Discontinuous Galerkin Methods for Bifurcation Phenomena in the Flow through Open Systems

Edward Hall

School of Mathematical Sciences, University of Nottingham

SciCADE, 11th July 2011

Edward Hall (University of Nottingham) Bifurcation Phenomena in Open Systems

SciCADE 2011 1 / 41

Acknowledgements

- Andrew Cliffe and Paul Houston (University of Nottingham)
- Tom Mullin and James Seddon (University of Manchester)
- Eric Phipps and Andy Salinger (Sandia National Laboratories)

Acknowledgements

- Andrew Cliffe and Paul Houston (University of Nottingham)
- Tom Mullin and James Seddon (University of Manchester)
- Eric Phipps and Andy Salinger (Sandia National Laboratories)
- This work is supported by the EPSRC under grant EP/E013724/1: Bifurcation phenomena in the flow through a sudden expansion in a pipe.

Background

- 2 Bifurcation in the presence of O(2) symmetry
- 3 DG discretisation and a posteriori error estimation
- 4 Numerical experiments
- 5 Summary and Outlook

Bifurcation in an Expanding Pipe

• Incompressible, viscous fluid satisfying Navier-Stokes equations $\frac{\partial \mathbf{u}}{\partial t} - \frac{1}{\text{Re}} \nabla^2 \mathbf{u} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) + \nabla p = 0,$ $\nabla \cdot \mathbf{u} = 0.$

• Re is the non-dimensional Reynolds number

$$\operatorname{Re} = \frac{vL}{\nu},$$

where v is a typical velocity, L a typical length scale and ν the fluid viscosity.

Bifurcation in an Expanding Pipe

Problems:

- 3 spatial dimensions.
- Length of recirculation region varies linearly with Re.
- $\bullet\,$ Bifurcations occur at high ${\rm Re},$ therefore very long pipe is required.

Solutions:

- Utilize symmetry of the pipe.
- Use mesh adaptivity.

Bifurcation Phenomena in Open Systems

• Flow through a sudden expansion in a channel. Fearn, Mullin and Cliffe 1990.

- Steady, Z₂ symmetry-breaking bifurcation. (Re^c ≈ 40 for a 1 : 3 expansion ratio)
- Flow past a cylinder in a channel.

Jackson 1987; Cliffe and Tavener 2004.

• Z_2 symmetry-breaking Hopf bifurcation. ($Re^c \approx 123$ for a 1 : 2 blockage ratio)

• Flow past a sphere in a pipe.

Tavener 1994; Cliffe, Spence and Tavener 2000.

• Steady, O(2) symmetry-breaking bifurcation. ($Re^c \approx 359$ for a 1 : 2 blockage ratio)

Flow in a pipe with a stenotic region.
 Sherwin & Blackburn 2005, 2007, Sherwin, Blackburn & Barkley 2008.

• Steady, O(2) symmetry-breaking bifurcation. ($Re^c \approx 721$ for a 75% occlusion)

Channel with a Sudden Expansion

SciCADE 2011 6 / 41

Channel with a Sudden Expansion - Re = 45

SciCADE 2011 7 / 41

Channel with a Sudden Expansion - Re = 55

SciCADE 2011 8 / 41

Nonlinear Problem

Consider the solution of the following nonlinear problem:

$$\frac{\partial u}{\partial t} + F(u,\lambda) = 0,$$

where

- *u* is the state variable(s);
- λ is a parameter (or set of parameters) of physical interest.
- F is a differential operator.

Nonlinear Problem

Consider the solution of the following nonlinear problem:

$$\frac{\partial u}{\partial t} + F(u,\lambda) = 0,$$

where

- *u* is the state variable(s);
- λ is a parameter (or set of parameters) of physical interest.
- F is a differential operator.

Fundamental questions include:

- How many solutions exist as λ is varied?
- Are the steady state solutions linearly stable?
- At what critical parameter value does a bifurcation occur?

• A (steady) bifurcation occurs at λ^* when the Jacobian

 $F_u(u^*, \lambda^*; \cdot)$

is singular, ${\rm i.e}$ has a zero eigenvalue.

• A (steady) bifurcation occurs at λ^* when the Jacobian

 $F_u(u^*, \lambda^*; \cdot)$

is singular, ${\rm i.e}$ has a zero eigenvalue.

 A Hopf (unsteady) bifurcation occurs if a (non-zero) conjugate pair of eigenvalues of F_u(u^{*}, λ^{*}; ·) cross the imaginary axis with non-zero speed.

