Gulshad Imran John Butcher (supervisor)

University of Auckland

11-15 July, 2011

International Conference on Scientific Computation and Differential equations (SciCADE 2011)

University of Toronto, Canada

Introduction

- The idea of effective order was first introduced by Butcher in 1969 for explicit Runge–Kutta methods as a mean of overcoming the 5th order 5 stage barrier.
- This was extended to Singly Implicit Runge–Kutta methods by Butcher and Chartier in 1997.
- The idea was later used for Diagonally Extended Singly Implicit Runge–Kutta methods by Butcher and Diamantakis in 1998 and by Butcher and Chen in 2000.
- The accuracy of symplectic integrators for Hamiltonian systems was enhanced using effective order by M A Lopéz-Marcos, J M Sanz-Serna and R D Skeel in 1996.

Introduction

- The idea of effective order was first introduced by Butcher in 1969 for explicit Runge–Kutta methods as a mean of overcoming the 5th order 5 stage barrier.
- This was extended to Singly Implicit Runge–Kutta methods by Butcher and Chartier in 1997.
- The idea was later used for Diagonally Extended Singly Implicit Runge–Kutta methods by Butcher and Diamantakis in 1998 and by Butcher and Chen in 2000.
- The accuracy of symplectic integrators for Hamiltonian systems was enhanced using effective order by M A Lopéz-Marcos, J M Sanz-Serna and R D Skeel in 1996.

The purpose of this presentation is to develop some special symplectic effective order methods with low implementation costs.

Differential Equations with Invariants

Consider an initial value problem

$$y'(x) = f(y(x)), \qquad y(x_0) = y_0.$$
 (1)

Suppose $Q(y) = y^T M y$ is a quadratic invariant, that is

Q'(y)f(y)=0,

or

$$y^T M f(y) = 0.$$

Methods which conserve quadratic invariants are said to be "Canonical" or "Symplectic".

- Algebraic interpretation
- Computational interpretation

- Algebraic interpretation
- Computational interpretation
- 2 Symplectic Runge–Kutta methods
 - Superfluous and Non–superfluous trees
 - Order conditions for Symplectic methods

- Algebraic interpretation
- Computational interpretation
- 2 Symplectic Runge–Kutta methods
 - Superfluous and Non–superfluous trees
 - Order conditions for Symplectic methods
- 3 Effective order with symplectic integrator
 - New Implicit Methods
 - Cheap implementation
 - Transformation
 - Starting method

- Algebraic interpretation
- Computational interpretation
- 2 Symplectic Runge–Kutta methods
 - Superfluous and Non–superfluous trees
 - Order conditions for Symplectic methods
- 3 Effective order with symplectic integrator
 - New Implicit Methods
 - Cheap implementation
 - Transformation
 - Starting method
- 4 Numerical Experiments

- Algebraic interpretation
- Computational interpretation
- 2 Symplectic Runge–Kutta methods
 - Superfluous and Non-superfluous trees
 - Order conditions for Symplectic methods
- 3 Effective order with symplectic integrator
 - New Implicit Methods
 - Cheap implementation
 - Transformation
 - Starting method
- 4 Numerical Experiments
- 5 Conclusions

- Algebraic interpretation
- Computational interpretation
- 2 Symplectic Runge–Kutta methods
 - Superfluous and Non–superfluous trees
 - Order conditions for Symplectic methods
- 3 Effective order with symplectic integrator
 - New Implicit Methods
 - Cheap implementation
 - Transformation
 - Starting method
- 4 Numerical Experiments
- 5 Conclusions
- 6 Future work

Effective order

-Algebraic interpretation

Algebraic interpretation

- We introduce an algebraic system which represents indvidual Runge–Kutta methods and also composition of methods.
- This centres on the meaning of order for Runge-Kutta methods and leads to the possible generalisation to the "effective order".
- We introduce a group G whose elements are mapping from T (rooted -trees) to real numbers and where the group operation is defined according to the algebraic theory of Runge-Kutta methods or to the theory of B-series.
- **4** Members of *G* represents Runge–Kutta methods with *E* representing the exact solution. That is, $E : T \to \mathbb{R}$ is defined by

