Numerical stroboscopic averaging for ODEs and DAEs

M. P. Calvo Universidad de Valladolid, Spain

Joint work with Ph. Chartier, A. Murua, J. M. Sanz-Serna

SciCADE 2011

- 同 ト - ヨ ト - - ヨ ト

- 2 Stroboscopic averaging
- SAM: a numerical method based on stroboscopic averaging
- 4 Error analysis

• E • • E

A D

Highly oscillatory problems

Stroboscopic averaging SAM: a numerical method based on stroboscopic averaging Error analysis Numerical results

- 2 Stroboscopic averaging
- SAM: a numerical method based on stroboscopic averaging
- 4 Error analysis
- 5 Numerical results

/□ ▶ < 글 ▶ < 글

• Consider the oscillatory IVP

 $\frac{dy}{dt} = f(y, \frac{t}{\epsilon}; \epsilon), \quad t_0 \leq t \leq t_0 + L, \qquad y(t_0) = y_0 \in \mathcal{R}^d,$

where $f(y, \tau; \epsilon)$ is 2π -periodic in $\tau = t/\epsilon$. (ie f is $2\pi\epsilon$ -prdc in t).

• We are interested in the case $\epsilon \ll 1$, L = O(1) (solution computed over many periods). Direct numerical solution may be very costly.

• In some applications and for the analysis, system may appear in re-scaled format:

 $\frac{dy}{d\tau} = \epsilon f(y,\tau;\epsilon)$

with integration interval of length L/ϵ .

- 4 同 6 4 日 6 4 日 6 - 日

• Denote by $\varphi_{t_0,t}$ the solution operator $y_0 \mapsto y(t)$. Note dependence on t_0 and t (system is not autonomous). It satisfies the property

 $\varphi_{t_1,t_2} \circ \varphi_{t_0,t_1} = \varphi_{t_0,t_2}.$

• $\Psi_{t_0} = \varphi_{t_0,t_0+2\pi\epsilon}$ is the one-period or Poincaré map. Its *n*-th power satisfies $\Psi_{t_0}^n = \varphi_{t_0,t_0+2\pi n\epsilon}$, ie advances the solution over *n* periods starting from $t = t_0$.

• Attention restricted to cases where $f = O(1/\epsilon)$ and Ψ_{t_0} is an $O(\epsilon)$ perturbation of the identity as $\epsilon \downarrow 0$.

• Next slide shows two situations covered by our approach.

イロト イポト イヨト イヨト 二日

Highly oscillatory problems

Stroboscopic averaging SAM: a numerical method based on stroboscopic averaging Error analysis Numerical results

• Left: $f = \mathcal{O}(1)$. Solution undergoes $\mathcal{O}(\epsilon)$ changes along one period of length $\mathcal{O}(\epsilon)$. Right: $f = \mathcal{O}(1/\epsilon)$. Solution changes along one period are $\mathcal{O}(1)$ but $\Psi_{t_0} = Id + \mathcal{O}(\epsilon)$

< A >

Highly oscillatory problems

Stroboscopic averaging SAM: a numerical method based on stroboscopic averaging Error analysis Numerical results

• Changes in solution when t is increased by $2\pi\epsilon$

< 同 ▶

э

э

- 2 Stroboscopic averaging
- SAM: a numerical method based on stroboscopic averaging
- ④ Error analysis
- 5 Numerical results

A 10

→ 3 → 4 3

- Method of (analytic) averaging. Directly applicable only to situations as in left picture. Try to describe 'smooth' evolution of the system without tracking the fast, period $\mathcal{O}(\epsilon)$, oscillations of true solution y(t).
- y(t) approximated by a 'smooth' Y(t). Usually Y is understood as *average* of y over one period of the fast oscillations.
- Here we look at true solution y with a stroboscopic light that flashes every $2\pi\epsilon$ units of time. Both 'left' and 'right' situations covered:

- 4 同 6 4 日 6 4 日 6 - 日

• Stroboscopic samples $y(t_0)$, $y(t_0 + 2\pi\epsilon)$, $y(t_0 + 4\pi\epsilon)$,... of y (circles) appear to come from 'smooth' function Y(t). Which Y(t)?

