}$, ie advances the solution over n periods starting from $t = t_0$.

 \bullet Attention restricted to cases where $f = \mathcal{O}(1/\epsilon)$ and Ψ_{t_0} is an $\mathcal{O}(\epsilon)$ perturbation of the identity as $\epsilon \downarrow 0$.

• Next slide shows two situations covered by our approach.

◆ロ→ →何→ → ヨ→ →ヨ→ → ヨ

[Highly oscillatory problems](#page-2-0)

[Stroboscopic averaging](#page-7-0) [SAM: a numerical method based on stroboscopic averaging](#page-14-0) [Error analysis](#page-20-0) [Numerical results](#page-23-0)

• Left: $f = \mathcal{O}(1)$. Solution undergoes $\mathcal{O}(\epsilon)$ changes along one period of length $\mathcal{O}(\epsilon)$. Right: $f = \mathcal{O}(1/\epsilon)$. Solution changes along one period are $\mathcal{O}(1)$ but $\Psi_{t_0} = Id + \mathcal{O}(\epsilon)$

 \Box

④ イ 伊 ト (手 \sim 一 一 三 QQ

[Highly oscillatory problems](#page-2-0)

[Stroboscopic averaging](#page-7-0) [SAM: a numerical method based on stroboscopic averaging](#page-14-0) [Error analysis](#page-20-0) [Numerical results](#page-23-0)

• Changes in solution when t is increased by $2\pi\epsilon$

4 0 8

4 冊 ▶ 一心語 $\,$ $\left\vert \cdot \right\vert \equiv$

D

E

- 2 [Stroboscopic averaging](#page-7-0)
- 3 [SAM: a numerical method based on stroboscopic averaging](#page-14-0)
- **[Error analysis](#page-20-0)**
- 5 [Numerical results](#page-23-0)

a mills

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

- Method of (analytic) averaging. Directly applicable only to situations as in left picture. Try to describe 'smooth' evolution of the system without tracking the fast, period $\mathcal{O}(\epsilon)$, oscillations of true solution $y(t)$.
- $y(t)$ approximated by a 'smooth' $Y(t)$. Usually Y is understood as *average* of γ over one period of the fast oscillations.
- Here we look at true solution ν with a stroboscopic light that flashes every $2\pi\epsilon$ units of time. Both 'left' and 'right' situations covered:

→ (何) → 注) → 注 → 一 注

• Stroboscopic samples $y(t_0)$, $y(t_0 + 2\pi\epsilon)$, $y(t_0 + 4\pi\epsilon)$,... of y (circles) appear to come from 'smooth' function $Y(t)$. Which $Y(t)$? a miller - ④ 伊 ト ④ ヨ ト ④ ヨ ト

 QQ

• Since $\Psi_{t_0} = Id + \mathcal{O}(\epsilon)$, there exist an autonomous modified eqn. $(d/dt)Y = F_{\epsilon}(Y)$, with t-flow $\Phi_t^{(\epsilon)}$ $t_t^{(e)}$, sch tht $\Psi_{t_0} = \varphi_{t_0,t_0+2\pi\epsilon}$ coincides (formally) with $\Phi_{2\pi\epsilon}^{(\epsilon)}$.

• Hence the *n*-th power $\Psi_{t_0}^n$ (map that advances y over *n* periods) coincides with the *n*-th power of $\Phi_{2\pi\epsilon}^{(\epsilon)}$ ie with $\Phi_{2\pi}^{(\epsilon)}$ ι^τ)
2πnε

• Conclusion: the values

 $y(t_0), y(t_0 + 2\pi\epsilon), \ldots y(t_0 + 2\pi n\epsilon), \ldots$

of the highly oscillatory solution of $(d/dt)y = f(y, t/\epsilon; \epsilon)$ coincide with the values

 $Y(t_0), \quad Y(t_0 + 2\pi\epsilon), \quad \dots \quad Y(t_0 + 2\pi n\epsilon), \quad \dots$

ofthe solution of $(d/dt)Y = F_{\epsilon}(Y)$ such th[at](#page-9-0) $Y(t_0) = y(t_0)$ $Y(t_0) = y(t_0)$ [.](#page-13-0)

Two remarks:

• Coincidence is as formal power series in ϵ . Truncating the formal series of the 'exact' F_{ϵ} , one obtains averaged systems with $O(\epsilon)$, $O(\epsilon^2)$, ... errors. These issues are ignored in presentation.