$$E(t) = \frac{1}{\gamma(t)}, \quad \forall t$$

Effective order

└─Algebraic interpretation

Table: Group Operation

t	<i>r</i> (<i>t</i>)	$\alpha(t)$	$\beta(t)$	(lphaeta)(t)	E(t)
•	1	α_1	β_1	$\alpha_1\beta_0+\beta_1$	1
I	2	α_2	β_2	$\alpha_2\beta_0 + \beta_2 + \alpha_1\beta_1$	$\frac{1}{2}$
V	3	α_3	β_3	$\alpha_3\beta_0 + \beta_3 + \alpha_1^2\beta_1 + 2\alpha_1\beta_2$	$\frac{1}{3}$
}	3	$lpha_{4}$	β_4	$\alpha_4\beta_0 + \beta_4 + \alpha_1\beta_2 + \alpha_2\beta_1$	$\frac{1}{6}$
\mathbb{V}	4	$lpha_5$	β_5	$\alpha_5\beta_0+\beta_5+3\alpha_1\beta_3+\alpha_1^2\beta_1+\alpha_1^3\beta_1$	$\frac{1}{4}$
$\dot{\mathbf{v}}$	4	$lpha_{6}$	eta_6	$\alpha_6\beta_0 + \beta_6 + \alpha_1\beta_4 + \alpha_1\beta_3 + \\ \alpha_1^2\beta_2 + \alpha_2\beta_2 + \alpha_1\alpha_2\beta_1$	$\frac{1}{8}$
Ŷ	4	α_7	β_7	$\alpha_7\beta_0 + \beta_7 + 2\alpha_1\beta_4 + \alpha_3\beta_1 + \alpha_1^2\beta_2$	$\frac{1}{12}$
>	4	$lpha_{8}$	β_8	$\alpha_8\beta_0 + \beta_8 + \alpha_2\beta_2 + \alpha_1\beta_4 + \alpha_4\beta_1$	$\frac{1}{24}$

We introduce N_p as a normal subgroup, which is defined by

$$N_{p} = \{ lpha \in \mathbb{G} : lpha(t) = 0, ext{whenever} \quad r(t) \leq p \}$$

A Runge- Kutta method with group element α is of order p, if it is in the same coset as EN_p , that is

$$\alpha N_p = E N_p$$

A Runge- Kutta method has an "effective order" p if there exist another Runge - Kutta method with corresponding group element β , such that

$$\beta \alpha N_{p} = E \beta N_{p}$$

Computational interpretation

Computational interpretation

The conjugacy concept in group theory provides a computational interpretation of the effective order. This means that, "every input value for effective order method α is perturbed by a method β ". Therefore the starting method β offers some freedom of the order conditions of the effective order method α .

Every output value could also be perturbed back to the origional trajectory using method β^{-1} .

Symplectic Runge-Kutta methods satisfying effective order conditions Symplectic Runge-Kutta methods

Symplectic Runge- Kutta methods

A Runge–Kutta method is said to be canonical or symplectic if the numerical solution y_n also has the quadratic invariant $Q(y_n)$ i.e.

$$\langle y_n, y_n \rangle = \langle y_{n-1}, y_{n-1} \rangle$$

A method has this property if and only if,

$$b_i a_{ij} + b_j a_{ji} - b_i b_j = 0$$

for all i, j.

- Symplectic Runge–Kutta methods
 - Superfluous and Non-superfluous trees

Superfluous and Non-superfluous trees

It is a consequence of the symplectic condition that if τ_1 and τ_2 are rooted trees corresponding to the same tree τ then

$$\phi(au_1) = rac{1}{\gamma(au_1)}, \quad \phi(au_2) = rac{1}{\gamma(au_2)}$$

For Symplectic Runge–Kutta methods, we distinguish trees in two ways.

- Superfluous trees,
- Non– Superfluous trees.

Symplectic Runge–Kutta methods

Superfluous and Non-superfluous trees

Order conditions corresponding to non-superfluous trees are transformed into one order condition.

- Symplectic Runge–Kutta methods
 - └─Order conditions for Symplectic methods

Order Conditions for Symplectic Runge-Kutta methods

The number of order conditions for symplectic Runge–Kutta methods is less than the number of order conditions for a general Runge–Kutta method.

Case 1: Suppose the method is of order at least 1, $(\sum_{i} b_i = 1)$,

$$\sum_{i,j}b_ia_{ij}+\sum_{i,j}b_ja_{ji}-\sum_{i,j}b_ib_j=0
onumber \ \Rightarrow\sum_{i,j}b_ia_{ij}=rac{1}{2}$$

Therefore for symplectic Runge–Kutta method the second order condition is automatically satisfied and hence not required.