• A (steady) bifurcation occurs at λ^* when the Jacobian

 $F_u(u^*, \lambda^*; \cdot)$

is singular, ${\rm i.e}$ has a zero eigenvalue.

- A Hopf (unsteady) bifurcation occurs if a (non-zero) conjugate pair of eigenvalues of F_u(u^{*}, λ^{*}; ·) cross the imaginary axis with non-zero speed.
- The eigenvalues of $F_u(u, \lambda; \cdot)$ tell us whether a solution is stable or unstable.
 - If all eigenvalues have positive real part then the solution is linearly stable.
 - If any eigenvalue has negative real part, the solution is linearly unstable.

• A (steady) bifurcation occurs at λ^* when the Jacobian

 $F_u(u^*, \lambda^*; \cdot)$

is singular, ${\rm i.e}$ has a zero eigenvalue.

- A Hopf (unsteady) bifurcation occurs if a (non-zero) conjugate pair of eigenvalues of F_u(u^{*}, λ^{*}; ·) cross the imaginary axis with non-zero speed.
- The eigenvalues of F_u(u, λ; ·) tell us whether a solution is stable or unstable.
 - If all eigenvalues have positive real part then the solution is linearly stable.
 - If any eigenvalue has negative real part, the solution is linearly unstable.
 - The eigenvalues with smallest real part are termed the most dangerous eigenvalues.

We have two options:

• For a particular λ solve the eigenvalue problem: find ${\bf u}:=(u,\phi,\mu)$ such that

$$\mathbf{E}(\mathbf{u}) \equiv \begin{pmatrix} F(u,\lambda) \\ F_u(u,\lambda;\phi) - \mu\phi \\ \langle \phi,g \rangle - 1 \end{pmatrix} = \mathbf{0},$$

SciCADE 2011

11 / 41

for some appropriate g.

We have two options:

• For a particular λ solve the eigenvalue problem: find $\mathbf{u} := (u, \phi, \mu)$ such that

$$\mathbf{E}(\mathbf{u}) \equiv \begin{pmatrix} F(u,\lambda) \\ F_u(u,\lambda;\phi) - \mu\phi \\ \langle \phi,g \rangle - 1 \end{pmatrix} = \mathbf{0},$$

- for some appropriate g.Locate the critical parameter by solving directly:
 - In the case of a steady bifurcation: find $\mathbf{u}^{c} := (u^{c}, \phi^{c}, \lambda^{c})$ such that

SciCADE 2011

11 / 41

$$\mathbf{G}(\mathbf{u}^c)\equiv \left(egin{array}{c} F(u^c,\lambda^c)\ F_u(u^c,\lambda^c;\phi^c)\ \langle\phi^c,g
angle-1\end{array}
ight)=\mathbf{0},$$

for some appropriate g.

• Hopf bifurcation, similar but larger extended system.

• Exploit the underlying group structure within a physical system in order to rigorously justify the study of (equivalent) simplified problems.

SciCADE 2011

12 / 41

 \Rightarrow Leads to significant computational savings.

- Exploit the underlying group structure within a physical system in order to rigorously justify the study of (equivalent) simplified problems.
 - \Rightarrow Leads to significant computational savings.
- Bifurcation with O(2) symmetry.

Vanderbanwhede 1982; Golubitsky & Schaeffer 1985; Golubitsky, Stewart & Schaeffer 1988; Healey & Treacy 1991; Aston 1991; Cliffe, Spence & Tavener 2000.

O(2) Group

O(2) is a group generated by

- Rotations r_{α} , $\alpha \in \mathbb{R}$;
- A Reflection s.

For any $\alpha, \beta \in \mathbb{R}$, the group actions satisfy

$$r_{\alpha+2\pi}=r_{\alpha}, \ r_{\alpha+\beta}=r_{\alpha}r_{\beta}=r_{\beta}r_{\alpha}, \ s^2=r_0=r_{2\pi}=I, \ sr_{\alpha}=r_{-\alpha}s,$$

where *I* is the group identity.

- Assume that the problem has O(2) symmetry.
- F is O(2) equivariant, i.e.,

$$\rho_{\gamma}F(u,\lambda) = F(\rho_{\gamma}(u),\lambda) \quad \forall \gamma \in O(2),$$

where ρ_{γ} is the representation of γ on \mathbb{H} .

