Directional projection with low dispersion error SCICADE - July - 2011

J.I. Montijano

Joined work with M. Calvo, P. Laburta and L. Rández

IUMA – Zaragoza (Spain)

Consider a differential system with a scalar invariant F(y)

$$G(y(t)) \equiv F(y) - F(y(t_0)) = 0$$
 for all t

Given a numerical method that provides an approximation \tilde{y}_{n+1} to the solution $y(t_{n+1})$, find the parameter λ_n such that

$$G(ilde{y}_{n+1}+v_n\lambda_n)=0$$

with v_n some projection direction. The new (projected) approximation is

$$y_{n+1} = ilde{y}_{n+1} + v_n \lambda_n$$

The direction vector v_n defines the projection method.

Projection methods

Simplified Orthogonal projection (Hairer et al.)

$$\begin{split} v_n &= \nabla G(\tilde{y}_{n+1})^T, \\ G(\tilde{y}_{n+1} + \lambda_n \nabla G(\tilde{y}_{n+1})^T) = 0 \end{split}$$

Only a scalar nonlinear equation must be solved.

J.I. Montijano - IUMA

Runge–Kutta projection

Runge-Kutta schemes

$$egin{aligned} Y_i &= y_n + h \sum\limits_{j=1}^s a_{ij} f(Y_j), \quad i=1,\ldots,s \ ilde{y}_{n+1} &= y_n + h \sum\limits_{i=1}^s b_i f(Y_i) \end{aligned}$$

Direction of projection (based on an embedded RK method)

$$egin{aligned} \hat{y}_{n+1} &= y_n + h \sum\limits_{i=1}^s \hat{b}_i f(Y_i) \ v_n &= \hat{y}_{n+1} - ilde{y}_{n+1} = h \sum\limits_{i=1}^s (\hat{b}_i - b_i) f(Y_i) \ y_{n+1} &= ilde{y}_{n+1} + \lambda_n (\hat{y}_{n+1} - ilde{y}_{n+1}) = (1 - \lambda_n) ilde{y}_{n+1} + \lambda_n \hat{y}_{n+1} \end{aligned}$$

 y_{n+1} is a convex linear combination of Runge–Kutta approximations, which is also a Runge–Kutta method.

J.I. Montijano - IUMA

Projection methods

$$y_{n+1} = \tilde{y}_{n+1} + \lambda_n(\hat{y}_{n+1} - \tilde{y}_{n+1}) = (1 - \lambda_n)\tilde{y}_{n+1} + \lambda_n\hat{y}_{n+1}$$

Main results

Let \tilde{y}_{n+1} and \hat{y}_{n+1} have orders p and q(< p) respectively and let $C_{q+1}(y_n)h^{q+1}$ the leading term of error of the embedded method.

- $\begin{array}{l} \blacksquare \quad \text{If } \nabla G(y_n) \cdot C_{q+1}(y_n) \neq 0 \text{, for } h \text{ small enough, there exist} \\ \lambda_n = \lambda(y_n, h) \text{ and } y(t_{n+1}) y_{n+1} = \mathcal{O}(h^{p+1}). \end{array}$
- $\begin{array}{ll} \blacksquare & \text{ If } \nabla G(y_n) \cdot v_n = B(y_n)h^r + \mathcal{O}(h^{r+1}), \, r \geq 1, \, B(y_n) \neq 0 \text{ and} \\ & 2r \leq p, \, \text{then for } h \text{ small enough there exist } \lambda_n = \lambda(y_n, h) \text{ and} \\ & y(t_{n+1}) y_{n+1} = \mathcal{O}(h^{p-r+1}) \end{array}$
- The projected Runge–Kutta method preserves all linear first integrals
- The projected method is affine invariant

SIAM J. Sci. Comput. 28 (2006), no. 3, 868-885.

The direction of projection

The projected approximation depends on the embedded method $\hat{y}_{n+1}.$

Can we chose it in an optimal way?

- Minimizing the error $|y(t_{n+1}) y_{n+1}|$
- Ensuring the existence of the projection

$$y_{n+1} = \tilde{y}_{n+1} + \lambda_n(\hat{y}_{n+1} - \tilde{y}_{n+1}) = (1 - \lambda_n)\tilde{y}_{n+1} + \lambda_n\hat{y}_{n+1}$$

Desired properties for \hat{y}_{n+1} :

- \Box $G(\hat{y}_{n+1})$ and $G(\tilde{y}_{n+1})$ have opposite signs.
- If \tilde{y}_{n+1} advances the phase with respect to $y(t_{n+1})$, then \hat{y}_{n+1} must delay it, and conversely.