• If the initial condition were prescribed at a different value of t_0 , then the Poincaré operator $y_0 \mapsto y(t_0 + 2\pi\epsilon)$ changes and one obtains a *different* F_{ϵ} . (Broken lines in next figure.)

オート オート オート

Red wiggly lines: solutions of ivp's corresponding to two initial conditions, y_0 and $y*$ imposed at $t = t_0$. Solid blue lines: solutions of $(d/dt)Y = F_{\epsilon}(Y)$ with same initial data.

4 17 18

→ イラ → イヨ → イラ →

 QQ

重

Chartier, Murua, SS, FoCM 2010 show:

• Possible to find systematically the explicit analytic expression for F_{ϵ} in terms of f by using ideas from the modern analysis of numerical methods —trees, B-series, ...—.

• Such an explicit expression is useful on its own right to obtain analytically averaged system of high order of accuracy and to systematized the method of averaging.

• Furthermore, may be used to analyze numerical methods . . . (idea not pursued here).

メタトメミトメミト

 \equiv

2 [Stroboscopic averaging](#page-7-0)

3 [SAM: a numerical method based on stroboscopic averaging](#page-14-0)

4 [Error analysis](#page-20-0)

5 [Numerical results](#page-23-0)

a mills

∢ 何 ▶ 《 手 》 《 手 》

 2990

• We shall compute the smooth interpolant $Y(t)$ by integrating the averaged equation $dY/dt = F_{\epsilon}(Y)$ with a numerical method (macro-solver) with macro-step size H (much) larger than the fast period $2\pi\epsilon$.

• In the spirit of the Heterogeneous Multiscale Methods of E and Engquist, our algorithm does not require the explicit knowledge of the analytic form of F_{ϵ} . Info. on F_{ϵ} is gathered on the fly by integrating with micro-step size h the original system $dy/dt = f$ in small time-windows of length $\mathcal{O}(\epsilon)$.

• There is much freedom in the choice of the macro-solver and micro-solver, including standard variable-step/order codes.

∢ ロ ▶ (何) (《 手) (く手) ()

 \equiv

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

- How to compute F_{ϵ} at a given value Y^* of its argument?
- \bullet Recall that the t -flow of the vector field F_{ϵ} is $\Phi_t^{(\epsilon)}$ t ^{t</sub>}

$$
F_{\epsilon}(Y^*) = \left. \frac{d}{dt} \Phi_t^{(\epsilon)}(Y^*) \right|_{t=0}.
$$

• In algorithm, derivative approximated by differences, such as

$$
F_{\epsilon}(Y^*) = \frac{1}{2\delta} [\Phi_{\delta}^{(\epsilon)}(Y^*) - \Phi_{-\delta}^{(\epsilon)}(Y^*)] + O(\delta^2).
$$

 \bullet Choosing $\delta=2\pi\epsilon$, results in $\Phi_{\pm\delta}^{(\epsilon)}=\varphi_{t_0,t_0\pm\delta}$ (stroboscopic effect) and

$$
F_{\epsilon}(Y^*) \approx (1/(4\pi\epsilon))[\varphi_{t_0,t_0+2\pi\epsilon}(Y^*) - \varphi_{t_0,t_0-2\pi\epsilon}(Y^*)].
$$

メター・メモ トラモー

• $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ computed by solving the originally given $dy/dt = f(y, t/\epsilon; \epsilon)$, over $t_0 - 2\pi\epsilon \le t \le t_0 + 2\pi\epsilon$, with initial condition $y(t_0) = Y^*$.

• Of course, one may use other finite-difference formulae such as the fourth-order based on $t_0 + 2\pi k\epsilon$, $k = 0, \pm 1, \pm 2$.