- Assume that the problem has O(2) symmetry.
- F is O(2) equivariant, i.e.,

$$\rho_{\gamma}F(u,\lambda) = F(\rho_{\gamma}(u),\lambda) \quad \forall \gamma \in O(2),$$

where ρ_{γ} is the representation of γ on \mathbb{H} .

• Moreover, taking the Fréchet derivative, we note that for $u \in \mathbb{H}^{O(2)}$

$$ho_{\gamma} F_u(u,\lambda) \phi = F_u(u,\lambda)
ho_{\gamma}(\phi) \quad \forall \gamma \in O(2) \;\; \forall \phi \in \mathbb{H},$$

where $\mathbb{H}^{O(2)} = \{ v \in \mathbb{H} : v = \rho_{\gamma}(v) \ \forall \gamma \in O(2) \}.$

• Standard decomposition

$$\mathbb{H} = \sum_{m=0}^{\infty} \oplus \mathbb{V}_m, \quad \mathbb{V}_m \perp \mathbb{V}_l, \quad m \neq l.$$

where the \mathbb{V}_m are O(2) invariant.

Standard decomposition

$$\mathbb{H} = \sum_{m=0}^{\infty} \oplus \mathbb{V}_m, \quad \mathbb{V}_m \perp \mathbb{V}_l, \quad m \neq l.$$

where the \mathbb{V}_m are O(2) invariant.

Theorem (Cliffe, Spence & Tavener 2000)

Let A be any O(2)-equivariant linear operator on the Hilbert space \mathbb{H} , i.e. $\rho_{\gamma}A = A\rho_{\gamma}$ for all $\gamma \in O(2)$. Then, $A : \mathbb{V}_m \to \mathbb{V}_m, \quad m = 0, 1, 2, \dots$

Standard decomposition

$$\mathbb{H} = \sum_{m=0}^{\infty} \oplus \mathbb{V}_m, \quad \mathbb{V}_m \perp \mathbb{V}_l, \quad m \neq l.$$

where the \mathbb{V}_m are O(2) invariant.

Theorem (Cliffe, Spence & Tavener 2000)

Let A be any O(2)-equivariant linear operator on the Hilbert space \mathbb{H} , i.e. $\rho_{\gamma}A = A\rho_{\gamma}$ for all $\gamma \in O(2)$. Then, $A : \mathbb{V}_m \to \mathbb{V}_m, \quad m = 0, 1, 2, \dots$

• Eigenvalue problem

$$F_u(u,\lambda)\phi = \mu\phi, \quad \phi \in \mathbb{H},$$

decouples into the infinite set of simpler eigenvalue problems

$$F_u(u,\lambda)\phi = \mu\phi, \quad \phi \in V_m, \quad m = 0, 1, 2, \dots$$

Navier-Stokes in cylindrical coordinates

Find $\mathbf{u} = (u_r(r, \theta, z), u_{\theta}(r, \theta, z), u_z(r, \theta, z), p(r, \theta, z))^{\top} \in \mathbb{H}$ such that

$$F(\mathbf{u}, \operatorname{Re}) \equiv \begin{pmatrix} -\frac{1}{\operatorname{Re}} \nabla^2 u_z + \nabla \cdot (u_z \mathbf{u}) + \frac{\partial p}{\partial z} \\ -\frac{1}{\operatorname{Re}} \left(\nabla^2 u_r - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_{\phi}}{\partial \phi} \right) + \nabla \cdot (u_r \mathbf{u}) - \frac{u_{\phi}^2}{r} + \frac{\partial p}{\partial r} \\ -\frac{1}{\operatorname{Re}} \left(\nabla^2 u_{\phi} - \frac{u_{\phi}}{r^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \phi} \right) + \nabla \cdot (u_{\phi} \mathbf{u}) + \frac{u_r u_{\phi}}{r} + \frac{1}{r} \frac{\partial p}{\partial \phi} \\ -\nabla \cdot \mathbf{u} \end{pmatrix} = \mathbf{0},$$

where $\mathbb{H} = H^1(\Omega)^3 \times L^2(\Omega)$.

