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Weak versus Strong

SDE:
dS(t) = a(S(t)) dt + b(S(t)) dW(t)

S(0) given and 0 ≤ t ≤ T

Euler–Maruyama

Sn+1 = Sn + a(Sn)h + b(Sn)∆Wn

∆Wn := W(tn+1)−W(tn), tn = nh, h = T/K

Assume that a and b are smooth and globally Lipschitz
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Weak versus Strong
Weak Convergence |E [S(tn)]− E [Sn]| ≤ Ch

Strong Convergence

E
[

sup
0≤n≤K

|S(tn)− Sn|
]
≤ Ch

1
2

Strong convergence + Markov inequality⇒

P (|S(tn)− Sn| ≥ hα) ≤ Ch
1
2 − α

Continuous Time/Higher Moments

E
[

sup
0≤t≤T

|S(t)− S(t)|m
]
≤ Cm,δh

m
2 −δ
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Weak versus Strong

Which is more relevant, weak or strong?

Conventional wisdom :
Weak convergence is usually enough. Most problems
require expected value type information.

Strong convergence covers cases where we want to
visualize paths or generate time series (e.g. to test a
filtering algorithm or a parameter fitting algorithm).
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Monte Carlo for SDEs
Approximate E [S(T )] by applying E-M to get samples.
Let µ = 1

N

∑N
i=1 S[i]

K
Then

E [S(T )]− µ = E [S(T )− SK + SK ]− µ
= E [S(T )− SK ] + E [SK ]− µ

Confidence interval width is O(h) + O(1/
√

N)

For confidence interval of O(ε), choose h = 1/
√

N = ε

Computational cost is N × 1/h

Hence, computational complexity is O(ε−3)
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Multi-level Monte Carlo

The Multi-level Monte Carlo algorithm will achieve
computational complexity of

O(ε−2 log(ε)2)

using E-M, and giving good results in practice

A key ingredient: Use a range of h values
many paths at large h, few paths at small h
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Multi-level Monte Carlo
Consider payoff f (S(T )), where f is globally Lipschitz.
ε is required accuracy (conf. int.)

Timesteps hl = M−lT , l = 0,1,2, . . . ,L

M is fixed and L = log ε−1

log M , so that hL = O(ε)

P̂l denotes E-M approx. to f (S(T )) using hl . Clearly

E
[
P̂L

]
= E

[
P̂0

]
+

L∑
l=1

E
[
P̂l − P̂l−1

]
Ŷ0 estimates E[P̂0] using N0 paths, and
Ŷl estimates E[P̂l − P̂l−1] using Nl paths:

Ŷl =
1
Nl

Nl∑
i=1

(
P̂ [i]

l − P̂ [i]
l−1

)
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Multi-level Monte Carlo (M = 2)
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Multi-level Monte Carlo

Strong convergence of E-M + glob. Lip. f give

var
[
P̂l − f (S(T ))

]
≤ E

[(
P̂l − f (S(T ))

)2
]

= O(hl)

and

var
[
P̂l − P̂l−1

]
≤

(√
var
[
P̂l − f (S(T ))

]
+

√
var
[
P̂l−1 − f (S(T ))

])2

= O(hl)

So Ŷl = 1
Nl

∑Nl
i=1

(
P̂ [i]

l − P̂ [i]
l−1

)
has variance of O(hl/Nl)
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Recap: E
[
P̂L

]
= E

[
P̂0

]
+
∑L

l=1 E
[
P̂l − P̂l−1

]
Estimator for RHS is Ŷ := Ŷ0 +

∑L
l=1 Ŷl

For l > 1, Ŷl = 1
Nl

∑Nl
i=1

(
P̂ [i]

l − P̂ [i]
l−1

)
and

var
[
Ŷl

]
= O(hl/Nl)⇒ var

[
Ŷ
]

= var
[
Ŷ0

]
+
∑L

l=1 O(hl/Nl)

Take Nl = O(ε−2Lhl), to give var
[
Ŷ
]

= O(ε2)

Because hL = O(ε), the bias E
[
P̂L − f (S(T ))

]
= O(ε)

