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Computation failure example without any criterion
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Numerical solutions blow up for the Cahn–Hilliard eq.

We cannot apply usual, classical stability analysis/criterion to the
Cahn–Hilliard equation since some small fluctuations around zero
constant grow up spontaneously. This means that the equation looks
unstable in the classical viewpoint.
According to a nonlinear criterion(F, 1992), we may be able to obtain
stable solution with very small ∆t ∝ ∆x4. But they are too small!
We have to seek another approach for such problems.
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Our answer: Structure preserving

“Physics is characterized by conservation laws and by symmetry”
in “Conservative numerical methods for ẍ = f(x)”(Greenspan 1984).

First, studies of computations paid attention to conserve physical “local”
quantities, such as mass, flux, charge and momentum.
After 1970’s there exist various studies which correspond one of current,
global structure preserving methods.
Don’t seek stability directly, seek “in-
heritance of structure” on numerical so-
lutions. We expect some stability when
the inheritance is achieved.

Stable?

Fast?Accurate?

Structure Preserving?
4th criterion for computation
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Recent structure preserving methods

Recently some “framework” studies for structure preserving method have been
developed eagerly.

Discrete gradient method (Quispel, McLachlan, McLaren,...)
Average vector field method (above and Celledoni, Owren, Wright)
Discrete variational integrator (Marsden, Patrick, Shkoller, West...)
Lagrangian approach for Euler–Lagrange PDEs (Yaguchi, New Talent
Award!)
Discrete variational derivative method (DVDM)(F., Mori, Sugihara,
Matsuo, Ide, Yaguchi, and ...)

1.2 History

In this section, we briefly mention the related studies on the main subject
of this book.

First attempts on dissipative/conservative schemes, or more generally on
structure-preserving algorithms, focused on ordinary differential equations
such as Hamiltonian systems. For example, in the beginning of the 1970’s
Greenspan [77] considered strictly conservative discretization of some mechan-
ical systems. The method was then extended to general mechanical systems
by Gonzalez [74] and McLachlan–Quispel–Robidoux [126, 127] decades later.
A strong alternative to these works is the so-called symplectic method, which
is a specialized numerical method for Hamiltonian systems. Though sym-
plectic schemes are not strictly conservative, they are nearly conservative,
and provide us very effective ways to integrate Hamiltonian systems. For the
symplectic method, see Hairer–Lubich–Wanner [83], Sanz-Serna–Calvo [151]
and Leimkuhler–Reich [104]. Related interesting studies on nearly conserva-
tive numerical schemes include: Faou–Hairer–Pham [52] and Hairer [81].

After these successes on Hamiltonian ODEs, many other classes of ODEs
that have some intrinsic geometric structure have been identified, and structure-
preserving algorithms for these ODEs have been extensively studied. These
activities for ODEs are now also referred to as the “geometric numerical in-
tegration of ODEs,” and form a big trend in numerical analysis. Interested
readers may refer to Hairer–Lubich–Wanner [83] and Budd–Piggott [23].

In the PDE context, a number of studies on dissipative/conservative schemes
have been carried out on individual dissipative or conservative PDEs, since
around the 1970’s. Below are quite limited examples. Strauss–Vazquez [155]
presented a conservative finite difference scheme for the nonlinear Klein–
Gordon equation. Hughes–Caughey–Liu [89] presented a conservative finite
element scheme for the nonlinear elastodynamics problem. Delfour–Fortin–
Payre [35] presented a conservative finite difference scheme for the nonlinear
Schrödinger equation, then Akrivis–Dougalis–Karakashian [8] presented a fi-
nite element version of the scheme and proved the convergence of the finite
element scheme. Sanz–Serna [150] considered the nonlinear Schrödinger equa-
tion as well. Taha–Ablowitz [159, 160] presented conservative finite difference
schemes for the nonlinear Schrödinger equation and the Korteweg–de Vries
equation. Du–Nicolaides [39] presented a dissipative finite element scheme for

the Cahn–Hilliard equation. Around the same time, in a completely different
context from above, studies on soliton PDEs such as the KdV equation were
done to find finite difference schemes that preserved discrete bilinear form or
Wronskian form, corresponding to the original equations; see, for example,
Hirota [85, 86]. They can be also regarded as structure-preserving methods.

Then during the 1990s, more general approaches that cover not only sev-
eral individual PDEs but also a wide class of PDEs have been independently
introduced by several groups. The discrete variational derivative method—
the main subject of the present book—is one of such methods, proposed by
Furihata–Mori [63, 64, 69, 65] around 1996 for PDEs with variational struc-
ture. The method has then been extended in various ways mainly by a
Japanese group including Furihata, Matsuo, Ide, and Yaguchi [66, 67, 68,
90, 91, 116, 119, 120, 121, 122, 165, 166, 167], and succeeded in proving its
effectiveness in various applications. At the same time, Gonzalez [75] pro-
posed a conservative method for some general class of PDEs describing finite-
deformation elastodynamics. There, the key is a special technique in time
discretization devised for ODEs by Gonzalez [74]. Another excellent set of
studies were given by McLachlan [129] and McLachlan–Robidoux [128], where
a general method for designing conservative schemes for conservative PDEs
based on their techniques on ODEs [126, 127] (and the related basic studies
Quispel–Turner [145] and Quispel–Capel [144]) was developed (see also the
recent related results: McLaren–Quispel [130], Quispel–McLaren [146], Celle-
doni et al. [26]). Jimenez [92] has also studied a systematic approach to obtain
discrete conservation laws for certain finite difference schemes.