Navier-Stokes in cylindrical coordinates

Find $\mathbf{u} = (u_r(r, \theta, z), u_{\theta}(r, \theta, z), u_z(r, \theta, z), p(r, \theta, z))^{\top} \in \mathbb{H}$ such that

$$F(\mathbf{u}, \operatorname{Re}) \equiv \begin{pmatrix} -\frac{1}{\operatorname{Re}} \nabla^2 u_z + \nabla \cdot (u_z \mathbf{u}) + \frac{\partial p}{\partial z} \\ -\frac{1}{\operatorname{Re}} \left(\nabla^2 u_r - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_{\phi}}{\partial \phi} \right) + \nabla \cdot (u_r \mathbf{u}) - \frac{u_{\phi}^2}{r} + \frac{\partial p}{\partial r} \\ -\frac{1}{\operatorname{Re}} \left(\nabla^2 u_{\phi} - \frac{u_{\phi}}{r^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \phi} \right) + \nabla \cdot (u_{\phi} \mathbf{u}) + \frac{u_r u_{\phi}}{r} + \frac{1}{r} \frac{\partial p}{\partial \phi} \\ -\nabla \cdot \mathbf{u} \end{pmatrix} = \mathbf{0},$$

where $\mathbb{H} = H^1(\Omega)^3 \times L^2(\Omega)$.

• Can show O(2) equivariance of Navier-Stokes equations in cylindrical coordinates.

SciCADE 2011

15 / 41

O(2) Invariant Subspaces of \mathbb{H}

$$\mathbb{V}_{m} = \operatorname{Span} \left\{ \begin{pmatrix} u_{r}^{m}(r, z) \cos(m\theta) \\ u_{\theta}^{m}(r, z) \sin(m\theta) \\ u_{z}^{m}(r, z) \cos(m\theta) \\ p^{m}(r, z) \cos(m\theta) \end{pmatrix}, \begin{pmatrix} u_{r}^{m}(r, z) \sin(m\theta) \\ u_{\theta}^{m}(r, z) \cos(m\theta) \\ u_{z}^{m}(r, z) \sin(m\theta) \\ p^{m}(r, z) \sin(m\theta) \end{pmatrix} \right\}$$

O(2) Invariant Subspaces of \mathbb{H}

$$\mathbb{V}_{m} = \operatorname{Span} \left\{ \begin{pmatrix} u_{r}^{m}(r,z)\cos(m\theta) \\ u_{\theta}^{m}(r,z)\sin(m\theta) \\ u_{z}^{m}(r,z)\cos(m\theta) \\ p^{m}(r,z)\cos(m\theta) \end{pmatrix}, \begin{pmatrix} u_{r}^{m}(r,z)\sin(m\theta) \\ u_{\theta}^{m}(r,z)\cos(m\theta) \\ u_{z}^{m}(r,z)\sin(m\theta) \\ p^{m}(r,z)\sin(m\theta) \end{pmatrix} \right\}.$$

• Hence, the eigenvalue problems

$$F_u(u, \operatorname{Re})\phi = \mu\phi, \quad \phi \in \mathbb{V}_m, \quad m = 0, 1, 2, \dots$$

only have to be discretised in (r, z).

• Can study stability to three dimensional disturbances using a sequence of two dimensional problems.

O(2) Invariant Subspaces of \mathbb{H}

$$\mathbb{V}_m = \operatorname{Span} \left\{ \begin{pmatrix} u_r^m(r,z)\cos(m\theta) \\ u_{\theta}^m(r,z)\sin(m\theta) \\ u_z^m(r,z)\cos(m\theta) \\ p^m(r,z)\cos(m\theta) \end{pmatrix}, \begin{pmatrix} u_r^m(r,z)\sin(m\theta) \\ u_{\theta}^m(r,z)\cos(m\theta) \\ u_z^m(r,z)\sin(m\theta) \\ p^m(r,z)\sin(m\theta) \end{pmatrix} \right\}.$$

Extended System

Seek
$$\hat{\mathbf{u}}^c \in \mathbb{H}^{O(2)} imes \mathbb{V}_m imes \mathbb{R}, m = 1, 2, \dots$$
 such that

$$\mathbf{G}(\hat{\mathbf{u}}^c) = \mathbf{0}.$$

SciCADE 2011

16 / 41

Edward Hall (University of Nottingham) Bifurcation Phenomena in Open Systems

O(2) Invariant Subspaces of \mathbb{H}

$$\mathbb{V}_{m} = \operatorname{Span} \left\{ \begin{pmatrix} u_{r}^{m}(r, z) \cos(m\theta) \\ u_{\theta}^{m}(r, z) \sin(m\theta) \\ u_{z}^{m}(r, z) \cos(m\theta) \\ p^{m}(r, z) \cos(m\theta) \end{pmatrix}, \begin{pmatrix} u_{r}^{m}(r, z) \sin(m\theta) \\ u_{\theta}^{m}(r, z) \cos(m\theta) \\ u_{z}^{m}(r, z) \sin(m\theta) \\ p^{m}(r, z) \sin(m\theta) \end{pmatrix} \right\}$$