Computational complexity is

L∑
l=0

Nlh−1
l =

L∑
l=0

ε−2Lhlh−1
l = L2ε−2

Since L = log ε−1

log M , this gives O(ε−2(log ε)2)
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Financial Options
Now S(t) represents the asset price

Option Payoffs :
European call: max (S(T )− E ,0)

Digital: 1S(T )>E

Lookback: S(T )−min0≤t≤T S(t)

Up and out: max (S(T )− E ,0)× 1(sup0≤t≤T S(t))≤B

Task: compute E [Payoff]
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Lookback with geom. Brownian motion

0 2 4 6
10

2

10
4

10
6

10
8

10
10

l

N
l

 

 
ε=0.00005
ε=0.0001
ε=0.0002
ε=0.0005
ε=0.001

10
−4

10
−3

10
−1

10
0

10
1

10
2

ε

ε2  C
os

t

 

 

Std MC
MLMC

SciCADE Des Higham MLMC 13 / 24

http://www.mims.manchester.ac.uk/


Digital with geom. Brownian motion
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Payoff Not Globally Lipschitz?
Extending Giles (2008) reduces to getting

E
[(

P− P̂
)2
]
≤ O

(
hβ
)

where
P is true payoff,
P̂ is Euler–Maruyama payoff

In Giles, Higham, Mao (2009), we confirmed rigorously that,
given any δ > 0,

β = 1− δ for a lookback
β = 1

2 − δ for a digital
β = 1

2 − δ for a barrier

(Still assume SDE coeffs glob. Lipsch. Up and out fits well!)
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Stopped Exit Times

Required in many physical modeling scenarios
Look at scalar case for simplicity

Suppose S(0) = x ∈ (α, β). For the SDE we define

τ := (inf{t > 0 : S(t) /∈ (α, β)}) ∧ T

For the E-M approximation

ν := (inf{t > 0 : S(t) /∈ (α, β)}) ∧ T

Assumptions
Drift and diffusion globally Lipschitz and smooth
Diffusion strictly positive (uniform ellipticity)

This ensures that u(x) := E[τ ] is Lipschitz
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Weak Error in Mean Hitting Time

Gobet & Menozzi, Stoch. Proc. Appl., 2010:

E [τ ]− E [ν] = O(h
1
2 )

Standard Monte Carlo for accuracy ε:
to balance bias and sampling error we need

ε = h
1
2 = 1/

√
N

This gives computational complexity of O(ε−4)

We will show that multi-level can achieve O
(
ε−3(log ε)2

)
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Illustration of one sample at one level
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Key Result

Strong error in mean exit time

We need to show that

E
[
|τ − ν|2

]
= O(h

1
2 )

We use
E
[
|τ − ν|2

]
≤ TE [|τ − ν|]

Then deal separately with the cases ν < τ and τ < ν
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Case where ν < τ
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Overall

We can show

E
[
(τ − ν) 1{ν<τ}

]
= O(h

1
2 )

and
E
[
(ν − τ) 1{τ<ν}

]
= O(h

1
2 )

So
E [|τ − ν|] = O(h

1
2 )

⇒ multi-level version has complexity of

O
(
ε−3(log ε)2)

compared to the standard

O(ε−4)
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Mean-Reverting Square Root SDE
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Gillespie/Tau-leaping

G 25→ G + M

M 1000→ M + P

P + P 0.001→ D

M 0.1→ ∅
P 1→ ∅

Start with 1 gene
Estimate expected number of dimers at t = 1

Method Solution Updates CPU time
Gillespie/MC 3714.6± 1 8.3× 1010 1.5× 105 sec
Tau-leap/MC 3708.4± 1 1.7× 1010 2.0× 104 sec

Tau/Gill/MLMC 3713.9± 1 5.8× 108 1.7× 103 sec

[Joint work with David Anderson]
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Summary

Multi-level approach dramatically improves Monte Carlo
simulation when samples contain discretization errors
Compute many (cheap) samples at low resolution and
few (expensive) samples at high resolution

Original SDE analysis of Giles (2008) extends to some
E [f (S(t))] where f is not globally Lipschitz
Works for mean exit times
Now available for Gillespie/tau-leaping

MLMC is currently being pursued in many directions
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