Aside from strictly conservative or dissipative methods, several interest-
ing approaches for structure-preserving integration of PDEs have emerged
as of the writing of the present book. For a very comprehensive review in-
cluding these topics, see Budd–Piggot [23]. For Hamiltonian PDEs, a unique
approach was proposed by Marsden–Patrick–Shkoller [112] (see also Marsden–
West [113] for a good review), and it has been intensively studied by their
group. Their method is based on the discretization of the variational princi-
ple. Its name “variational integrator” is quite close to the discrete variational
derivative method, but these methods are quite different. For Hamiltonian
PDEs, there is another interesting emerging method, the “multi-symplectic
method,” developed by Bridges–Reich [22]. In the method, Hamiltonian PDEs
are transformed into a special “multi-symplectic form,” and then integrated
in such a way that the multi-symplecticity is conserved. This method can
be regarded as a generalization of the symplectic method for ODEs (see also
McLachlan [124]). For the recent literature in this context, see, for exam-
ple, [27, 87, 88] and the references therein.

Finally we would like to note that in this short summary we could by no
means cover all of the related studies. We recommend that interested read-
ers refer to several key reviews, such as Hairer–Lubich–Wanner [83], Budd–
Piggott [23], Leimkuhler–Reich [104], and Lubich [110], and consult their
references as well.
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Discrete variational derivative method (DVDM)

Short history:
From a dissipative scheme for the Cahn–Hilliard equation (F. 1991), we have
been developed the discrete variational derivative method.
In the first few years we have paid attention to composing some structure
preserving schemes on a case-by-case problems/techniques, but we slightly
have moved to study “framework”.
After obtaining some superior colleagues, such as Matsuo, Ide, Yaguchi, we
have developed DVDM to wider problems and enhance their functionality.

“Discrete Variational Derivative Method”,
F. and T.Matsuo,
CRC Press, 2010.

ISBN: 978-1-4200-9445-9
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DVDM Walk-through with an example:
Cahn-Hilliard eq.
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DVDM walk-through

“DVDM is a framework, methodology to design numerical schemes
which inherit global properties from the original PDE based on
variational derivative”.

But it’s hard to understand the DVDM by only this phrase, so we should start
this talk with a walk-through.

Target:

Cahn–Hilliard eq.
∂u

∂t
=

∂2

∂x2

(
pu + ru3 + q

∂2u

∂x2

)

for u = u(x, t) where p, q < 0 < r are constants.
This PDE is notorious since hardness to compute stable solutions...

Features:
Dissipation of energy and conservation of mass are important.

Main purpose:
Inheritance the above features (= Structure Preserving)

Hidden purpose:
We expect the designed scheme is stable and would like to check typical

features in computation, i.e., solution existence, error evaluation, and ...
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Dissipation property of the Cahn–Hilliard eq. (1)

Let us investigate the the dissipation property of the CH eq. Considering the
local energy as G(u, ux) = (1/2)pu2 + (1/4)ru4 − q (∂u/∂x)2, we are able to
treat the equation in the following form:

∂u

∂t
=

∂2

∂x2

(
δG

δu

)
where

δG

δu

def=
∂G

∂u
− ∂

∂x

∂G

∂ux
= pu + ru3 + q

∂2u

∂x2
.

The variational derivative δG/δu is defined to satisfy the following equation

J [u + δu] − J [u] =
∫ L

0

{
∂G

∂u
δu +

∂G

∂ux
δux

}
dx + O(δu2)

=
∫ L

0

{(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu

}
dx + (b.t.) + O(δu2)

=
∫ L

0

{
δG

δu
δu

}
dx + (b.t.) + O(δu2)

where J [u] =
∫ L

0
G(u, ux) dx. Note that “integration by parts” is used here to

define the variational derivative.
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Dissipation property of the Cahn–Hilliard eq. (2)

Here, we can understand the dissipation property in the following inequality.
The differentiation of total energy w.r.t. time,

d

dt

∫ L

0

G(u, ux)dx

=
∫ L

0

δG

δu

∂u

∂t
dx + (b.t.)

=
∫ L

0

δG

δu

(
∂

∂x

)2
δG

δu
dx + (b.t.)

= (−1)
∫ L

0

{
∂

∂x

(
δG

δu

)}2

dx + (b.t.) = Negative (= dissipation).

We use the “integration by parts” twice above. First timing is the appearance
of variational derivative, and the second one is to change the integration term
to the negative one.
Note that the abstract form of the CH eq. (in the previous page) indicates the
dissipation property naturally.

furihata@cmc.osaka-u.ac.jp (Osaka Univ.)Discrete Variational Derivative Method 2011.07.12 11 / 66



Relationship between PDE and variational derivative

Continuous Calculus Discrete Calculus

energy function

G(u, ux)

dissipation property

d

dt
J(u) ≤ 0

--
approx.

discrete energy function

Gd(U
(m))

discrete dissipation property

Jd(U
(m+1)) ≤ Jd(U

(m))

?

variation

??

discrete

variation

variational derivative

δG

δu

discrete variational derivative

δGd

δ(U (m+1), U (m))

?
definition

??
definition

PDE

∂u

∂t
=

∂2

∂x2

δG

δu

-
approx.

Finite difference scheme

Uk
(m+1)

− Uk
(m)

∆t

= δ
〈2〉
k

δGd

δ(U (m+1), U (m))k

-- proposed strategy
- standard strategy

6

consequence

66

consequence

DVDM basic concept is to
mimic the continuous system in
discrete context.
It means that we follow the
proposed strategy in the left
concept figure. When we follow
the strategy completely, we will
obtain the numerical scheme
which has the discrete dissipa-
tion property.