Weak formulation:

Seek $\hat{\mathbf{u}}^c \in \mathbb{H}^{O(2)} imes \mathbb{V}_m imes \mathbb{R}, m = 1, 2, \dots$ such that

$$\mathcal{N}(\hat{\mathbf{u}}^c, \mathbf{v}) = 0 \quad \forall \mathbf{v} \in \mathbb{H}^{O(2)} \times V_m \times \mathbb{R}.$$

Edward Hall (University of Nottingham) Bifurcation Phenomena in Open Systems

Discontinuous Galerkin Methods

- Method Construction
 - Employ local spaces of discontinuous piecewise polynomials;
 - Inter-element continuity weakly enforced.

$\Rightarrow \mathsf{Hybrid}\ \mathsf{FE}/\mathsf{FV}\ \mathsf{Method}$

Discontinuous Galerkin Methods

- Robustness/stability.
- Locally conservative.
- Ease of implementation.
- Highly parallelisable.
- Flexible mesh design (hybrid grids, non-matching grids, non-uniform/anisotropic polynomial degrees).
- Wider choice of stable FE spaces for mixed problems.
- Computational overhead/efficiency (increase in DoFs).

Interior Penalty DG Method

- $T_h = \{\kappa\}$ is a non-degenerate mesh;
- For $\mathbf{p} = \{p_\kappa\}$, $p_\kappa \geq 1$, define the finite element space

$$S_{h,p} = \{ \mathbf{v} \in L_2(\Omega) : \mathbf{v}|_{\kappa} \in \mathcal{R}_{p_{\kappa}} \ \forall \kappa \in \mathcal{T}_h \},$$

where \mathcal{R}_p is either \mathcal{P}_p or \mathcal{Q}_p .

Interior Penalty DG Method

- *T_h* = {κ} is a non-degenerate mesh;
- For $\mathbf{p} = \{p_\kappa\}$, $p_\kappa \geq 1$, define the finite element space

$$S_{h,p} = \{ v \in L_2(\Omega) : v |_{\kappa} \in \mathcal{R}_{p_{\kappa}} \ \forall \kappa \in \mathcal{T}_h \},$$

where \mathcal{R}_p is either \mathcal{P}_p or \mathcal{Q}_p .

DG Discretization

$$\mathcal{S}_{h,\mathbf{p}} = [S_{h,\mathbf{p}}]^2 \times S_{h,\mathbf{p}-1} \times [S_{h,\mathbf{p}}]^3 \times S_{h,\mathbf{p}-1} \times \mathbb{R}.$$

DGFEM: Find $\hat{\mathbf{u}}_{h}^{c} \in \mathcal{S}_{h,\mathbf{p}}$, $m = 1, 2, \ldots$, such that

$$\mathcal{N}_h(\hat{\mathbf{u}}_h^c, \mathbf{v}_h) = 0 \quad \forall \mathbf{v}_h \in \mathcal{S}_{h, \mathbf{p}}.$$

Schötzau, Schwab & Toselli 2003, 2004, Cockburn, Kanschat & Schötzau 2005

Interior Penalty DG Method

- $T_h = \{\kappa\}$ is a non-degenerate mesh;
- For $\mathbf{p} = \{p_\kappa\}$, $p_\kappa \geq 1$, define the finite element space

$$S_{h,p} = \{ v \in L_2(\Omega) : v |_{\kappa} \in \mathcal{R}_{p_{\kappa}} \ \forall \kappa \in \mathcal{T}_h \},$$

where \mathcal{R}_p is either \mathcal{P}_p or \mathcal{Q}_p .