• Since $\Psi_{t_0} = Id + \mathcal{O}(\epsilon)$, there exist an autonomous modified eqn. $(d/dt)Y = F_{\epsilon}(Y)$, with *t*-flow $\Phi_t^{(\epsilon)}$, sch tht $\Psi_{t_0} = \varphi_{t_0,t_0+2\pi\epsilon}$ coincides (formally) with $\Phi_{2\pi\epsilon}^{(\epsilon)}$.

• Hence the *n*-th power $\Psi_{t_0}^n$ (map that advances *y* over *n* periods) coincides with the *n*-th power of $\Phi_{2\pi\epsilon}^{(\epsilon)}$ ie with $\Phi_{2\pi n\epsilon}^{(\epsilon)}$.

• Conclusion: the values

 $y(t_0), \quad y(t_0+2\pi\epsilon), \quad \ldots \quad y(t_0+2\pi n\epsilon), \quad \ldots$

of the highly oscillatory solution of $(d/dt)y = f(y, t/\epsilon; \epsilon)$ coincide with the values

 $Y(t_0), \quad Y(t_0+2\pi\epsilon), \quad \ldots \quad Y(t_0+2\pi n\epsilon), \quad \ldots$

of the solution of $(d/dt)Y = F_{\epsilon}(Y)$ such that $Y(t_0) = y(t_0)$.

Two remarks:

• Coincidence is as formal power series in ϵ . Truncating the formal series of the 'exact' F_{ϵ} , one obtains averaged systems with $O(\epsilon)$, $O(\epsilon^2)$, ... errors. These issues are ignored in presentation.

• If the initial condition were prescribed at a different value of t_0 , then the Poincaré operator $y_0 \mapsto y(t_0 + 2\pi\epsilon)$ changes and one obtains a *different* F_{ϵ} . (Broken lines in next figure.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Red wiggly lines: solutions of ivp's corresponding to two initial conditions, y_0 and y* imposed at $t = t_0$. Solid blue lines: solutions of $(d/dt)Y = F_{\epsilon}(Y)$ with same initial data.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Chartier, Murua, SS, FoCM 2010 show:

• Possible to find systematically the explicit analytic expression for F_{ϵ} in terms of f by using ideas from the modern analysis of numerical methods —trees, B-series, ...—.

• Such an explicit expression is useful on its own right to obtain analytically averaged system of high order of accuracy and to systematized the method of averaging.

• Furthermore, may be used to analyze numerical methods ... (idea not pursued here).

・ 同 ト ・ ヨ ト ・ ヨ ト

- 2 Stroboscopic averaging
- SAM: a numerical method based on stroboscopic averaging
- 4 Error analysis
- 5 Numerical results

・ 同 ト ・ ヨ ト ・ ヨ

• We shall compute the smooth interpolant Y(t) by integrating the averaged equation $dY/dt = F_{\epsilon}(Y)$ with a numerical method (macro-solver) with macro-step size H (much) larger than the fast period $2\pi\epsilon$.

• In the spirit of the Heterogeneous Multiscale Methods of E and Engquist, our algorithm does not require the explicit knowledge of the analytic form of F_{ϵ} . Info. on F_{ϵ} is gathered on the fly by integrating [with micro-step size h] the original system dy/dt = f in small time-windows of length $O(\epsilon)$.

• There is much freedom in the choice of the macro-solver and micro-solver, including standard variable-step/order codes.

- 4 同 2 4 日 2 4 日 2 4

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

- How to compute F_{ϵ} at a given value Y^* of its argument?
- Recall that the *t*-flow of the vector field F_{ϵ} is $\Phi_t^{(\epsilon)}$:

$$F_{\epsilon}(Y^*) = \left. \frac{d}{dt} \Phi_t^{(\epsilon)}(Y^*) \right|_{t=0}.$$

• In algorithm, derivative approximated by differences, such as

$$F_{\epsilon}(Y^*) = \frac{1}{2\delta} [\Phi_{\delta}^{(\epsilon)}(Y^*) - \Phi_{-\delta}^{(\epsilon)}(Y^*)] + O(\delta^2).$$