Requirements: (detail in the
next page)
• Some discrete operators,
• summation by parts,
• discrete variational derivative

furihata@cmc.osaka-u.ac.jp (Osaka Univ.)Discrete Variational Derivative Method 2011.07.12 12 / 66



Our Discrete Mathematical Tools

To implement the concept in the previous page, we need to prepare some
discrete mathematical tools. They should be rigorous and consistent in
discrete context. Here we prepare the following ones, which are simple and
easy to use in finite difference context.

...1 Discrete operators which correspond to differentiation, integration, ...
δ+kfk

def= (fk+1 − fk)/∆x, δ−kfk
def= (fk − fk−1)/∆x,

δ
〈1〉
k

def= (δ+k + δ−k)/2, δ
〈2〉
k

def= δ+kδ−k,
N∑

k=0

′′ fk
def= f0/2 +

N−1∑

k=1

fk + fN/2,...

...2 Summation by parts. As you know, this is mathematical key to
implement the concept because the integration by parts are key to
indicate the dissipation property of the CH eq.

N∑

k=0

′′ (δ+kfk)gk∆x = −
N∑

k=0

′′ fk(δ−kgk)∆x + (b.t.)
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Now, try to implement the concept of DVDM (1)

For numerical solution U
(n)
k corresponds u(k∆x, n∆t), we implement the

concept in the DVDM diagram.

Definition the discrete local energy:

Gd,k(U) def=
1
2
p(Uk)2 +

1
4
r(Uk)4 − 1

2
q

(
(δ+kUk)2 + (δ−kUk)2

2

)
.

Derivation of the discrete variational derivative:
For audience, here we derive it from the variation of the total energy (to
be correct, the discrete variational derivative is defined explicitly for
functions). For convenience, we separate the energy into a polynomial
part and a non-polynomial one as Gd,k(U) = Pk(U) + Nk(U) .
First, variation of the polynomial part P is decomposed easily,

N∑

k=0

′′ Pk(U)∆x −
N∑

k=0

′′ Pk(V )∆x

=
N∑

k=0

′′
{

p

(
Uk + Vk

2

)
+ r

(
(Uk)3 + (Uk)2Vk + Uk(Vk)2 + (Vk)3

4

)}

×(Uk − Vk)∆x
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Now, try to implement the concept of DVDM (2)

Variation of the non-polynomial part is indicated below using the sum-
mation by parts.
N∑

k=0

′′ Nk(U)∆x −
N∑

k=0

′′ Nk(V )∆x

= −1
4
q

N∑

k=0

′′ (
(δ+kUk)2 + (δ−kUk)2 − (δ+kVk)2 − (δ−kVk)2

)
∆x

= −1
2
q

N∑

k=0

′′
{

δ+k

(
Uk + Vk

2

)
δ+k(Uk − Vk)+δ−k

(
Uk + Vk

2

)
δ−k(Uk − Vk)

}
∆x

=
N∑

k=0

′′ qδ
〈2〉
k

(
Uk + Vk

2

)
(Uk − Vk)∆x + (b.t.)

Note that this equality correspond

δ

{∫
(
−1
2

)q(ux)2 dx

}
∼= −q

∫
uxδux dx =

∫
quxxδu dx + (b.t.).
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Now, try to implement the concept of DVDM (3)

Obtaining the variation of the discrete total energy, we define the discrete
variational derivative of energy function Gd.

δGd

δ(U ,V )k

def= p

(
Uk+Vk

2

)
+r

(
(Uk)3+(Uk)2Vk+Uk(Vk)2+(Vk)3

4

)
+qδ

〈2〉
k

(
Uk+Vk

2

)

From the derivation, it is trivial that they satisfy the following relationship.
N∑

k=0

′′ Gd,k(U)∆x−
N∑

k=0

′′ Gd,k(V )∆x =
N∑

k=0

′′ δGd

δ(U ,V )k
(Uk − Vk)∆x+(b.t.)

This relationship does not include any limit operation term and it means
that this is consistent in the finite difference calculation context.
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Now, try to implement the concept of DVDM (4)

Derivation of the DVDM scheme:
Finally, using the discrete variational derivative, we are able to design a
DVDM scheme which inherits the dissipation property.

U
(n+1)
k − U

(n)
k

∆t
= δ

〈2〉
k

(
δGd

δ(U (n+1),U (n))k

)

We can guess/confirm the following features of the scheme easily.
...1 It has a dissipation property (described later)
...2 Does it has a conservation mass property? (described later)
...3 The scheme is a fully-implicit and hard to obtain numerical solutions by

the nonlinearity.
...4 Accuracy should be 2nd order with ∆x and ∆t because all operations are

symmetric (described later)
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Computation by the DVDM scheme

Here we have computation examples of the DVDM scheme in previous page.
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Check: Is the main purpose accomplished? (1)

Let us recall our main purpose of DVDM design: ”inheritance the features of
the original PDE”. Those features of the Cahn–Hilliard eq. are

Dissipation of the total energy:
We design the DVDM scheme such that it inherits the dissipation
property. In fact, we can confirm that as
1

∆t

{
N∑

k=0

′′ Gd,k(U (n+1))∆x −
N∑

k=0

′′ Gd,k(U (n))∆x

}

=
N∑

k=0

′′ δGd

δ(U (n+1),U (n))k

(
U

(n+1)
k − U

(n)
k

∆t

)
∆x + (b.t.)