DG Discretization

$$\mathcal{S}_{h,\mathbf{p}} = [S_{h,\mathbf{p}}]^2 \times S_{h,\mathbf{p}-1} \times [S_{h,\mathbf{p}}]^3 \times S_{h,\mathbf{p}-1} \times \mathbb{R}.$$

DGFEM: Find $\hat{\mathbf{u}}_{h}^{c} \in \mathcal{S}_{h,\mathbf{p}}$, $m = 1, 2, \ldots$, such that

$$\mathcal{N}_h(\hat{\mathbf{u}}_h^c, \mathbf{v}_h) = 0 \quad \forall \mathbf{v}_h \in \mathcal{S}_{h, \mathbf{p}}.$$

Schötzau, Schwab & Toselli 2003, 2004, Cockburn, Kanschat & Schötzau 2005

• The numerical solution $\hat{\mathbf{u}}_{h}^{c}$ is computed using Newton's method, together with a block elimination technique. Werner & Spence 1984

 Measurement Problem: Given a functional J(·) and a user-defined tolerance TOL > 0, can we efficiently design S_{h,p} such that

 $|J(u) - J(u_h)| \leq ext{TOL}.$

Fluid dynamics:drag and lift coefficients.Electromagnetics:far field pattern.Other examples:Eigenvalues, point value, flux, mean value, etc.

Becker & Rannacher 1996, 2001, Larson & Barth 2000, Heuveline & Rannacher 2001 Houston & Süli 2001, 2002 Bangerth & Rannacher 2003, Hartmann & Houston 2002, 2006, Cliffe, H., Houston 2010.

 Measurement Problem: Given a functional J(·) and a user-defined tolerance TOL > 0, can we efficiently design S_{h,p} such that

$$|J(u) - J(u_h)| \leq ext{TOL}.$$

Fluid dynamics:	drag and lift coefficients.
Electromagnetics:	far field pattern.
Other examples:	Eigenvalues, point value, flux, mean value, etc.

Becker & Rannacher 1996, 2001, Larson & Barth 2000, Heuveline & Rannacher 2001 Houston & Süli 2001, 2002 Bangerth & Rannacher 2003, Hartmann & Houston 2002, 2006, Cliffe, H., Houston 2010.

• Eigenvalue problem:

$$J(\hat{\mathbf{u}}) = \mu.$$

 Measurement Problem: Given a functional J(·) and a user-defined tolerance TOL > 0, can we efficiently design S_{h,p} such that

$$|J(u) - J(u_h)| \leq ext{TOL}.$$

Fluid dynamics:	drag and lift coefficients.
Electromagnetics:	far field pattern.
Other examples:	Eigenvalues, point value, flux, mean value, etc.

Becker & Rannacher 1996, 2001, Larson & Barth 2000, Heuveline & Rannacher 2001 Houston & Süli 2001, 2002 Bangerth & Rannacher 2003, Hartmann & Houston 2002, 2006, Cliffe, H., Houston 2010.

• Bifurcation problem:

$$J(\hat{\mathbf{u}}^{c}) = \operatorname{Re}^{c}.$$

Dual problem

Find \mathbf{z} such that

$$\mathcal{M}(\mathbf{u},\mathbf{u}_h;\mathbf{w},\mathbf{z})=J(\mathbf{w})\quad \forall \mathbf{w}.$$

• Gâteaux derivative of $\mathcal{N}_h(\cdot, \cdot)$:

$$\mathcal{N}_{h,\mathbf{u}}'[\mathbf{w}](\mathbf{v},\cdot) = \lim_{\epsilon \to 0} \frac{\mathcal{N}_h(\mathbf{w} + \epsilon \mathbf{v}, \cdot) - \mathcal{N}_h(\mathbf{w}, \cdot)}{\epsilon}$$

• Linearization of $\mathcal{N}_h(\cdot, \cdot)$:

$$\begin{split} \mathcal{M}(\mathbf{u},\mathbf{u}_h;\mathbf{u}-\mathbf{u}_h,\mathbf{v}) &= \mathcal{N}_h(\mathbf{u},\mathbf{v}) - \mathcal{N}_h(\mathbf{u}_h,\mathbf{v}) \\ &= \int_0^1 \mathcal{N}_{h,\mathbf{u}}'[\theta\mathbf{u} + (1-\theta)\mathbf{u}_h](\mathbf{u}-\mathbf{u}_h,\mathbf{v}) \, \mathrm{d}\theta \\ &\approx \mathcal{N}_{h,\mathbf{u}}'[\mathbf{u}_h](\mathbf{u}-\mathbf{u}_h,\mathbf{v}) \end{split}$$

-

Dual problem

Find \mathbf{z} such that

$$\mathcal{M}(\mathbf{u},\mathbf{u}_h;\mathbf{w},\mathbf{z})=J(\mathbf{w})\quad \forall \mathbf{w}.$$

Proposition (Error Representation Formula)

Assuming the dual problem is well-posed, the following result holds:

$$\operatorname{Re}^{c} - \operatorname{Re}_{h}^{c} = -\mathcal{N}_{h}(\hat{\mathbf{u}}_{h}^{c}, \mathbf{z} - \mathbf{z}_{h}) \equiv \sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa},$$

SciCADE 2011

21 / 41

for all $\mathbf{z}_h \in \mathcal{S}_{h,p}$.