Linear problem

This equivalence is valid if the method is affine invariant !

Linear problem

$$egin{aligned} Y_i &= y_n + h \sum\limits_{j=1}^s a_{ij} f(Y_j), & i = 1, \dots, s \ & ilde{y}_{n+1} &= y_n + h \sum\limits_{i=1}^s b_i f(Y_i) \ & \hat{y}_{n+1} &= y_n + h \sum\limits_{i=1}^s \hat{b}_i f(Y_i) \end{aligned}$$

Denoting $z = i\omega h$,

$$ilde{y}_{n+1} = ilde{R}(z) y_n, \quad ilde{R}(z) = 1 + z + b^T c \; z^2 + \ldots + b^T A^{s-2} c \; z^s$$

 $\hat{y}_{n+1} = \hat{R}(z)y_n, \quad \hat{R}(z) = 1 + z + \hat{b}^T c \ z^2 + \ldots + \hat{b}^T A^{s-2} c \ z^s$

Linear problem

 $y(t_{n+1}) = y_0 e^{i\omega t_{n+1}} = e^{hi\omega}y(t_n) \quad \longleftrightarrow \quad \tilde{y}_{n+1} = \tilde{R}(ih\omega)y_n$ Local error: $\tilde{y}_{n+1} - y(t_{n+1}; t_n, y_n) = (\tilde{R}(ih\omega) - e^{hi\omega})y_n$ Components:

 $\begin{array}{ll} \text{Modulus:} & |\tilde{y}_{n+1}| - |y(t_{n+1};t_n,y_n)| = |y_n|(|\tilde{R}(z)| - 1) \\ \\ \text{Phase:} & \arg \tilde{y}_{n+1} - \arg y(t_{n+1};t_n,y_n) = \arg \tilde{R}(hi\omega) - h\omega \end{array}$

Linear problem

$$egin{array}{lll} G(ilde{y}_{n+1})>0&\longleftrightarrow& ilde{d}(h\omega)=| ilde{R}(ih\omega)|-1>0\ ilde{y}_{n+1} ext{ advances in phase }&\longleftrightarrow& ilde{arphi}(h\omega)>0 \end{array}$$

We search for an embedded method \hat{y}_{n+1} such that

$$ilde{d}(
u) \hat{d}(
u) < 0, \qquad ilde{arphi}(
u) \hat{arphi}(
u) < 0,$$

for $\nu \in \mathbb{R}$ small enough.

3 stages, order 3

$$egin{aligned} & ilde{R}(z) = 1 + z + rac{z^2}{2} + rac{z^3}{6} \ &| ilde{R}(i
u)|^2 - 1 = -rac{1}{12}
u^4 + rac{1}{36}
u^6 \ & ilde{arphi}(
u) = rac{1}{30}
u^5 - rac{1}{252}
u^7 + \mathcal{O}(
u^9) \end{aligned}$$

We want a first order method, 3 stages

$$\hat{R}(z) = 1 + z + \alpha z^2 + \beta z^3$$

In this case

$$\begin{split} |\hat{R}(i\nu)|^2 - 1 &= (1 - 2\alpha)\nu^2 + (\alpha^2 - 2\beta)\nu^4 + \beta^2\nu^6\\ \hat{\varphi}(\nu) &= \left(-\frac{1}{3} + \alpha - \beta\right)\nu^3 + \left(\frac{1}{5} - \alpha + \alpha^2 + \beta - \alpha\beta\right)\nu^5 + \mathcal{O}(\nu^7) \end{split}$$

J.I. Montijano - IUMA

3 stages, order 3

The embedded method of order 1 with 3 stages must satisfy

$$1-2\alpha>0,$$
 and $1/3-\alpha+\beta>0$

$$\begin{array}{ll} \blacksquare & \alpha = \beta = 0 & \text{Euler method} \\ \hline \blacksquare & \beta = 0, \quad \alpha < 1/3 & 2 \text{ stages method} \\ \hline \blacksquare & \alpha < 1/2, \quad \beta > \alpha - 1/3 & 3 \text{ stages method} \end{array}$$

Can we chose the parameters α, β in some way ?