=
N∑

k=0

′′

(
δGd

δ(U (n+1),U (n))k

)
δ
〈2〉
k

(
δGd

δ(U (n+1),U (n))k

)
∆x + (b.t.) =

−1
2

N∑

k=0

′′





(
δ+k

δGd

δ(U (n+1),U (n))k

)2

+

(
δ−k

δGd

δ(U (n+1),U (n))k

)2


∆x+(b.t.)
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Check: Is the main purpose accomplished? (2)

Conservation of the total mass:
Our process of design is no concern of this property so far. Here we
should confirm if it is inherited by the DVDM scheme or not.

1
∆t

{
N∑

k=0

′′ U
(n+1)
k ∆x −

N∑

k=0

′′ U
(n)
k ∆x

}

=
N∑

k=0

′′

(
U

(n+1)
k − U

(n)
k

∆t

)
∆x

=
N∑

k=0

′′ δ
〈2〉
k

δGd

δ(U (n+1),U (n))k

∆x

= (b.t.)= 0

! This is a coincidence, anyway, the conservation of total mass property is
inherited by the DVDM scheme in discrete context.
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Check: Is the hidden purpose accomplished? (1)

Next, let us recall the hidden purpose of DVDM design: ”stability, solution
existence, accuracy, ...”, which are typical concerns in numerical computation.
The numerical stability is crucial in the Cahn–Hilliard eq. problem, so we
cannot ignore this hidden purpose.

Stability:
Before that we investigate the numerical stability, here we consider about
the evaluation of the exact solutions of the original PDE.

...1 The Sobolev norm of the exact solutions is bounded above by a constant
which is determined by the initial value. The energy dissipation property
causes this result.

...2 If the space dim. is one, the Sup norm of functions is bounded above by
the Sobolev norm. This is a part of the Sobolev lemma.

...3 From facts above, the exact solutions’ Sup norm is bounded above by a
constant which is independent of time.

Remembering these facts, let us investigate the numerical stability.
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Check: Is the hidden purpose accomplished? (2)

Here we know that those facts satisfied with the exact solutions (in the
previous page) are fully satisfied with the numerical solutions.

...1 Discrete Sobolev norm is bounded above because of the discrete
dissipation property.

∥∥∥U (n)
∥∥∥

2

d-(1,2)
≤ 1

min(−p,− q
2 )

{
N∑

k=0

′′ Gd(U (0))∆x +
9p2|Ω|

4r

}

...2 There is a discrete Sobolev lemma when the space dim. is one. By the
lemma we bound the max norm from above by the Sobolev norm.

max
0≤k≤N

|fk| ≤ 2

√
max(

|Ω|
2

,
1
|Ω|

) ∥f∥d-(1,2)

...3 From the above facts, we can show the following inequality and it means
that the DVDM scheme is unconditionally stable.

max
0≤k≤N

∣∣∣U (n)
k

∣∣∣ ≤ 2

[
max(1/|Ω|, |Ω|/2)
min(−p,−q/2)

{
N∑

k=0

′′ Gd(U (0))∆x +
9p2|Ω|

4r

}]1/2
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Check: Is the hidden purpose accomplished? (3)

Numerical solutions existence:

The DVDM scheme is nonlinear and fully-implicit and they may not have
numerical solutions. We have to check it has numerical solutions or not,
or, seek some conditions to have solutions.
We already know that the max norm of the numerical solutions are
bounded above and it brings us the following result through some
cumbersome Taylor expansion.

When the following inequality is satisfied, the DVDM scheme has the
next unique numerical solutions.

∆t < min

(
−q(∆x)2

2 (−p∆x + 82rM2)2
,

−2q(∆x)2

(−p∆x + 226rM2)2

)
,

where M
def= ∥U (n)∥2.
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Check: Is the hidden purpose accomplished? (4)

Accuracy:

As already noted, we can guess the error of numerical solutions is 2nd
order of ∆x and ∆t because all of our operations are symmetric.
Using the max norm evaluation and some cumbersome Taylor expansion,
we can obtain the following results as expected.

∥u(•, T ) − U
(n)
k ∥

≤
√

C|Ω|T exp

[(
1 +

2
{
−p + 3r(C2)2

}2

−q

)
T

]
(
∆x2 + ∆t2

)
,

where C is a constant which depends on exact solutions and T = n∆t.
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General DVDM based on FDM
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General DVDM based on finite difference

The basic idea of DVDM is already shown in the diagram below.
Continuous Calculus Discrete Calculus

energy function

G(u, ux)

dissipation property

d

dt
J(u) ≤ 0

--
approx.

discrete energy function

Gd(U
(m))

discrete dissipation property

Jd(U
(m+1)) ≤ Jd(U

(m))

?

variation

??

discrete

variation

variational derivative

δG

δu

discrete variational derivative

δGd

δ(U (m+1), U (m))

?
definition

??
definition

PDE

∂u

∂t
=

∂2

∂x2

δG

δu

-
approx.

Finite difference scheme

Uk
(m+1)

− Uk
(m)

∆t

= δ
〈2〉
k

δGd

δ(U (m+1), U (m))k

-- proposed strategy
- standard strategy

6

consequence

66

consequence

To generalize the story in walk-
through,

...1 We give more rigorous
definition of the discrete
variational derivative than
one in the walk-through.

...2 We would like to seek
some classifications of
target PDEs via the
DVDM.

furihata@cmc.osaka-u.ac.jp (Osaka Univ.)Discrete Variational Derivative Method 2011.07.12 26 / 66



Definition of the discrete variational derivative (DVD)

To define the discrete variational derivative rigorously and explicitly, we
assume that the discrete energy function is a polynomial of U , δ+kU , δ−kU .

