
Instituto Universitario de Investigación

 y Aplicaciones
de Matemáticas

Functionally Fitted Explicit Two-Step Peer
Methods

M. Calvo, J.I. Montijano, L. Rández & M. Van Daele

IUMA-Universidad de Zaragoza

Vakgroep Toegepaste Wiskunde en Informatica-Universiteit Gent

M. Calvo et al (Zaragoza-Gent) Toronto, July 2011 1 / 34



Instituto Universitario de Investigación

 y Aplicaciones
de Matemáticas

M. Calvo et al (Zaragoza-Gent) Toronto, July 2011 2 / 34



This talk deals with the numerical solution of IVPs for ODE systems

y′(t) = f(t, y(t)), y(t0) = y0 ∈ RN , (1)

with oscillating or periodic solutions by means of explicit two-stage peer
methods.

We present a class of numerical methods called “fitted two-step peer
methods” for the numerical integration of periodic problems whose
frequency is approximately known in advance.

These methods combine the advantages of Runge-Kutta and
multistep ones to obtain high stage order.

Introduced by Weiner et al (2004, 2005, 2009), . . . for parallel
computation and extended to sequential computation.
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A step of a RK method
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A step of a Peer method
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Y0 ' (y(t0), y(t0 + c1h), . . .) −→ Y1 ' (y(t1), y(t1 + c1h), . . .)
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Functionally Fitted Peer

Standard methods for IVPs are fitted to a polynomial approximation
to the local solution. The fitting space is F = {1, t, t2, . . .}.
Exponential Fitted methods The fitting space is
F = {1, e±iwt, e±i2wt, . . .}.
Functional Fitted methods The fitting space is
F = {1, ϕ1(t), ϕ2(t), . . .}.

Ref: Bettis (1979), Paternoster (1998), Simos (1998), Vanden Berghe et
al (1999), Coleman et al (2000), Franco (2002), Ixaru et al (2004), . . .
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Background

In Functionally Fitted s-stages RK methods the solution of the IVP (1)
advances to (tn, yn)→ (tn+1 = tn + h, yn+1) by means of the formulas

yn+1 = γ0 yn + h

s∑
j=1

bj f(tn + cjh, Yn,j), (2)

Yn,j = γj yn + h

s∑
k=1

ajk f(tn + ckh, Yn,k), j = 1, . . . , s, (3)

where
c = (cj)

s
j=1 γ = (γj)

s
j=1 A = (ajk) ∈ Rs×s

γ0 bT = (bj)
s
j=1

(4)

are the real coefficients that define the method.

In standard RK methods all γj = 1 and the remaining coefficients are fixed
numbers. In fitted methods they depend in general on the time step h, the
starting time tn and the space F of fitting functions.
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We will assume (q + 1)-dim. fitting spaces

F = Fq = 〈ϕ0(t), ϕ1(t), . . . , ϕq(t)〉,

of smooth linearly independent real functions in [t0, t0 + T ] in the sense
that the Wronskian matrix

W (ϕ0, ϕ1, . . . , ϕq) (t) =


ϕ0(t) ϕ1(t) . . . ϕq(t)
ϕ̇0(t) ϕ̇1(t) . . . ϕ̇q(t)

...
...

...

ϕ
(q)
0 (t) ϕ

(q)
1 (t) . . . ϕ

(q)
q (t)


is non singular for all t ∈ [t0, t0 + T ].
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To have a RK method fitted to Fq, the available coefficients aij , ci, γi, bi
are selected so that they satisfy the fitting conditions

ϕ(tn + h) = γ0 ϕ(tn) + h

s∑
j=1

bj ϕ̇(tn + cjh), (5)

ϕ(tn + cjh) = γj ϕ(tn) + h

s∑
k=1

ajk ϕ̇(tn + ckh), j = 1, . . . , s (6)

for all ϕ ∈ Fq.

The above conditions imply by linearity that the corresponding RK method
integrates exactly any local solution y(t; tn, yn) of y′ = f(t, y) such that
y(t; tn, yn) ∈ Fq.
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Drawback

For explicit RK fitted methods c1 = 0, γ1 = 1 and then the second one

ϕ(tn + c2h) = γ2ϕ(tn) + ha21ϕ̇(tn),

for a fixed node c2, has only the two free parameters (γ2, a21) and q ≤ 1
and this implies serious restrictions in the dimensionality of the fitting
space.