3 stages, order 3

The projected approximation is

$$y_{n+1} = (1-\lambda_n) ilde{y}_{n+1} + \lambda_n \hat{y}_{n+1}$$

with λ_n the solution of

$$|R(i\nu)|^2 = |(1-\lambda_n)\tilde{R}(i\nu) + \lambda_n \hat{R}(i\nu)|^2 = 1$$

Solving for λ_n and substituting into $\varphi(
u)$

$$\varphi(\nu) = \frac{1 + 3\alpha - 15\beta}{180(1 - 2\alpha)}\nu^5 + \frac{1 - 24\alpha^2 - 4\alpha + 168\alpha\beta - 252\beta^2}{1512(1 - 2\alpha)^2}\nu^7 + \mathcal{O}(\nu^9)$$

We can chose α,β such that the projected method has dispersion error of order 6

$$eta = (1+3lpha)/15 \quad \Rightarrow \quad arphi(
u) = \mathcal{O}(
u^7)$$

3 stages, order 3

$$\begin{split} &\tilde{R}(z) = 1 + z + z^2/2 + z^3/6 \\ & \tilde{R}(z) = 1 + z + \alpha z^2 + (1 + 3\alpha) z^3/15 \\ & \blacksquare \ |R(i\nu)| = 1 \Rightarrow \varphi(\nu) = -\frac{1}{12600} \nu^7 + \mathcal{O}(\nu^9) \end{split}$$

Conditions on the coefficients of the method

$$egin{aligned} \hat{b}^T e &= \hat{b}_1 + \hat{b}_2 + \hat{b}_3 = 1 \ \hat{b}^T c &= \hat{b}_2 c_2 + \hat{b}_3 c_3 = lpha \ \hat{b}^T A c &= \hat{b}_3 a_{32} c_2 = (1+3lpha)/15 \end{aligned}$$

Bogacki and Shampine (Matlab pair 2(3))

 \hat{b}_1

 \hat{b}_2

 \hat{b}_3

3 stages, order 3

$$\begin{array}{ll} \bullet &= (2/9, 1/3, 4/9)^T \\ \bullet & \hat{b} = (\hat{b}_1, \hat{b}_2, \hat{b}_3)^T \\ \bullet & \hat{b}^T e = \hat{b}_1 + \hat{b}_2 + \hat{b}_3 = 1 \\ \bullet & \hat{b}^T c = \hat{b}_2 1/2 + \hat{b}_3 3/4 = \alpha \\ \bullet & \hat{b}^T A c = \hat{b}_3 (3/4) (1/2) = (1+3\alpha)/15 \end{array}$$

$$\begin{array}{l} \hline b_3 = 8(1+3\alpha)/45 \\ \hline b_2 = 2\alpha - 3\hat{b}_3/2 \\ \hline b_1 = 1 - \hat{b}_2 - \hat{b}_3 \end{array}$$

For $lpha = -1/3, \quad \hat{b} = (5/3, -2/3, 0)^T$

A Numerical experiment

General problems

$$y' = f(t,y), \hspace{1em} y(t_0) = y_0, \hspace{1em} G(y(t)) = 0$$

$$ilde{d}(
u) \hat{d}(
u) < 0 \quad
e \quad G(ilde{y}_{n+1}) G(\hat{y}_{n+1}) < 0$$

Can we find \hat{y}_{n+1} such that $G(\tilde{y}_{n+1})G(\hat{y}_{n+1}) < 0$?

- \Box $G(\tilde{y}_{n+1})$ can be evaluated,
- $\bigcirc \tilde{y}_{n+1}$ has order p,
- \hat{y}_{n+1} has order q,
- \bigcirc $G(\hat{y}_{n+1})$ depends on the free parameters (α, β) !.

$$\begin{split} G(\hat{y}_{n+1}) &= G(\tilde{y}_{n+1} + \hat{y}_{n+1} - \tilde{y}_{n+1}) = \\ G(\tilde{y}_{n+1}) + \nabla G(\tilde{y}_{n+1})(\hat{y}_{n+1} - \tilde{y}_{n+1}) + \mathcal{O}(h^{2(q+1)}) = \\ \nabla G(\tilde{y}_{n+1})(\hat{y}_{n+1} - \tilde{y}_{n+1}) + \mathcal{O}(h^{2(q+1)}) + \mathcal{O}(h^{p+1}) \end{split}$$

We look for \hat{y}_{n+1} such that

$$G(\tilde{y}_{n+1})
abla G(\tilde{y}_{n+1})(\hat{y}_{n+1} - \tilde{y}_{n+1}) < 0$$

Bogacki–Shampine

$$egin{aligned} & ilde{y}_{n+1} = (2/9)f(Y_1) + (3/9)f(Y_2) + (4/9)f(Y_3) \ & ilde{y}_{n+1} = \hat{b}_1f(Y_1) + rac{1}{2}(lpha - 8eta)f(Y_2) + rac{8}{3}eta f(Y_3) \end{aligned}$$