Dual problem

Find z such that

$$\mathcal{M}(\mathbf{u},\mathbf{u}_h;\mathbf{w},\mathbf{z})=J(\mathbf{w})\quad \forall \mathbf{w}.$$

Proposition (Error Representation Formula)

Assuming the dual problem is well-posed, the following result holds:

$$\operatorname{Re}^{c} - \operatorname{Re}_{h}^{c} = -\mathcal{N}_{h}(\hat{\mathbf{u}}_{h}^{c}, \mathbf{z} - \mathbf{z}_{h}) \equiv \sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa},$$

SciCADE 2011

21 / 41

for all $\mathbf{z}_h \in \mathcal{S}_{h,p}$.

- Linearize about $\hat{\mathbf{u}}_{h}^{c}$.
- Approximate z with DG method.

Error Estimation/Mesh Adaptivity

• Adaptivity is carried out based on $|\eta_{\kappa}|$. We use a fixed fraction strategy - 25%-refinement, 10%-derefinement.

Error Estimation/Mesh Adaptivity

- Adaptivity is carried out based on $|\eta_{\kappa}|$. We use a fixed fraction strategy 25%-refinement, 10%-derefinement.
- We can use a purely *h*-refinement strategy, or an *hp*-refinement strategy.
- The choice of *h* or *p*-refinement is based on the smoothness of both the primal and dual solutions.

SciCADE 2011

22 / 41

Error Estimation/Mesh Adaptivity

- Adaptivity is carried out based on $|\eta_{\kappa}|$. We use a fixed fraction strategy 25%-refinement, 10%-derefinement.
- We can use a purely *h*-refinement strategy, or an *hp*-refinement strategy.
- The choice of *h* or *p*-refinement is based on the smoothness of both the primal and dual solutions.

SciCADE 2011

22 / 41

• Smoothness determined via decay rate of Legendre coefficients. Houston, Senior, Süli, 2003.

Sudden Expansion in a Channel: Problem Setup

SciCADE 2011 23 / 41

Sudden Expansion in a Channel: Error Effectivities

- *r* : *R* = 3 : 1
- *Re* = 35
- Eigenvalue = 0.00613553131999

Mesh No	No. Eles	Eig. Dof	Error	Effectivity
1	760	16720	6.027E-05	1.92
2	1387	30514	1.540E-05	2.47
3	2479	54538	9.795E-06	1.98
4	4387	96514	6.327E-06	1.58
5	7645	168190	3.845E-06	1.33
6	13243	291346	2.231E-06	1.16
7	22585	496870	1.281E-06	1.00

• Effectivity = $|Error|/|\sum_{\kappa \in \mathcal{T}_h} \eta_{\kappa}|$.

Sudden Expansion in a Channel: Mesh under Refinement

Mesh after 5 refinement steps

Contour plot of \mathbf{z}_{x}^{m}

SciCADE 2011

25 / 41

Sudden Expansion in a Channel: Mesh Detail under Refinement

Mesh detail near expansion

Contour plot of \mathbf{z}_{v}^{0} near expansion

Sudden Expansion in a Channel: Error Convergence

SciCADE 2011 27 / 41

Cylindrical Blockage in a Channel: Problem Setup

SciCADE 2011 28 / 41

Cylindrical Blockage in a Channel: Error Effectivities

- *r* : *R* = 1 : 2
- *Re* = 100
- Eigenvalue = 0.114789963956350 + 2.116719676204527*i*

Mesh No	No. Eles	Eig. Dof	Error	Effecticity
1	816	17952	8.966E-02	1.08
2	1443	31746	2.229E-03	1.54
3	2577	56694	1.455E-04	1.31
4	4590	100980	4.089E-05	0.980
5	8190	180180	1.033E-05	1.01
6	14400	316800	3.870E-06	0.946
7	24843	546546	1.060E-06	1.00

Cylindrical Blockage in a Channel: Mesh under Refinement

Full Mesh

Mesh Detail near Blockage

Contour plot of \mathbf{z}_{v}^{0} near blockage

Cylindrical Blockage in a Channel: Error Convergence

Stenosis Problem

• Critical $\operatorname{Re} \approx$ 721.

