Implicit Two-Derivative Runge-Kutta Methods

Angela Tsai (joint work with Shixiao Wang and Robert Chan)

Department of Mathematics The University of Auckland

SciCADE 2011, Toronto, Canada 11-15 July

OUTLINE OF TOPICS

1 Two-Derivative Runge-Kutta (TDRK) Methods

2 TDRK Methods for ODEs

3 TDRK Methods for PDEs

4 DISCUSSION/CONCLUSION

BASIC BACKGROUND

- Two-derivative Runge-Kutta (TDRK) methods belong to the family of multi-derivative Runge-Kutta methods – they are one-step multi-stage methods.
- We consider an autonomous ODE system y'(t) = f(y) with initial condition $y_0 = y(t_0)$ and known second derivative y''(t) = f'(y)f(y) =: g(y).
- Numerical Scheme

$$Y_{i} = y_{n} + h \sum_{j=1}^{s} a_{ij} f(Y_{j}) + h^{2} \sum_{j=1}^{s} \widehat{a}_{ij} g(Y_{j}), \quad i = 1, \dots, s,$$
$$y_{n+1} = y_{n} + h \sum_{i=1}^{s} b_{i} f(Y_{i}) + h^{2} \sum_{i=1}^{s} \widehat{b}_{i} g(Y_{i}).$$

BASIC BACKGROUND

- Two-derivative Runge-Kutta (TDRK) methods belong to the family of multi-derivative Runge-Kutta methods – they are one-step multi-stage methods.
- We consider an autonomous ODE system y'(t) = f(y) with initial condition $y_0 = y(t_0)$ and known second derivative y''(t) = f'(y)f(y) =: g(y).
- Numerical Scheme

 $Y_{i} = y_{n} + h \sum_{j=1}^{s} a_{ij} f(Y_{j}) + h^{2} \sum_{j=1}^{s} \widehat{a}_{ij} g(Y_{j}), \quad i = 1, \dots, s,$ $y_{n+1} = y_{n} + h \sum_{i=1}^{s} b_{i} f(Y_{i}) + h^{2} \sum_{i=1}^{s} \widehat{b}_{i} g(Y_{i}).$

BASIC BACKGROUND

- Two-derivative Runge-Kutta (TDRK) methods belong to the family of multi-derivative Runge-Kutta methods – they are one-step multi-stage methods.
- We consider an autonomous ODE system y'(t) = f(y) with initial condition $y_0 = y(t_0)$ and known second derivative y''(t) = f'(y)f(y) =: g(y).
- Numerical Scheme:

$$Y_{i} = y_{n} + h \sum_{j=1}^{s} a_{ij}f(Y_{j}) + h^{2} \sum_{j=1}^{s} \widehat{a}_{ij}g(Y_{j}), \quad i = 1, \dots, s,$$
$$y_{n+1} = y_{n} + h \sum_{i=1}^{s} b_{i}f(Y_{i}) + h^{2} \sum_{i=1}^{s} \widehat{b}_{i}g(Y_{i}).$$

BASIC BACKGROUND

- In a non-autonomous system, the variable t can be treated as a component of the y vector.
- Block Matrix Form:

 $Y = e \otimes y_n + h(A \otimes I_N)F(Y) + h^2(\widehat{A} \otimes I_N)G(Y),$ $y_{n+1} = y_n + h(b^T \otimes I_N)F(Y) + h^2(\widehat{b}^T \otimes I_N)G(Y),$

where $e = [1]_{s \times 1}$, $A = [a_{ij}]_{s \times s}$, $\widehat{A} = [\widehat{a}_{ij}]_{s \times s}$, $b = [b_i]_{s \times 1}$, $\widehat{b} = [\widehat{b}_i]_{s \times 1}$, and

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_s \end{bmatrix}, \quad F(Y) = \begin{bmatrix} f(Y_1) \\ f(Y_2) \\ \vdots \\ f(Y_s) \end{bmatrix}, \quad G(Y) = \begin{bmatrix} g(Y_1) \\ g(Y_2) \\ \vdots \\ g(Y_s) \end{bmatrix}$$

BASIC BACKGROUND

- In a non-autonomous system, the variable t can be treated as a component of the y vector.
- Block Matrix Form:

$$Y = e \otimes y_n + h(A \otimes I_N)F(Y) + h^2(\widehat{A} \otimes I_N)G(Y),$$

$$y_{n+1} = y_n + h(b^T \otimes I_N)F(Y) + h^2(\widehat{b}^T \otimes I_N)G(Y),$$

where $e = [1]_{s \times 1}$, $A = [a_{ij}]_{s \times s}$, $\widehat{A} = [\widehat{a}_{ij}]_{s \times s}$, $b = [b_i]_{s \times 1}$, $\widehat{b} = [\widehat{b}_i]_{s \times 1}$, and