One remedy

We consider the so called explicit two-step peer methods, recently
introduced by R. Weiner, B. A. Schmitt et al as an alternative to classical
Runge–Kutta (RK) and multistep methods attempting to combine the
advantages of these two classes of methods.
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Two-Step Peer Methods

Given a set of admissible fixed nodes {cj}sj=1 in the sense that

c1, c2, . . . , cs, 1 + c1, 1 + c2, . . . , 1 + cs

is a non confluent set of nodes, and starting from known approximations
Y0,j to y(t0 + cjh), j = 1, . . . , s we obtain the new approximations

Y1,j ' y(t1 + cjh) where t1 = t0 + h,

by means of

Y1,j =

s∑
k=1

ajkY0,k + h

s∑
k=1

bjkf(t0 + ckh, Y0,k)

+ h

j−1∑
k=1

rjkf(t1 + ckh, Y1,k), (j = 1, . . . , s).

(7)

A, B ∈ Rs×s full matrices and R ∈ Rs×s strictly lower triangular are the
free parameters that define the method with Ae = e to ensure the
preconsistency condition.
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Extending the definition of fitted RK methods to PEER methods, we will
say that the explicit two-step peer method is fitted to Fq if

ϕ(t1 + cjh) =

s∑
k=1

ajk ϕ(t0 + ckh) + h

s∑
k=1

bjk ϕ̇(t0 + ckh)

+ h

j−1∑
k=1

rjk ϕ̇(t1 + ckh), j = 1, . . . , s

(8)

holds for all ϕ ∈ Fq.

At each stage we have at least 2s− 1 free parameters

It is possible to obtain explicit methods that attain high stage order

Are good candidates to obtain explicit methods fitted to spaces Fq
with q large.

The authors have derived in (2010), s stage methods with q = 2s− 1
taking into account some stability and accuracy requirements
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In our study of the order of a Fitted Peer Methods it will be sufficient to
consider a scalar (non-linear) equation (m = 1), and they can be written
in the vector form

Y1 = A Y0 + h B F0 + h R F1, (9)

where

Yk = (Yk,1, . . . , Yk,s)
T ∈ Rs,

e = (1, . . . , 1)T ∈ Rs,

c = (c1, . . . , cs)
T ∈ Rs,

Fk = f(tke + hc,Yk) = (f(tk + hcj , Yk,j))
s
j=1 ∈ Rs.
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0-Stability

For the zero stability we only consider Peer Methods with the stronger
requirement

λ1(A) = 1, λj(A) = 0, j = 2, . . . , s, (10)

and take A with the form

A = P−1 Â P, (11)

with P and Â of type

P =


1 0 . . . 0
p21 1 . . . 0
p31 p32 . . . 0

...
...

. . .
...

ps1 ps2 . . . 1

 , Â =


1 â12 . . . â1s

0 â23 â2s
. . .

...
âs−1,s

0

 ,

that satisfy (10). Note that the pre-consistency condition Ae = e implies
that Pe = e1.
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We associate to Y1 = AY0 + hBF0 + hRF1 the linear s-dim vector
valued operator L[ϕ;h] defined by

L[ϕ;h](t) ≡ ϕ((t+ h)e + hc)−A ϕ(te + hc)

− h B ϕ̇(te + hc)− h R ϕ̇((t+ h)e + hc).
(12)

Definition

For a given set of admissible nodes and a fitting space
Fq = 〈ϕ0(t), ϕ1(t), . . . , ϕq(t)〉 the Peer Method is fitted to the linear
space Fq with step size h at t0 if

L[ϕ;h](t0) = 0, ∀ϕ ∈ Fq. (13)
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Remarks:

If the starting values (Y0,j)
s
j=1 belong to a solution of the differential

equation contained in the fitting space Fq, then the Peer method
gives the exact values of the solution.

In the polynomial case, Fq = Πq, q is the stage order and

L[y;h](t) = O(hq+1) for all y ∈ C∞,

and this condition turns out to be independent of t.

If Z(t) = P ϕ(te + hc), we have L[ϕ;h](t0) = P−1 L̂[ϕ;h](t0), with

L̂[ϕ;h](t0) = Z(t+ h)− Â Z(t)− hB̂ Ż(t)− hR̂ Ż(t+ h)

Then, the Peer method is fitted to Fq iff L̂[ϕ;h](t0) = 0, ∀ϕ ∈ Fq.
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When the coefficients are independent of tn?

We give sufficient conditions on the functions of Fq that ensure that
L[ϕ;h](t0) is independent of t0 and therefore the coefficients of the fitted
method can be chosen independent of t0.

Theorem

Let Fq be the (q + 1)-dim space of solutions of an homogeneous linear
differential equation with constant coefficients with order (q + 1). If the
linear operator L with A, B and R independent of t satisfies

L[ϕ;h](t0) = 0, ∀ϕ ∈ Fq

then
L[ϕ;h](t) = 0, ∀ϕ ∈ Fq, ∀ t ∈ [t0, t0 + T ].
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Remarks

For fitting spaces of solutions of linear homogeneous solutions with
constant coefficients if the available coefficients A,B,R (that may
depend of the nodes and the step size h) are fitted for some particular
t0 then they are fitted for all t.