Gd,k(U) =
m∑

l=1

fl(Uk) g+l (δ
+
kUk) g−l (δ−kUk)

For this function Gd, we define the discrete variational derivative in the
following equation.

δGd

δ(U ,V )k

def=
m∑

l=1

(
dfl

d(Uk, Vk)
g+l (δ

+
kUk)g−l (δ−kUk) + g+l (δ

+
kVk)g−l (δ−kVk)

2

−δ+kW−
l (U ,V )k − δ−kW+

l (U ,U)k

)
,

where W±
l (U ,V )k

def=
(

fl(Uk) + fl(Vk)
2

)(
g∓l (δ∓kUk) + g∓l (δ∓kVk)

2

)
dg±l

d(δ±kUk, δ±kVk)

This definition looks cumbersome, but it is rigorous and explicit so that we
can avoid vagueness that how to derive the discrete variational derivative.
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What kind of PDEs are targets of DVDM?

From here, we show the wide classification of target PDEs of DVDM.

First order, real-valued PDEs:
This means that the time-differentiation is only 1st order and the solution
u = u(x, t) is a real-valued function.

In this situation, we treat the following PDEs mainly as targets of DVDM.

...1 Real-valued, dissipative PDEs:

∂u

∂t
= (−1)s+1

„

∂

∂x

«2s
δG

δu
, s = 0, 1, ...

...2 Real-valued, conservative PDEs:

∂u

∂t
=

„

∂

∂x

«2s+1
δG

δu
, s = 0, 1, ...
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Schemes and Properties of real-valued, dissipative PDEs

DVDM Scheme:

U
(n+1)
k − U

(n)
k

∆t
= (−1)s+1δ

〈2s〉
k

δGd

δ(U (n+1),U (n))k

Inherited property:

Decrease of
N∑

k=0

′′ Gd,k(U (n))∆x

Target examples:

(s = 0) linear diffusion eq.
(s = 0) Swift–Hohenberg eq.
(s = 0) Fujita explosion eq.
(s = 0) Allen–Cahn eq.
(s = 0) extended Fisher–Kolmogorov eq.
(s = 1) Prominence temperature eq.
(s = 1) Cahn–Hilliard eq.

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

u(x,t)

x

t=0.000
t=0.005
t=0.010
t=0.020
t=0.030
t=0.040
t=0.050
t=0.100
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Schemes, Properties of real-valued, conservative PDEs

DVDM Scheme:

U
(n+1)
k − U

(n)
k

∆t
= δ

〈2s+1〉
k

δGd

δ(U (n+1),U (n))k

Inherited property:

Conservation of
N∑

k=0

′′ Gd,k(U (n))∆x

Target examples:

(s = 0) linear convection eq.
(s = 0) Korteweg-de Vries eq.
(s = 0) Zakharov–Kuznetsov eq. 0

0.5
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First order, complex-valued PDEs are also target

We have found another type PDEs, which is complex-valued, as targets of
DVDM.

First order, complex-valued PDEs:

In this situation, we treat the following PDEs mainly as targets of DVDM.

...1 Complex-valued, dissipative PDEs:
∂u

∂t
= −δG

δu

...2 Complex-valued, conservative PDEs: i
∂u

∂t
= −δG

δu

For the complex-valued function G(u, ux) the variational derivative is
δG

δu

def=
∂G

∂u
− ∂

∂x

∂G

∂ux
,

δG

δu

def=
∂G

∂u
− ∂

∂x

∂G

∂ux
=

δG

δu
,

and

δ

(∫
G(u, ux) dx

)
=

∫ (
δG

δu
δu +

δG

δu
δu

)
dx + (b.t.).
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Schemes,Properties of complex-valued,dissipative PDEs

DVDM Scheme:

U
(n+1)
k − U

(n)
k

∆t
= − δGd

δ(U (n+1), U (n))k

... We omit the definition of the discrete variational
derivative for the complex-valued function since it is too
cumbersome.

Inherited property:

Decrease of
N∑

k=0

′′ Gd,k(U (n))∆x

Target examples:

(A variant of) Ginzburg–Landau eq.
Newell–Whitehead eq.
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Schemes,Properties of complex-valued,conservative
PDEs

DVDM Scheme:

i

(
U

(n+1)
k − U

(n)
k

∆t

)
= − δGd

δ(U (n+1), U (n))k

Inherited property:

Conservation of
N∑

k=0

′′ Gd,k(U (n))∆x

Target examples:

Nonlinear Schrödinger eq.
Gross–Pitaevskii eq.
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Systems of first order PDEs

There exist some targets that are systems of first order PDEs, but I omit the
discussion and notation about them because they are too cumbersome (, we
have written them in our book in detail).

Target examples:

Zakharov eq.
good Boussinesq eq.
Eguchi–Oki–Matsumura eq.

... we omit their schemes too.
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Second order PDEs

We found that there exist some target 2nd order PDEs. These are conservative
and interesting because the conserved quantity is not the total of energy.

Second order PDEs:
∂2u

∂t2
= −δG

δu

Conservation property:

The integration
∫ {

1
2

(ut)
2 + G(u, ux)

}
dx is conserved since

d

dt

∫ {
1
2

(ut)
2 + G(u, ux)

}
dx =

∫ (
utt +

δG

δu

)
ut dx + (b.t.) = 0.

Target examples:

linear wave eq.
Fermi–Pasta–Ulam eq. I and II.
nonlinear string vibration eq.
nonlinear Klein–Gordon eq.
Shimoji–Kawai eq.
Ebihara eq. 0

0.2

0.4
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1.2

1.4
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Exact Sol.