- └─ Symplectic Runge–Kutta methods
 - -Order conditions for Symplectic methods

Order Conditions for Symplectic Runge-Kutta methods

Case 2 : Suppose the method is of order at least 2, $(\sum_{i} b_i c_i = \frac{1}{2})$, Consider the symplectic condition,

 $b_i a_{ij} + b_j a_{ji} - b_i b_j = 0$

Multiply with c_i and take summation,

$$\sum_{i,j} b_i a_{ij} c_j + \sum_{i,j} b_j c_j a_{ji} - \sum_{i,j} b_i b_j c_j = 0$$

$$\Rightarrow (\sum_{i,j} b_i a_{ij} c_j - \frac{1}{6}) + (\sum_j b_j c_j^2 - \frac{1}{3}) = 0$$

- Symplectic Runge–Kutta methods
 - -Order conditions for Symplectic methods

Order Conditions for Symplectic Runge-Kutta methods

Case 2: Suppose the method is of order at least 2, $(\sum_{i} b_i c_i = \frac{1}{2})$, Consider the symplectic condition,

 $b_i a_{ij} + b_j a_{ji} - b_i b_j = 0$

Multiply with c_j and take summation,

$$\sum_{i,j} b_i a_{ij} c_j + \sum_{i,j} b_j c_j a_{ji} - \sum_{i,j} b_i b_j c_j = 0$$
$$\Rightarrow \left(\sum_{i,j} b_i a_{ij} c_j - \frac{1}{6}\right) + \left(\sum_j b_j c_j^2 - \frac{1}{3}\right) = 0$$
$$\sum_{i,j} b_i a_{ij} c_j - \frac{1}{6} + \sum_j b_j c_j^2 - \frac{1}{3} = 0$$

Symplectic Runge–Kutta methods

Corder conditions for Symplectic methods

Order	General RK method	Symplectic RK method
1	1	1
2	2	1
3	4	2
4	8	3

Table: Order conditions for general and symplectic Runge–Kutta methods up to order 4.

- Symplectic Runge–Kutta methods
 - Corder conditions for Symplectic methods

Gauss method

For example, consider applying Gauss method to the harmonic oscillator problem given below:

$$q'=p, \qquad p'=-q.$$

The energy is given by,

$$H=\frac{p^2}{2}+\frac{q^2}{2}.$$

The exact solution is,

This problem describes the motion of a unit mass attached to a spring with momentum p and position co-ordinates q defines a Hamiltonian system.

Symplectic Runge–Kutta methods

└─Order conditions for Symplectic methods

we consider the two stage order four Gauss method,

$$\frac{\frac{1}{2} - \frac{\sqrt{3}}{6}}{\frac{1}{2} + \frac{\sqrt{3}}{6}} \frac{\frac{1}{4} + \frac{\sqrt{3}}{6}}{\frac{1}{4} + \frac{\sqrt{3}}{6}} \frac{\frac{1}{4}}{\frac{1}{2}}$$

Gauss method approximately conserve the total energy of the himiltonian system .

(2)

Effective order with symplectic integrator

We show a way of analyzing methods of effective order 4 having symplectic condition with three stages.

 $(\beta\alpha)(\cdot) = \beta(\cdot) + \alpha(\cdot)$ $(\beta\alpha)(\vee) = \beta(\vee) + 2\beta(\cdot)\alpha(\uparrow) + \beta^{2}(\cdot)\alpha(\cdot) + \alpha(\vee)$ $(\beta\alpha)(\vee) = \alpha(\vee) + 3\beta(\cdot)\alpha(\vee) + 3\beta^{2}(\cdot)\alpha(\uparrow)$ $+ \beta^{3}(\cdot)\alpha(\cdot) + \beta(\vee)$

Effective order with symplectic integrator

-New Implicit Methods

New Implicit methods

We present two examples of symplectic effective order methods:

Method A - has real and distinct eigenvalues

<u>3</u> 8	$\frac{7}{15}$	$-\frac{163}{504}$	$\frac{73}{315}$
5 8	$-\frac{17}{40}$	$-\frac{1}{9}$	<u>209</u> 180
1	<u>12</u> 65	<u>157</u> 234	$\frac{13}{90}$
	$\frac{14}{15}$	$-\frac{2}{9}$	$\frac{13}{45}$