• Lengths in ratio $D_{\min}: D: L = 1:2:4$

Stenosis: Error Estimation

• *h*-adaptivity

Base DOF	Null DOF	Re ^c _h	Error Estimate
84480	119040	688.07858	27.337
148962	209901	717.87440	3.629
258588	364374	720.31797	7.739E-01
445830	628215	720.82707	2.280E-01
771408	1086984	720.93597	1.168E-01
1334916	1881018	720.97594	7.677E-02

< A >

э

• *h*-adaptivity

Base DOF	Null DOF	$\operatorname{Re}_{h}^{c}$	Error Estimate	ĺ
84480	119040	688.07858	27.337	Ī
148962	209901	717.87440	3.629	Ī
258588	364374	720.31797	7.739E-01	
445830	628215	720.82707	2.280E-01	
771408	1086984	720.93597	1.168E-01	
1334916	1881018	720.97594	7.677E-02	

• *hp*-adaptivity

Γ	Base DOF	Null DOF	$\operatorname{Re}_{h}^{c}$	Error Estimate
	84480	119040	688.07858	27.337
Γ	146362	206090	708.96275	11.296
Γ	193518	271480	716.36055	4.680
Γ	259439	363362	721.0237123	3.575E-02
Γ	327537	456501	721.0519498	8.054E-04
Γ	398569	553522	721.0524660	5.477E-05
	499025	691978	721.0524361	4.326E-05
	193518 259439 327537 398569 499025	271480 363362 456501 553522 691978	716.36055 721.0237123 721.0519498 721.0524660 721.0524361	4.680 3.575E-02 8.054E-04 5.477E-05 4.326E-05

• Sherwin & Blackburn 2005: $Re_{h}^{c} \approx 722$.

Stenosis Grid

Mesh distribution after 5 h-adaptive refinements

Image: Image:

Stenosis Grid

Mesh distribution after 5 h-adaptive refinements

Mesh distribution after 6 hp-adaptive refinements

Flow Through 1:2 Pipe Expansion

Re=1522

Re=1567

T. Mullin, J.R.T. Seddon, M.D. Mantle, and A.J. Sederman Phys. Fluids 21, 014110 (2009)

Flow Through 1:2 Pipe Expansion

SciCADE 2011

36 / 41

• Steady bifurcation occurs at $\text{Re} = 1139 \pm 10$.

• Onset of time dependence at $\mathrm{Re} \approx 1500$.

T. Mullin, J.R.T. Seddon, M.D. Mantle, and A.J. Sederman Phys. Fluids 21, 014110 (2009)

1:2 Pipe Expansion: Eigenvalues with Re

• Re = 1300, *m* = 1.

Mesh No.	No. Eles	Eig. Dofs	Eigenvalue	$\sum_{\kappa \in \mathcal{T}_h} \eta_{\kappa}$
1	20000	420000	0.167241E-02	1.741E-06
2	34565	725865	0.167194E-02	1.914E-06
3	65909	1384089	0.167218E-02	9.771E-07
4	111956	2351076	0.167243E-02	5.765E-07

1:2 Pipe Expansion: Eigenvalues for m = 1

SciCADE 2011 39 / 41

1:2 Pipe Expansion: Bifurcation Location

• *hp*-adaptive algorithm.

Mesh No.	Base Dofs	Null Dofs	Re ^c _h	Error Indicator
1	232755	325857	4925.5119	211.880
2	311300	434264	4708.2944	342.372
3	448495	624696	4996.9118	85.547
4	844468	1158267	5084.7897	1.663
5	995544	1363010	5084.9472	7.869E-02

- Successfully applied DG and goal-oriented *a posteriori* error estimation to bifurcation and stability analysis of incompressible Navier-Stokes equations.
- First mesh converged results for this problem.
- There is a steady, supercritical, O(2)-symmetry-breaking bifurcation at Reynolds number approximately 5080 ± 5 .
- This is the same phenomenon as witnessed in the numerical experiments, but at a very different Reynolds number.
- Is O(2) symmetry the wrong model for this problem?
- Investigate effect of perturbations that destroy the O(2) symmetry.