• Choosing $\delta = 2\pi\epsilon$, results in $\Phi_{\pm\delta}^{(\epsilon)} = \varphi_{t_0,t_0\pm\delta}$ (stroboscopic effect) and

$$\mathcal{F}_{\epsilon}(Y^*) \approx (1/(4\pi\epsilon))[\varphi_{t_0,t_0+2\pi\epsilon}(Y^*) - \varphi_{t_0,t_0-2\pi\epsilon}(Y^*)].$$

伺 ト イ ヨ ト イ ヨ ト

• $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ computed by solving the originally given $dy/dt = f(y,t/\epsilon;\epsilon)$, over $t_0 - 2\pi\epsilon \le t \le t_0 + 2\pi\epsilon$, with initial condition $y(t_0) = Y^*$.

• Of course, one may use other finite-difference formulae such as the fourth-order based on $t_0 + 2\pi k\epsilon$, $k = 0, \pm 1, \pm 2$.

• Note lack of synchrony between macro and micro integrations. Micro-integration always start from t_0 . Starting micro-integratns from current value of t in macro-integration will not do: refer to preceding figure.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

• Algorithm presented evolved from our study of Heterogeneous Multiscale Method (E, Engquist, Tsai, Sharp, Ariel, ...)

• Basic underlying idea has appeared several times in the literature over the last fifty years (in particular, in astronomy and circuit theory): envelope-following methods, multirevolution methods, Taratynova, Mace/Thomas, Graff/Bettis, Gear/Petzold/Gallivan, Calvo/Jay/Montijano/Rández, ... (outer integrator has to be built on purpose).

• Kirchgraber 1982, 1988 uses high-order RKs. Recovery of macro-field not from numerical differentiation.

• For comparison refer to:

M.P. Calvo, Ph. Chartier, A. Murua and J.M. Sanz-Serna, *Numerical stroboscopic averaging for ODEs and DAEs*, Appl. Numer. Math. (2011), doi: 10.1016/j.apnum.2011.06.007

- 4 同 6 4 日 6 4 日 6

Outline

2 Stroboscopic averaging

SAM: a numerical method based on stroboscopic averaging

4 Error analysis

5 Numerical results

A 10

→ 3 → 4 3

Three sources of errors:

1. Approximate true values of F_{ϵ} by a finite difference approximation \widetilde{F}_{ϵ} . Error is $\mathcal{O}(\epsilon^2)$ for 2nd order differencing.

2. Use in difference formula of $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ obtained via micro-integration. Error in $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ is $\mathcal{O}((\Delta\tau)^p) = \mathcal{O}((h/\epsilon)^p)$, where p is the order of the micro-integrator. Errors in F_ϵ are then $\mathcal{O}(\epsilon^{-1}(h/\epsilon)^p)$.

3. Use of macro-integrator to solve averaged equation. Error $\mathcal{O}(H^P)$, where *P* is the order of the macro-integrator.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Summing up

$$\mathcal{O}\left(\epsilon^{2} + H^{P} + \frac{1}{\epsilon}\left(\frac{h}{\epsilon}\right)^{p}\right) = \mathcal{O}\left(\epsilon^{2} + H^{P} + \frac{1}{\epsilon}(\Delta\tau)^{p}\right)$$

• In some cases, the micro-integration error is $\mathcal{O}(\epsilon^{\nu}(\Delta \tau)^p)$ with $\nu > 0$ (ie errors vanish if $\epsilon \downarrow 0$ with *h* fixed). Then we have

$$\mathcal{O}\left(\epsilon^{2} + H^{P} + \epsilon^{\nu-1} \left(\frac{h}{\epsilon}\right)^{p}\right) = \mathcal{O}\left(\epsilon^{2} + H^{P} + \epsilon^{\nu-1} (\Delta \tau)^{p}\right).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Outline

- Highly oscillatory problems
- 2 Stroboscopic averaging
- SAM: a numerical method based on stroboscopic averaging
- 4 Error analysis
- 5 Numerical results