For fitting spaces that satisfy the assumptions of the above Theorem,
if we take as basis point t0 = −hc1 then L̂[ϕ;h](−hc1) depends on
the nodes in the form of differences (c2 − c1), . . . , (cs − c1).
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We assume that Fq = 〈ϕ0(t) = 1, ϕ1(t), . . . , ϕq(t)〉 is a (q + 1)-dim basis
of solutions of the linear equation with constant coefficients

Q(D)u(t) ≡ u(q+1)(t) + aqu
(q)(t) + . . .+ a1u

(1)(t) = 0,

whose characteristic polynomial is

Q(z) = zq+1 + aqz
q + . . .+ a1z = zβ0 (z − w1)

β1 . . . (z − wr)βr ,

with β0 + β1 + . . .+ βr = q + 1.
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In the polynomial case it has been shown that:

i) Given a set of admissible nodes c1, . . . , cs, 1 + c1, . . . , 1 + cs.

ii) Given a lower triangular matrix P = (pij) with pii = 1 and Pe = e1.

The parameters in Â, B̂ and R̂ can be obtained, under usual hypothesis,
as solutions of s independent sets of linear equations in the unknowns

Eq1 : â12 â13 . . . â1s b̂11 b̂12 . . . b̂1s 0

Eq2 : â23 . . . â2s b̂21 b̂22 . . . b̂2s r̂21
...

...
...

...

Eqs : 0 b̂s1 b̂s2 . . . b̂ss r̂s1 . . . r̂s,s−1

(14)

It has been proved that if the free parameters are selected by attempting
its exactness for the polynomials ϕ(t) = tk, k = 1, . . . , 2s− 1 then the
corresponding method would have (stage) order p = 2s− 1.

We extend this situation to a more general case of spaces Fq.
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Theorem

Suppose that for a given set of admissible fixed nodes and constant matrix
P the polynomially fitted two-step peer method with s stages has a unique
solution with stage order 2s− 1, then:

1 For any linear space F2s−1 = 〈1, ϕ1(t), . . . , ϕ2s−1(t)〉 there exist a
unique s-stage two step peer method fitted to this space for h
sufficiently small. This peer method has the same nodes and P -matrix
as the polynomially fitted method to Π2s−1 and the coefficients

ÂF = Â(t0, h), B̂F = B̂(t0, h), R̂F = R̂(t0, h),

may depend (apart of the fitting space) on t0 and h.

2 If F2s−1 is a basis of solutions of a linear equation with constant
coefficients, ÂF , B̂F , R̂F , are independent of t0 and depend only on
the roots of Q(D).

3 Further when all the roots of the polynomial Q(D) tend to zero the
coefficients ÂF , B̂F , R̂F tend to those of the polynomial case.
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Two-stage Peer Methods

With s = 2 the pre consistency condition Pe = e1 implies that

P =

(
1 0
−1 1

)
. (15)

On the other hand, the matrices Â, B̂, R̂ will have the form

Â =

(
1 â12
0 0

)
, B̂ =

(
b̂11 b̂12
b̂21 b̂22

)
, R̂ =

(
0 0
r̂21 0

)
, (16)

and

Z(t) = P ϕ(te + hc) =

(
ϕ(t+ c1h)

−ϕ(t+ c1h) + ϕ(t+ c2h)

)
. (17)

M. Calvo et al (Zaragoza-Gent) Toronto, July 2011 � 22 / 34



Since the linear operator L̂ is

L̂[ϕ;h](t) = Z(t+ h)− Â Z(t)− hB̂ Ż(t)− hR̂ Ż(t+ h)

we have two order conditions and in each condition there are three free
parameters. The first equation with the parameters â12, b̂11, b̂12 can be
written in the form

[ϕ(t+ c2h)− ϕ(t+ c1h)]â12 + hϕ̇(t+ c1h)̂b11

+ h[ϕ̇(t+ c2h)− ϕ̇(t+ c1h)]̂b12 = ϕ(t+ h+ c1h)− ϕ(t+ c1h),

and the second one with the parameters b̂21, b̂22, r̂21 is

hϕ̇(t+ c1h)̂b21 + h[ϕ̇(t+ c2h)− ϕ̇(t+ c1h)]̂b22

hϕ̇(t+ h+ c1h)r̂21 = ϕ(t+ h+ c2h)− ϕ(t+ h+ c1h).