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_s \end{bmatrix}, \quad F(Y) = \begin{bmatrix} f(Y_1) \\ f(Y_2) \\ \vdots \\ f(Y_s) \end{bmatrix}, \quad G(Y) = \begin{bmatrix} g(Y_1) \\ g(Y_2) \\ \vdots \\ g(Y_s) \end{bmatrix}$$

BASIC BACKGROUND

• Extended Butcher Tableau:

$$\begin{array}{c|c} c & A & \widehat{A} \\ \hline b^T & \widehat{b}^T \end{array}$$

• Stability Function: For the standard test problem $y'(t) = \lambda y$, $y_{n+1} = R(z)y_n$, where

 $R(z) = 1 + (zb^T + z^2 \, \widehat{b}^T)(I - zA - z^2 \widehat{A})^{-1}e, \quad \text{with} \ z = h\lambda.$

BASIC BACKGROUND

• Extended Butcher Tableau:

$$\begin{array}{c|c} c & A & \widehat{A} \\ \hline b^T & \widehat{b}^T \end{array}$$

• Stability Function: For the standard test problem $y'(t) = \lambda y$, $y_{n+1} = R(z)y_n$, where

 $R(z) = 1 + (zb^T + z^2 \, \widehat{b}^T)(I - zA - z^2 \widehat{A})^{-1}e, \quad \text{with} \ z = h\lambda.$

BASIC BACKGROUND

• Extended Butcher Tableau:

$$\begin{array}{c|c} c & A & \widehat{A} \\ \hline b^T & \widehat{b}^T \end{array}$$

• Stability Function: For the standard test problem $y'(t) = \lambda y$, $y_{n+1} = R(z)y_n$, where

 $R(z) = 1 + (zb^T + z^2 \widehat{b}^T)(I - zA - z^2 \widehat{A})^{-1}e, \quad \text{with } z = h\lambda.$

BASIC BACKGROUND

• Extended Butcher Tableau:

$$\begin{array}{c|c} c & A & \widehat{A} \\ \hline b^T & \widehat{b}^T \end{array}$$

• Stability Function: For the standard test problem $y'(t) = \lambda y$, $y_{n+1} = R(z)y_n$, where

 $R(z) = 1 + (zb^T + z^2 \, \widehat{b}^T)(I - zA - z^2 \widehat{A})^{-1}e, \quad \text{with} \ z = h\lambda.$

$$(t_n, y_n) \bullet$$

BASIC BACKGROUND

• Extended Butcher Tableau:

$$\begin{array}{c|c} c & A & \widehat{A} \\ \hline b^T & \widehat{b}^T \end{array}$$

• Stability Function: For the standard test problem $y'(t) = \lambda y$, $y_{n+1} = R(z)y_n$, where

 $R(z)=1+(zb^T+z^2\,\widehat{b}^T)(I-zA-z^2\widehat{A})^{-1}e,\quad\text{with }z=h\lambda.$

$$(t_n, y_n) \bullet \bullet \bullet$$

BASIC BACKGROUND

• Extended Butcher Tableau:

$$\begin{array}{c|c} c & A & \widehat{A} \\ \hline b^T & \widehat{b}^T \end{array}$$

• Stability Function: For the standard test problem $y'(t) = \lambda y$, $y_{n+1} = R(z)y_n$, where

 $R(z) = 1 + (zb^T + z^2 \, \widehat{b}^T)(I - zA - z^2 \widehat{A})^{-1}e, \quad \text{with} \ z = h\lambda.$

$$(t_n, y_n) \bullet (t_{n+1}, y_{n+1})$$

BASIC BACKGROUND

• Extended Butcher Tableau:

$$\begin{array}{c|c} c & A & \widehat{A} \\ \hline b^T & \widehat{b}^T \end{array}$$

• Stability Function: For the standard test problem $y'(t) = \lambda y$, $y_{n+1} = R(z)y_n$, where

$$R(z) = 1 + (zb^T + z^2 \widehat{b}^T)(I - zA - z^2 \widehat{A})^{-1}e, \quad \text{with } z = h\lambda.$$

$$(t_n, y_n) \bullet \underbrace{\Phi_h(t_n, y_n)}_{\Phi_{-h}(t_{n+1}, y_{n+1})} \bullet (t_{n+1}, y_{n+1})$$

BASIC BACKGROUND

BASIC BACKGROUND

• Symmetry Conditions:

$$PAP = eb^{T} - A$$
$$P\widehat{A}P = -e\widehat{b}^{T} + \widehat{A}$$
$$Pb = b$$
$$P\widehat{b} = -\widehat{b}$$

where P is the permutation matrix which reverses the stages.