Bogacki–Shampine

lf

$$abla G(ilde y_{n+1})(\hat y_{n+1} - ilde y_{n+1}) = \sum_{i=1}^3 (\hat b_i - b_i) K_i$$
 $K_i =
abla G(ilde y_{n+1}) f(Y_i)$
 $eta = (1+3lpha)/15$
 $abla G(ilde y_{n+1})(\hat y_{n+1} - ilde y_{n+1}) = a(lpha - rac{1}{2})$

$$a = -2(13K_1 - 9K_2 - 4K_3)/15$$

$$G(\tilde{y}_{n+1})a>0 \Rightarrow G(\tilde{y}_{n+1})G(\hat{y}_{n+1})<0$$

for all $\alpha < 1/2$ and h small enough

Bogacki–Shampine

$$\begin{array}{ll} \blacksquare & G(\tilde{y}_{n+1})(-2(13K_1 - 9K_2 - 4K_3)/15) > 0 \\ & \alpha < 1/2 \text{ and } \beta = (1+3\alpha)/15 \quad \Rightarrow \quad G(\tilde{y}_{n+1})G(\hat{y}_{n+1}) < 1 \\ \blacksquare & G(\tilde{y}_{n+1})(-2(13K_1 - 9K_2 - 4K_3)/15) < 0 \\ & \text{There exist } \alpha \text{ and } \beta \text{ such that} \\ & \blacksquare & \nabla G(\tilde{y}_{n+1})(\hat{y}_{n+1} - y_{n+1}) = \sum_{i=1}^3 (\hat{b}_i - b_i)K_i < 0 \end{array}$$

$$\vec{\varphi}(\nu)\hat{\varphi}(\nu) < 0$$

$$\vec{\tilde{A}}(\nu)\hat{\tilde{A}}(\nu) < 0$$

$$\sub{d(\nu)d(\nu)} < 0$$

 \checkmark Incompatible with eta=(1+3lpha)/15

Kinematic equations in terms of quaternions

$$\frac{\mathsf{d}}{\mathsf{d}t} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -w_1(t) & -w_2(t) & -w_3(t) \\ w_1(t) & 0 & w_3(t) & -w_2(t) \\ w_2(t) & -w_3(t) & 0 & w_1(t) \\ w_3(t) & w_2(t) & -w_1(t) & 0 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}$$

 $w_i(t)$ solutions of Euler's equations

First integral: $q(t)^T q(t) = ||q(t)||^2$

Numerical experiments: Free rigid body

Integrated in the quaternions form, with exact angular velocities w(t)

Numerical experiments: Lotka-Volterra

J.I. Montijano - IUMA

Numerical experiments: Wave equation

$$egin{aligned} &rac{\partial u}{\partial t}+rac{\partial u}{\partial x}=0, \quad x\in\mathbb{R}, \quad t\geq 0, \ &u(x,0)=\Phi(x), \quad \lim_{|x| o\infty}\Phi(x)=0 \end{aligned}$$

Symmetric spatial discretization ($a_l = -a_{-l}$)

$$\begin{array}{l} \blacksquare \quad \frac{\partial u(x_j,t)}{\partial x} \simeq \frac{1}{\Delta x} (a_{-N}u(x_{j-N},t) + \ldots + a_Nu(x_{j+N},t)), \\ \blacksquare \quad \frac{\mathsf{d}u_j(t)}{\mathsf{d}t} + \frac{1}{\Delta x} \sum_{l=-N}^N a_l u_{j+l}(t) = 0, \end{array}$$

Invariants

Numerical experiments: Wave equation

Numerical experiments: Wave equation

Method	G(u)		
	h=0.32	h=0.08	h=0.02
No projection	$-7.15 imes10^{-3}$	$-1.18 imes10^{-4}$	$-1.86 imes10^{-6}$
Orth. proj.	0	0	0
Low disp. proj.	0	0	0

Method	$\sum_j u_j - \sum_j u_j(0)$		
	h=0.32	h=0.08	h=0.02
No projection	$6.50 imes10^{-10}$	$5.99 imes10^{-8}$	$6.20 imes10^{-8}$
Orth. proj.	$1.02 imes10^{-2}$	$1.67 imes10^{-4}$	$2.69 imes10^{-6}$
Low disp. proj.	$2.80 imes10^{-10}$	$6.00 imes10^{-8}$	$6.20 imes10^{-8}$

Thank you for your attention

SCICADE 2011