Numerical Sol.
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Other equations

There are some target PDEs that do not belong to the typical target PDEs.
We think that we may treat them as systems of PDEs via generalizing of the
systems target.

Target examples:

Feng wave eq.
Keller–Segel eq.
Camassa–Holm eq.

The Camassa–Holm equation ut − utxx = 2uxuxx + uuxxx − 3uux

is able to be treated as various conservative abstract forms. For
example, this equation can be written as

(1 − ∂2
x)ut = −∂x

δG

δu
, where G(u, ux) =

1
2
u

(
u2 + (ux)2

)
.

In this viewpoint, the total energy
∫

G(u, ux) dx is conserved and
we can design some DVDM schemes along this description.
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Overview
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Overview

Before stepping into some advanced topics, let us look the overview of topics
about the DVDM.

Discrete variational derivative methods
(DVDM)
(F, Mori, Matsuo, Yaguchi, ...)

obtained...

discrete mathematical theories/lemmas

more...
discrete 
discrete Poincare-Wirtinger inequality
discrete Sobolev lemma

good schemes
fast computation w the above features
stability
numerical solutions unique existence

based on ...

Spectral method cons: gigantic comput. cost via nonlinearity
pros: readily higher accuracy  

Finite element method
(Galerkin framework) cons: hard to compose function spaces which are consistent

pros: availability of weak form

Finite difference method
originally, 2nd order, fully implicit, 1 space dim.

on 2,3,... space dim.
linearly implicit/explicit scheme
higher accuracy, higher order

cons: weak mathematical support, bad treatment for nonrectangular meshes
pros: easy treatment

cons: cannot apply to every PDEs  Hope: apply DVDM to some reaction-diffusion systems, but...

pros: can apply to both conservation problems and dissipation ones, easy to 
understand
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Advanced Topic:
Design of High-Order Schemes
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Design of High-Order Schemes

The DVDM schemes shown are second order accurate w.r.t. the space
mesh size ∆x and the time mesh size ∆t so far. This means that the
computation error is O(∆x2,∆t2).
We would like to develop some “higher order accurate schemes” in the
DVDM framework.
There exist some studies to treat this issues, here I introduce three of
them.

Spatially high-order schemes (to spectral differentiation)
Temporally high-order schemes via composition method
Temporally high-order schemes with high-order discrete variational
derivative
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Spatially High-Order Schemes (1)

Our method to obtain spatially high-order schemes is relatively simple.

Basic idea: We substitute higher order difference operators for the
second order ones. Higher order difference operators are widely known.
For example, most typical high order first difference is written as

δ
〈1〉
k

,2pUk =
1

∆x

p∑

j=−p

αp,jUk+j ,

and the operator δ
〈1〉
k

,2p is skew-symmetric, it means αp,j = −αp,−j .
When we take the limit of p → ∞, the operator becomes a spectral
differentiation operator.

Math tools: We can reconstruct almost our mathematical tools with
high order operators which are needed for the DVDM, e.g., we obtain the
summation by parts as

N∑

k=0

′′ (δ〈1〉k
,2pfk)gk∆x = −

N∑

k=0

′′ fk(δ〈1〉k
,2pgk)∆x + (b.t.)

since the operator δ
〈1〉
k

,2p is skew-symmetric.
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Spatially High-Order Schemes (2)

Discrete variational derivative: Assuming that the discrete energy
function Gd is a polynomial function of Uk and δ

〈1〉
k

,2pUk, we can extend
the definition of the discrete variational derivative to spatially high order
ones.
DVDM scheme: Now, operators, energy and discrete variational
derivatives are extended to high order ones and it is straightforward to
design of schemes. For example, we design the spatially high order
DVDM scheme for the real-valued, dissipative PDEs as

U
(n+1)
k − U

(n)
k

∆t
= (−1)s+1

(
δ
〈1〉
k

,2p
)2s δGd

δ(U (n+1),U (n))k

This extension is easy to understand and easy to use, but the obtained
schemes has heavy computation cost for nonlinear problems.
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Temporally High-Order Schemes: Composition Method

Recall that schemes are ideal when the following conditions are satisfied,
...1 It is stable
...2 It has low computation cost
...3 It is high order accurate
...4 It is a kind of structure preserving method
...5 It is a linear scheme for linear problems

At the present moment, we do not have any ideal method to extend the
DVDM in temporally high order ones, but I’d like to introduce some results.

Composition method:
This methodology, which is widely known in astronomy, is to design high
order time evolution operators by composition of lower order ones. For
example, when I∆t denotes the 2nd order time evolution operators,
I1.351∆tI−1.702∆tI1.351∆t becomes a 4th order one.
This method is easy to use, but always includes some “negative time
evolution step”. This prevents the composition scheme from becoming a
structure preserving method for dissipation problems.
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Temporally High-Order Schemes: DVDM (1)

The another approach to this problem is to extend the DVDM with
temporally high order operators. Concept is simple but there exist a difficulty
in definition of the discrete variational derivative.

What is so difficult?
With high order operators, it is hard to mimic the “chain rule” of
differentiation, which appears in the DVDM process. For example, the
chain rule of differentiation appears in

∂

∂t

∫
G(u, ux) dx =

∫ (
∂G

∂u
ut +

∂G

∂ux
uxt

)
dx,

included in the process to define the discrete variational derivative.