 Order Conditions: As for RK methods, we compare the Taylor Series expansions of the exact and numerical solutions, y(t_n + h) and y_{n+1} respectively, to derive the order conditions of methods.

BASIC BACKGROUND

Symmetry Conditions:

$$PAP = eb^{T} - A$$
$$P\widehat{A}P = -e\widehat{b}^{T} + \widehat{A}$$
$$Pb = b$$
$$P\widehat{b} = -\widehat{b}$$

where P is the permutation matrix which reverses the stages.

• Order Conditions: As for RK methods, we compare the Taylor Series expansions of the exact and numerical solutions, $y(t_n + h)$ and y_{n+1} respectively, to derive the order conditions of methods.

Order Conditions

• Order conditions assuming C(1):

Order	Tree	Order Condition
1	•	$b^T e = 1$
2	1	$b^T c + \hat{b}^T e = \frac{1}{2}$
3	$\mathbf{\nabla}$	$b^T c^2 + 2\hat{b}^T c = \frac{1}{3}$
	\geq	$b^T A c + b^T \widehat{A} e + \widehat{b}^T c = \frac{1}{6}$
4	$\mathbf{\hat{\mathbf{V}}}$	$b^T c^3 + 3\widehat{b}^T c^2 = \frac{1}{4}$
	$\mathbf{\mathbf{b}}$	$b^T cAc + b^T c \widehat{A} e + \widehat{b}^T c^2 + \widehat{b}^T A c + \widehat{b}^T \widehat{A} e = \frac{1}{8}$
	Ý	$b^T A c^2 + 2b^T \widehat{A} c + \widehat{b}^T c^2 = \frac{1}{12}$
	5	$b^T A^2 c + b^T A \widehat{A} e + b^T \widehat{A} c + \widehat{b}^T A c + \widehat{b}^T \widehat{A} e = \frac{1}{24}$

Order Conditions

• Order conditions assuming C(1):

Order	Tree	Order Condition
1	•	$b^T e = 1$
2	1	$b^T c + \hat{b}^T e = \frac{1}{2}$
3	$\mathbf{\nabla}$	$b^T c^2 + 2\widehat{b}^T c = \frac{1}{3}$
	\geq	$b^T A c + b^T \widehat{A} e + \widehat{b}^T c = \frac{1}{6}$
4	$\mathbf{\hat{\mathbf{V}}}$	$b^T c^3 + 3\widehat{b}^T c^2 = \frac{1}{4}$
	\mathbf{i}	$b^T cAc + b^T c\widehat{A}e + \widehat{b}^T c^2 + \widehat{b}^T Ac + \widehat{b}^T \widehat{A}e = \frac{1}{8}$
	¥	$b^T A c^2 + 2b^T \widehat{A} c + \widehat{b}^T c^2 = \frac{1}{12}$
	- >	$b^T A^2 c + b^T A \widehat{A} e + b^T \widehat{A} c + \widehat{b}^T A c + \widehat{b}^T \widehat{A} e = \frac{1}{24}$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q$$

Bushy Tree Conditions:

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): \quad Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\widehat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

$$\frac{1}{2}b^Tc^3 + \frac{1}{2}\widehat{b}^Tc^2 + \widehat{b}^Tc^2 = \frac{1}{8}$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\hat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

$$\frac{1}{2}b^T c^3 + \frac{3}{2}\hat{b}^T c^2 = \frac{1}{8}$$

SIMPLIFYING ASSUMPTIONS AND LABELLING TREES

• Stage Order Conditions:

$$C(q): Ac^{k-1} + (k-1)\widehat{A}c^{k-2} = \frac{c^k}{k}, \quad k = 1, \dots, q.$$

Bushy Tree Conditions:

$$B(p): \quad b^T c^{k-1} + (k-1)\widehat{b}^T c^{k-2} = \frac{1}{k}, \quad k = 1, \dots, p.$$

$$\frac{\frac{1}{2}b^{T}c^{3} + \frac{3}{2}\hat{b}^{T}c^{2} = \frac{1}{8} \qquad \checkmark$$

$$\frac{b^{T}c^{3} + 3\hat{b}^{T}c^{2} = \frac{1}{4} \qquad \checkmark$$

$$\frac{\sum_{bT}^{\frac{c^{2}}{2}}}{\widehat{b}^{T}} \qquad \qquad \sum_{bT}^{\frac{c^{2}}{2}} \qquad \qquad \sum_{bT}^{c} \sum$$

CONSTRUCTING EXPLICIT TDRK METHODS

- We also constructed embedded explicit TDRK methods to compare with some popular embedded explicit RK methods.
- Explicit TDRK methods can easily have stage order 2, i.e. they satisfy the C(2) conditions.