伺 ト イヨ ト イヨ

(A) A perturbed Kepler problem in the plane (from Kirchgraber):

$$\frac{d}{ds}x = v, \quad \frac{d}{ds}v = -\frac{1}{r^3}x + \epsilon G(x),$$

where

$$G(x) = -\nabla V(x), \quad V(x) = -\frac{1}{2r^3} + \frac{3x_1^2}{2r^5}, \quad r = \sqrt{x_1^2 + x_2^2}.$$

Use fictitious time $\tau = \lambda(x, v)s$, with $\lambda(x, v) = (-2E(x, v))^{-3/2}$ (*E* denotes energy), and system becomes

$$\frac{d}{d\tau}x = \lambda(x,v)v, \quad \frac{d}{d\tau}v = \lambda(x,v)\left(-\frac{1}{r^3}x + \epsilon G(x)\right).$$

If $\epsilon = 0$ (unperturbed) all solutions are 2π -periodic in τ .

- $x_1(0) = 1$, $x_2(0) = 0$, $v_1(0) = 0$, $v_2(0) = 1$.
- $\epsilon = 2^{-12}, 2^{-13}, 2^{-14}$ ($2^{-12} \approx 2.4 \times 10^{-4}$).
- Integration interval $0 \le \tau \le (\pi/8)\epsilon^{-1}$.
- Constant-step classical RK4 as macro-integrator. Second-order differences.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

(A1) Error vs. number of micro-steps, stars: SAM with RK4 micro-integrator 8 macro-steps, circles: standard RK4. Halving ϵ doubles the error

∃ → < ∃</p>

(A2) Error vs. number of micro-steps, stars: SAM with (Strang like) splitting (Kepler+perturbation) micro-integrator 16 macro-steps, circles: standard splitting. Halving ϵ halves the error ($\nu = 2$).

Summary: When $\Delta \tau$ is kept fixed and ϵ is halved:

- The standard RK integrator works twice as much and doubles the error.
- The standard splitting scheme works twice as much and halves the error.
- SAM with RK micro-integrations uses the same work and doubles the error.
- SAM with splitting micro-integration uses the same work and halves the error.

・ 同 ト ・ ヨ ト ・ ヨ ト

(B) Van der Pol:

$$rac{d}{d au} q = p, \qquad rac{d}{d au} p = -q + \epsilon (1-q^2) p.$$

Perturbed harmonic oscillator. When the initial condition is away from limit cycle, solution needs $\mathcal{O}(1/\epsilon)$ time-interval to reach the limit-cycle. In transient phase, solution changes by $\mathcal{O}(\epsilon)$ between consecutive stroboscopic times. Near limit cycle by $\mathcal{O}(\epsilon^2)$.

• q(0) = p(0) = 0.5, $\epsilon = 2^{-9}$, $0 \le \tau \le \tau_{end} = 32\pi\epsilon^{-1} \approx 51,000$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The following runs yield roughly the same errors:

- SAM with (variable step-size) ode45 macro-integrator (40 macro-steps); Strang splitting micro-integration $\Delta \tau = \pi/16$
- SAM with the fifth-order formula of ode45, constant step-size (128 macro-steps); Strang splitting micro-integration $\Delta \tau = \pi/16$
- Strang-splitting (260,000 steps), $\Delta au = \pi/16$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

• SAM: macro-step-length in ode45 as a function of τ and macro-step-length in constant step-size implementation. Note *H* may be 2,000 or larger!

(C) DAEs:

- Approach easily extended to DAEs.
- Eg: vibrated inverted pendulum and vibrated double inverted pendulum formulated in cartesian coordinates. (Index 2 DAEs, if GGL approach used.)
- \bullet Half-explicit RK method of order 3 (Brasey/Hairer (1993)) as macro- and micro-integrator.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

• Error vs. number of micro-steps, $\epsilon = 10^{-4}$, 10^{-6} , stars: SAM with macro-step-size $H = \pi/2500$, circles: standard integration $(h = 2\pi\epsilon/n, n = 2^j, j = 2, 3, ...)$. Dividing ϵ by 100 does not change the error $(\nu = 1)$.