In the 2nd order context, it is attained simply as

f(U+) − f(U)
∆t

=
f(U+) − f(U)

U+ − U

U+ − U

∆t
,

but this idea has some mathematical problems in higher order context,
e.g., they are not well-defined in some situations.
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Temporally High-Order Schemes: DVDM (2)

Matsuo’s idea:
For this difficulty, Matsuo defined the following discrete gradient with
high order operators which is extension of Gonzalez’s one.

(
∂f

∂U

),q
def=

∂f

∂U
+

(
δ〈1〉,qf − ∂f

∂U δ〈1〉,qU

∥numerator∥2

)
δ〈1〉,qU .

This definition is well-defined and satisfy the following discrete chain rule.

δ〈1〉,qf(U) =
(

∂f

∂U

),q

δ〈1〉,qU .

With this definition we are able to define the discrete variational
derivative on multi time steps and design the DVDM schemes which are
temporally high order accurate.
Features:

...1 (Pros) Obtained DVDM schemes are structure preserving.

...2 (Cons) Obtained schemes always become nonlinear.

...3 (Cons) Usually, stability is not guaranteed
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Design of Linearly Implicit Schemes

The basic linearization technique may have long history and it has been
studied in structure preserving method by various researchers, e.g., Matsuo, F.
(2001), Dahlby, Owren (2010).

The basic idea is decomposition of a nonlinear polynomial term into a
multiplied term by quadratic/linear terms w.r.t. various time steps.

For example, consider a PDE ut = (u4)x and a typical symmetric scheme

U
(n+1)
k − U

(n)
k

∆t
= δ

〈1〉
k




(
U

(n+1)
k

)4

+
(
U

(n)
k

)4

2


.

If we decompose the nonlinear polynomial term, it becomes linearly-implicit

U
(n+2)
k − U

(n−1)
k

3∆t
= δ

〈1〉
k

(
U

(n+2)
k U

(n+1)
k U

(n)
k U

(n−1)
k

)
.

Note that the linearized schemes are “strongly unstable” in general. So, we
hope the stabilization effect/expectation by structure preserving overcome this
adverse affect.
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Linearly Implicit Schemes: Cahn–Hilliard eq.

Here we show an example of linearly-implicit DVDM schemes. The target is
the Cahn–Hilliard eq. and the obtained scheme is superior...

Linearly-implicit DVDM scheme:
With one extra time step and decompose the biquadratic term in the
energy function and obtain a linearly-implicit DVDM scheme:

U
(n+1)
k − U

(n−1)
k

∆t

= δ
〈2〉
k

{
pU

(n)
k +r

(
U

(n+1)
k +U

(n−1)
k

2

)(
U

(n)
k

)2

+qδ
〈2〉
k

(
U

(n+1)
k +U

(n−1)
k

2

)}

Features:
...1 The scheme inherits the dissipation property.
...2 It is unconditionally stable and this stability is proved via discrete

Poincaré–Wirtinger inequality.
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Linearly Implicit Schemes: Other Examples

We designed linearly-implicit schemes for other problems and some of them
are such efficient that we can compute by them.
The followings are those examples

nonlinear Schödinger eq.
Ginzburg–Landau eq.
Zakharov eq.
Newell–Whitehead eq.

Overview of linearly-implicit schemes:
Design of them is easy but it is difficult to obtain stable schemes. Choice of
decomposition is essential but this methodology is too flexible so far.

furihata@cmc.osaka-u.ac.jp (Osaka Univ.)Discrete Variational Derivative Method 2011.07.12 49 / 66



Advanced Topic:
Switch to Galerkin Framework

furihata@cmc.osaka-u.ac.jp (Osaka Univ.)Discrete Variational Derivative Method 2011.07.12 50 / 66



Switch to Galerkin Framework

If we able to use the Galerkin framework/context on DVDM for the finite
difference one, we can expect the following features.

...1 More flexible mesh generation is available and this feature is especially
preferable in the 2D problems and higher ones.

...2 Lower differentiation of functions are needed then ones in FDM.

...3 Galerkin framework brings the L2 structure naturally and this structure
will assist to obtain numerical solution evaluation, error evaluation, etc.
by function analysis context.

Matsuo has developed studies about this issue and from here let us introduce
a part of results.
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The Galerkin Framework in the DVDM context (1)

Originally, a variational derivative satisfies the following something like a weak
form with variation function δu,

(
δG

δu
, δu

)
=

(
∂G

∂u
, δu

)
+

(
∂G

∂ux
, δux

)
−

[
∂G

∂ux
δu

]

∂Ω

Re-definition of variational derivative:
Based on above form we can re-define the variational derivative in the
Galerkin framework as “a function P = P (u) which satisfies the following
weak form for ∀w ∈ W”

(P, w) =
(

∂G

∂u
,w

)
+

(
∂G

∂ux
, wx

)
−

[
∂G

∂ux
w

]

∂Ω

Re-definition of discrete variational derivative:
When the weak form is extended in the discrete context, we also can
re-define the discrete variational derivative as “a function P = P (u, v)
which satisfies the following weak form for ∀w ∈ W”

(P, w) =
(

∂G

∂(u, v)
, w

)
+

(
∂G

∂(ux, vx)
, wx

)
−

[
∂G

∂(ux, vx)
w

]

∂Ω

,
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The Galerkin Framework in the DVDM context (2)

(... continued from the previous page) where

∂G

∂(u, v)
def=

m∑

l=1

dfl

d(u, v)

(
gl(ux) + gl(vx)

2

)
,

∂G

∂(ux, vx)
def=

m∑

l=1

(
fl(u) + fl(v)

2

)
dgl

d(ux, vx)
, for G(u, ux)=

m∑

l=1

fl(u)gl(ux).

Here we show one example of schemes.