• Note lack of synchrony between macro and micro integrations. Micro-integration always start from t_0 . Starting micro-integratns from current value of t in macro-integration will not do: refer to preceding figure.

→ (何) → 注) → 注 → 一 注

• Algorithm presented evolved from our study of Heterogeneous Multiscale Method (E, Engquist, Tsai, Sharp, Ariel, ...)

• Basic underlying idea has appeared several times in the literature over the last fifty years (in particular, in astronomy and circuit theory): envelope-following methods, multirevolution methods, Taratynova, Mace/Thomas, Graff/Bettis, Gear/Petzold/Gallivan, Calvo/Jay/Montijano/Rández, ... (outer integrator has to be built on purpose).

• Kirchgraber 1982, 1988 uses high-order RKs. Recovery of macro-field not from numerical differentiation.

• For comparison refer to:

M.P. Calvo, Ph. Chartier, A. Murua and J.M. Sanz-Serna, Numerical stroboscopic averaging for ODEs and DAEs, Appl. Numer. Math. (2011), doi: 10.1016/j.apnum.2011.06.007

∢ ロ ⊁ (何) (ミ) (ミ) (ニ)

Outline

2 [Stroboscopic averaging](#page-7-0)

3 [SAM: a numerical method based on stroboscopic averaging](#page-14-0)

4 [Error analysis](#page-20-0)

5 [Numerical results](#page-23-0)

a mills

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

Three sources of errors:

1. Approximate true values of F_{ϵ} by a finite difference approximation \widetilde{F}_{ϵ} . Error is $\mathcal{O}(\epsilon^2)$ for 2nd order differencing.

2. Use in difference formula of $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ obtained via micro-integration. Error in $\varphi_{t_0,t_0\pm 2\pi \epsilon}(Y^*)$ is $\mathcal{O}((\Delta \tau)^p) = \mathcal{O}((h/\epsilon)^p)$, where p is the order of the micro-integrator. Errors in F_{ϵ} are then $\mathcal{O}(\epsilon^{-1}(h/\epsilon)^p).$

3. Use of macro-integrator to solve averaged equation. Error $\mathcal{O}(H^P)$, where P is the order of the macro-integrator.

オートリング きょうきょう

• Summing up

$$
\mathcal{O}\left(\epsilon^2 + H^P + \frac{1}{\epsilon} \left(\frac{h}{\epsilon}\right)^p\right) = \mathcal{O}\left(\epsilon^2 + H^P + \frac{1}{\epsilon} (\Delta \tau)^p\right),\,
$$

• In some cases, the micro-integration error is $\mathcal{O}(\epsilon^{\nu}(\Delta \tau)^{\rho})$ with $\nu > 0$ (ie errors vanish if $\epsilon \downarrow 0$ with h fixed). Then we have

$$
\mathcal{O}\left(\epsilon^2 + H^P + \epsilon^{\nu-1} \left(\frac{h}{\epsilon}\right)^p\right) = \mathcal{O}\left(\epsilon^2 + H^P + \epsilon^{\nu-1} (\Delta \tau)^p\right).
$$

a mills

∢ 何 ▶ 《 手 》 《 手 》

 2990

重

Outline

- 1 [Highly oscillatory problems](#page-2-0)
- 2 [Stroboscopic averaging](#page-7-0)
- 3 [SAM: a numerical method based on stroboscopic averaging](#page-14-0)
- 4 [Error analysis](#page-20-0)

a mills

∢ 何 ▶ 《 手 》 《 手 》

 QQ

(A) A perturbed Kepler problem in the plane (from Kirchgraber):

$$
\frac{d}{ds}x = v, \quad \frac{d}{ds}v = -\frac{1}{r^3}x + \epsilon G(x),
$$

where

$$
G(x) = -\nabla V(x), \quad V(x) = -\frac{1}{2r^3} + \frac{3x_1^2}{2r^5}, \quad r = \sqrt{x_1^2 + x_2^2}.
$$

Use fictitious time $\tau = \lambda(x, v)s$, with $\lambda(x, v) = (-2E(x, v))^{-3/2}$ $(E$ denotes energy), and system becomes

$$
\frac{d}{d\tau}x=\lambda(x,v)v,\quad \frac{d}{d\tau}v=\lambda(x,v)\left(-\frac{1}{r^3}x+\epsilon G(x)\right).
$$