Method B - has complex eigenvalues

- Effective order with symplectic integrator
 - Cheap implementation

Cheap implementation

Since method A have real eigenvalues, it is therefore of interest. This is because we can obtain a cheaper implementation. Here we are considering only method *A*. The general form of an *s*-stage implicit method is

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i f(x_n + hc_i, Y_i),$$

 $Y_i = y_n + h \sum_{j=1}^{s} a_{ij} f(x_n + hc_j, Y_j)$

The stage equations can be written in the form

$$Y = e \otimes y_n + h(A \otimes I_m)F(Y)$$

-Effective order with symplectic integrator

└─ Cheap implementation

We use modified Newton Raphson iteration scheme to solve the above equation. This can be defined as

$$\begin{split} &M\Delta Y^{[k]} = G(Y^{[k]}) \\ &Y^{[k+1]} = Y^{[k]} + \Delta Y^{[k]} \end{split}$$

where

$$M = I_s \otimes I_m - h(A \otimes J)$$

$$G(Y^{[k]}) = -Y^{[k]} + e \otimes y_n + h(A \otimes I_m)F(Y)$$

The total computational cost in this scheme include

- the evaluation of F and G,
- the evaluation of J,
- the evaluation of M,
- LU factorization of the iteration matrix, M,
- back substitution to get the Newton update vector, $\Delta Y^{[k]}$.

Symplectic Runge-Kutta methods satisfying effective order conditions Effective order with symplectic integrator

└─ Transformation

Transformation

To reduce computational cost of fully implicit RK method, we use transformation. The transformation matrix T for method A is given by

0.262527404618574 0.949059020237884 -0.235024483067430T =0.812033424383500 -0.0683046454701650.765241433855123 -0.521230351675958 0.307606000449118 0.599307133505220 The transformation matrix has the property, 0.993809382166128 0 0 $T^{-1}AT =$ 0 0.565055763297954 0 0.928753618868175 0 0 where -0.993809382166128, 0.565055763297954, and 0.928753618868175 are three distinct real eigenvalues

Symplectic Runge-Kutta methods satisfying effective order conditions Effective order with symplectic integrator

└-Starting method

Starting method

Solution of these equations give the starting method

$$(\alpha)(\cdot) = 1$$

$$(\alpha)(\vee) = 2\beta(\cdot) + \frac{1}{3}$$

$$(\alpha)(\vee) = 3\beta(\vee) + 3\beta(\uparrow) + \frac{1}{4}$$

which is given by

Numerical Experiments

1 The Kepler's problem

$$\begin{aligned} x_1' &= y_1, & x_2' &= y_2, \\ y_1' &= -\frac{x_1}{\left(x_1^2 + x_2^2\right)^{\frac{3}{2}}}, & y_2' &= -\frac{x_2}{\left(x_1^2 + x_2^2\right)^{\frac{3}{2}}} \end{aligned}$$

where (x_1, x_2) are the position coordinates and (y_1, y_2) are the velocity components of the body.

$$egin{aligned} & (x_1, x_2, y_1, y_2) = (1-e, 0, 0, \sqrt{(1+e)/(1-e)}) \ & H = rac{1}{2}(y_1^2 + y_2^2) - rac{1}{\sqrt{x_1^2 + x_2^2}}. \end{aligned}$$

Kepler problem (e=0,h=0.01, $n = 10^6$)

Graph for Hamiltonian: error VS time

Kepler problem (e=0.5,h=0.01, $n = 10^{6}$)

For Hamiltonian: error VS time

Symplectic Runge-Kutta methods satisfying effective order conditions - Numerical Experiments

1 The simple Pendulum

$$p'=-\sin(q), \qquad q'=p,$$

$$(p,q) = (0,2.3).$$

 $H = \frac{p^2}{2} - \cos(q).$

Simple Pendulum (h=0.05, $n = 10^6$)

For Hamiltonian: error VS time

Conclusions

- For problems that conserve some sort of invariant structure, it is a good idea to use numerical methods which mimic this behaviour.
- Symplectic Runge–Kutta methods have this role for many important problems.
- Because of greater flexibility, effective order methods can provide greater efficiency as compared with methods with classical order.
- 4 It is possible to obtain cheap implementation cost if A has real eigenvalues.
- **5** These methods are suited for parallel computers which have very large number of processors.

Future work

1 Error estimates

- 2 Working on implicit methods with optimal choices of parameters.
- Construct general linear methods with closely related properties.
- 4 Generalization of effective order on partioned Runge–Kutta methods for separable Hamiltonian.

THANK YOU