These parameters will be determined by imposing that the above
equations hold for the functions ϕj(t), j = 1, 2, 3 of the fitting space

F3 = 〈1, t, cosωt, sinωt〉.
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Solving the equations for r̂21, â12, b̂11, b̂12, b̂21, b̂22 we obtain

â12 =
−1 + cos ν + cos(dν)− cos ν cos(dν) + ν sin(dν)− sin ν sin(dν)

∆1
,

b̂11 =
(−2 + d− d cos ν)(1− cos(dν) + d sin ν sin(dν)

∆1
,

b̂12 = −ν − dν + dν cos ν − ν cos(dν)− sin ν + sin(dν) sin(ν − dν)

ν∆1
,

with d = c2 − c1, ν = hw and ∆1 = −2 + 2 cos(dν) + dν sin(dν).
In a similar way, we get

r̂21 =
sin(dν/2) (dν cos(dν/2)− 2 cos ν sin(dν/2))

∆2
,

b̂21 = −sin(dν/2) (dν cos(ν − dν/2)− 2 cos ν sin(dν/2))

∆2
,

b̂22 = −sin(ν/2) (dν cos(ν/2) + sin(ν/2)− sin(dν + ν/2))

∆2
,

with ∆2 = 2ν sin(dν/2) sin(ν/2) sin((ν − dν)/2).
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Three-stages Peer Methods

In the case of three stages Peer Methods, we have several possibilities,

Fq = {1, t, coswt, sinwt, cos 2wt, sin 2wt}
Fq = {1, t, t2, t3, coswt, sinwt}
Fq = {1, t, cosw1t, sinw1t, cosw2t, sinw2t}
Fq = {1, t, coswt, sinwt, t coswt, t sinwt}

For the sake of simplicity, we derive the fitted method associated to the
3-stage method developed by the authors (2010) and given by the
coefficients:

[A|B] =

 0.000855 0.692006 0.307138 0.000172 0.041579 −0.01777
5.04047 6.19552 −10.236 1.11675 41.799 21.9221
2.63153 3.56484 −5.1963 0.593029 20.477 10.6664


[c|R] =

 0 0.000172 0 0
0.904 −56.8554 0 0
1.141 −27.3595 0.470412 0
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Test Problems

Duffing’s equation

y′′ + (λ2 + k2)y = 2k2y3, t ∈ [0, 20]
y(0) = 0, y′(0) = λ,

with k = 0.035 and λ = 5. The analytic solution is given by:

y(t) = sn
(
λt, ( kλ)2

)
.

where sn represents the elliptic Jacobi function. We choose ω = 5i, and
the numerical results have been computed with the integration steps

∆t =
1

5× 2m
, m = 1, . . . , 6.
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The Euler equations

y′ = f(y) =
(
(α− β)y2y3, (1− α)y3y1, (β − 1)y1y2

)T
,

with the initial values y(0) = (0, 1, 1)T .

It possesses two quadratic invariants: G1 = y21 + y22 + y23 and
G2 = y21 + βy22 + αy23
Parameter values α = 1 + 1√

1.51
and β = 1− 0.51√

1.51
. ω = 2π/T , with

T = 7.45056320933095. The exact solution of this IVP is given by

y(t) =

(√
1.51 sn(t, 0.51), cn(t, 0.51), dn(t, 0.51)

)T
,

where sn, cn, dn are the elliptic Jacobi functions.

The integration is carried out on the interval [0, 40] with step sizes
h = 1/(5× 2j−2), j = 1, . . . , 5 and w = 2π/T i.
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Figure: Intersection of the quadratic invariants G1 and G2
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A perturbed Kepler’s problem

The Hamiltonian function is

H(p, q) =
1

2

(
p21 + p22

)
−
(
q21 + q22

)−1/2 − (2ε+ ε2)/3
(
q21 + q22

)−3/2
,

Initial conditions:

q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = 1 + ε, 0 < ε << 1

The exact solution of this IVP is given by

q1(t) = cos(t+ εt), q2(t) = sin(t+ εt), pi(t) = q′i(t), i = 1, 2.

The numerical results have been computed with the integration steps

∆t =
π

10× 2m
, m = 0, . . . , 3. We take the parameter values

ε = 10−3, λ = i and the problem is integrated up to tend = 10π.

M. Calvo et al (Zaragoza-Gent) Toronto, July 2011 � 31 / 34



102 103
−10

−8

−6

−4

−2

log10(steps)

lo
g
1
0
(e

g
)

standard s = 3 fitted s = 3

M. Calvo et al (Zaragoza-Gent) Toronto, July 2011 � 32 / 34



Conclusions

In our numerical experiments, we have considered fitted methods for
systems of equations with all components fitted to the same given
frequency ω.

It appear that an accurate estimation of the frequency is essential for
the integrators based on fitted methods. This fact was already
recognised by Vanden Berghe et al (2001)

The accuracy of the fitted methods is in general superior to the non
fitted ones of the same order.
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