If $\epsilon = 0$ (un[per](#page-23-0)turbed) all solut[io](#page-25-0)ns are 2π -perio[di](#page-23-0)[c](#page-24-0) [in](#page-25-0) τ [.](#page-33-0)

45 **North Bar**

- $x_1(0) = 1$, $x_2(0) = 0$, $v_1(0) = 0$, $v_2(0) = 1$.
- $\epsilon = 2^{-12}, 2^{-13}, 2^{-14}$ $(2^{-12} \approx 2.4 \times 10^{-4}).$
- \bullet Integration interval $0 \leq \tau \leq (\pi/8)\epsilon^{-1}.$
- Constant-step classical RK4 as macro-integrator. Second-order differences.

∢ 何 ▶ 《 手 》 《 手 》 …

重

(A1) Error vs. number of micro-steps, stars: SAM with RK4 micro-integrator 8 macro-steps, circles: standard RK4. Halving ϵ doubles the error

 \Box

石 \sim

- 4 重 8 3 4 重 8

 QQ

(A2) Error vs. number of micro-steps, stars: SAM with (Strang like) splitting (Kepler+perturbation) micro-integrator 16 macro-steps, circles: standard splitting. Halving ϵ halves the error $(\nu = 2)$. **A** The \sim

 QQ

Summary: When $\Delta \tau$ is kept fixed and ϵ is halved:

- The standard RK integrator works twice as much and doubles the error.
- The standard splitting scheme works twice as much and halves the error.
- SAM with RK micro-integrations uses the same work and doubles the error.
- SAM with splitting micro-integration uses the same work and halves the error.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

(B) Van der Pol:

$$
\frac{d}{d\tau}q=p,\qquad \frac{d}{d\tau}p=-q+\epsilon(1-q^2)p.
$$

Perturbed harmonic oscillator. When the initial condition is away from limit cycle, solution needs $\mathcal{O}(1/\epsilon)$ time-interval to reach the limit-cycle. In transient phase, solution changes by $\mathcal{O}(\epsilon)$ between consecutive stroboscopic times. Near limit cycle by $\mathcal{O}(\epsilon^2)$.

 \bullet $\;q(0)=p(0)=0.5,\;\epsilon=2^{-9},\;0\leq\tau\leq\tau_{\mathrm{end}}=32\pi\epsilon^{-1}\approx51,000$

- ④ イラト イヨト - ヨー

The following runs yield roughly the same errors:

- SAM with (variable step-size) ode45 macro-integrator (40 macro-steps); Strang splitting micro-integration $\Delta \tau = \pi/16$
- SAM with the fifth-order formula of ode45, constant step-size (128 macro-steps); Strang splitting micro-integration $\Delta \tau = \pi/16$
- Strang-splitting (260,000 steps), $\Delta \tau = \pi/16$

→ 何 → → ヨ → → ヨ → ニヨ

• SAM: macro-step-length in ode45 as a function of τ and macro-step-length in constant step-size implementation. Note H may be 2, 000 or larger!

 \sim \sim

 \sim

45 \sim э \sim 一 一 三 QQ

∍

Пb.

(C) DAEs:

- Approach easily extended to DAEs.
- Eg: vibrated inverted pendulum and vibrated double inverted pendulum formulated in cartesian coordinates. (Index 2 DAEs, if GGL approach used.)
- Half-explicit RK method of order 3 (Brasey/Hairer (1993)) as macro- and micro-integrator.

4 17 18

∢ 何 ▶ (す 手) (す 手) (

重

• Error vs. number of micro-steps, $\epsilon = 10^{-4}$, 10^{-6} , stars: SAM with macro-step-size $H = \pi/2500$, circles: standard integration $(h = 2\pi\epsilon/n, n = 2^j, j = 2, 3, ...).$ Dividing ϵ by 100 does not change the error $(\nu = 1)$.

 \overline{a} \overline{m} \overline{m}

E.