Galerkin Scheme for
∂u

∂t
=

∂

∂x

(
δG

δu

)
:

(
u(n+1) − u(n)

∆t
, v

)
=

(
(P (n+ 1

2 ))x, v
)

,

for ∀v where the discrete variational derivative P (n+ 1
2 ) for (u(n+1), u(n)) is

defined by the re-definition weak form in the previous page.
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The Galerkin Framework: Korteweg-de Vries eq.

Since the KdV eq. is one of PDEs ∂u/∂t = ∂x(δG/δu), we are able to
apply the Galerkin scheme in the previous page.

The energy function G of the equation is (1/6)u3 − (1/2)(ux)2 and we
obtain from it

∂G

∂(u, v)
=

u2 + uv + v2

6
,

∂G

∂(ux, vx)
= −ux + vx

2
.

Of course this scheme is strictly conservative.
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Advanced Topic: Design for 2D Problems

There exist some studies to apply the DVDM to 2D (or 3D) problems and the
methodologies are able to be classified as

...1 Mapping (mainly by Yaguchi)

In this procedures, first we prepare virtual, orthogonal mesh region and a
mapping from it to the real region. Essential calculation is done on the
virtual region and we use the mapped scheme for computation.

(Pros) Flexible and comprehensive.
(Pros) Arbitrary dimension, 2D, 3D, 4D,...
(Cons) By just one mapping for complicated region, it will be difficult...

...2 Galerkin framework (mainly by Matsuo)

We already introduced that.
...3 Using special mesh: Voronoi mesh (mainly by F.)

Here we introduce it.
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DVDM on Voronoi Mesh

On Voronoi mesh, there exist some natural discrete Green formula. These
correspond the summation by parts in 2D (or 3D...).
So, we can extend the whole story of the DVDM on 1D to 2D or higher
dimensional problems without much effort.

Originally, Voronoi mesh has a kind of “flatness property” and it causes
the Green formula.

r
1

unit vector
s1

s2

r2

flatness condition:
r1s1 + r2s2 + · · · · · · = 0
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Discrete Green formula on Voronoi Mesh

We have some discrete Green formula on the Voronoi mesh.

Discrete Green formula 1:

∑

i





∑

j∈Si

ui

(
wj − wi

lij

)
sji∆Ωij





= −
∑

i





∑

j∈Si

wi

(
uj − ui

lij

)
sji∆Ωij



 +

∑

i∈∂Ωd

uiwiRi,

where ∂Ωd is the boundary,∆Ωij
def= 1

4rij lij , and Ri
def= −

∑
j∈Si

rijsji .
The proof is readily straightforward using the flatness property.

Discrete Green formula 2:

∑

i





∑

j∈Si

(
uj − ui

lij

)(
wj − wi

lij

)
∆Ωij



=−

∑

i

(∆du)iwiΩi+
∑

i∈∂Ωd

(Doutu)iwi,

where ∆d is discrete Laplacian and (Doutu)i are correction terms on
boundary.
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Example on Voronoi Mesh: Cahn–Hilliard eq.

We have necessary discrete Green formula and can use whole DVDM story.
Here we show the example for the Cahn–Hilliard eq.

DVDM Scheme:

U
(n+1)
k − U

(n)
k

∆t
= ∆d

(
δGd

δ(U (n+1),U (n))k

)

where the discrete energy is

Gd(U)k
def=

1
2
pU2

k +
1
4
rU4

k − 1
2
q

∑

j∈Sk

(
Uj − Uk

lkj

)2 ∆Ωkj

Ωk

Inherited properties:
...1 The total mass

X

k

U
(n)
k Ωk is conserved,

...2 The total energy
X

k

Gd(U (n))k Ωk is dissipated.
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Computation Example: Random Points

.. 350 Points .. 700 Points
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Computation Example: Hexagonal Lattice Points

.. 741 Points .. 2319 Points
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Appendix
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Appendix: Discrete Mathematics

Through studies about the DVDM, we have found or made some discrete
mathematical lemmas.

Discrete Sobolev Lemma:

max
0≤k≤N

|fk| ≤ 2

√
max(

|Ω|
2

,
1
|Ω|

)∥f∥H1

Discrete Poincaré–Wirtinger inequality:

1
|Ω|

(
uk − u

|Ω|

)2

≤
N−1∑

k=0

|δ+kuk|2∆x

Discrete Gagliardo–Nirenberg inequality:

∥u∥4
4 ≤ 2∥ux∥∥u∥3 where ∥ux∥2 def=

∑N−1
k=0 |δ+kuk|2∆x,

∥u∥4
4 ≤ b∥u∥H1∥u∥3.
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Conclusion
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Conclusion

Through the “discrete variational derivative” concept, we’ve been
developed the discrete variational derivative method (DVDM) as one of
structure preserving methods. This method is available to both
conservative problems and dissipative ones, it means that this is relatively
comprehensive.

DVDM is based on finite difference context originally, but we have
stepped into the Galerkin framework.

We also have tried to extend the DVDM and obtained some results – such
as spatially high order schemes, temporally ones, linearly implicit schemes
and some methods on 2D or 3D, etc.
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Thank you for listening!!

furihata@cmc.osaka-u.ac.jp (Osaka Univ.)Discrete Variational Derivative Method 2011.07.12 66 / 66


	Introduction
	DVDM Walk-through with an example, Cahn-Hilliard eq.
	General DVDM based on FDM
	Advanced Topic
	Design of High-Order Schemes
	Design of Linearly Implicit Schemes
	Switch to Galerkin Framework
	Design for 2D Problems

	Appendix
	Conclusion