CONSTRUCTING EXPLICIT TDRK METHODS

- We also constructed embedded explicit TDRK methods to compare with some popular embedded explicit RK methods.
- Explicit TDRK methods can easily have stage order 2, i.e. they satisfy the C(2) conditions.

CONSTRUCTING EXPLICIT TDRK METHODS

GROUP A:								
c	Ae_1	\hat{A}	c	\widehat{A}				
	b_1	$\widehat{b}^T \xrightarrow{\rightarrow}$		\widehat{b}^T				

- We also constructed embedded explicit TDRK methods to compare with some popular embedded explicit RK methods.
- Explicit TDRK methods can easily have stage order 2, i.e. they satisfy the C(2) conditions.

CONSTRUCTING EXPLICIT TDRK METHODS

- We also constructed embedded explicit TDRK methods to compare with some popular embedded explicit RK methods.
- Explicit TDRK methods can easily have stage order 2, i.e. they satisfy the C(2) conditions.

CONSTRUCTING EXPLICIT TDRK METHODS

- We also constructed embedded explicit TDRK methods to compare with some popular embedded explicit RK methods.
- Explicit TDRK methods can easily have stage order 2, i.e. they satisfy the C(2) conditions.

CONSTRUCTING EXPLICIT TDRK METHODS

 In our study, we include two special groups of explicit TDRK methods:

GROUP A:GROUP B:c Ae_1 \widehat{A} b_1 \widehat{b}^T \widehat{c} A $\widehat{A}e_1$ b_1 \widehat{b}^T \widehat{b}^T \widehat{b}^T

- We also constructed embedded explicit TDRK methods to compare with some popular embedded explicit RK methods.
- Explicit TDRK methods can easily have stage order 2, i.e. they satisfy the C(2) conditions.

CONSTRUCTING EXPLICIT TDRK METHODS

• TDRK45b/TDRK5b: p = 5, q = 2

- TDRK5b requires 1f + 3g function evaluations per step, and $R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{720}$.
- TDRK45b is an embedded method which requires 1f + 4g function evaluations per step.

CONSTRUCTING EXPLICIT TDRK METHODS

• TDRK45b/TDRK5b: p = 5, q = 2

- TDRK5b requires 1f + 3g function evaluations per step, and $R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{720}$.
- TDRK45b is an embedded method which requires 1f + 4g function evaluations per step.

CONSTRUCTING EXPLICIT TDRK METHODS

• TDRK45b/TDRK5b: p = 5, q = 2

- TDRK5b requires 1f + 3g function evaluations per step, and $R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{720}$.
- TDRK45b is an embedded method which requires 1f + 4g function evaluations per step.

CONSTRUCTING IMPLICIT TDRK METHODS

 We have constructed several implicit TDRK methods for example, TDRK244sss is a 2-stage, order-4, stage-order-4, semi-implicit, symmetric, and stiffly-accurate method:

$$R(z) = \frac{12 + 6z + z^2}{12 - 6z + z^2}$$

 The implicit TDRK methods we constructed range from order 3 to 6, the order-3 and 5 methods are L-stable and the order-4 and 6 methods are A-stable.

CONSTRUCTING IMPLICIT TDRK METHODS

 We have constructed several implicit TDRK methods, for example, TDRK244sss is a 2-stage, order-4, stage-order-4, semi-implicit, symmetric, and stiffly-accurate method:

 The implicit TDRK methods we constructed range from order 3 to 6, the order-3 and 5 methods are L-stable and the order-4 and 6 methods are A-stable.

CONSTRUCTING IMPLICIT TDRK METHODS

 We have constructed several implicit TDRK methods, for example, TDRK244sss is a 2-stage, order-4, stage-order-4, semi-implicit, symmetric, and stiffly-accurate method:

• The implicit TDRK methods we constructed range from order 3 to 6, the order-3 and 5 methods are L-stable and the order-4 and 6 methods are A-stable.

STIFF ODE PROBLEMS

• Prothero-Robinson Problem (PR):

$$y'(t) = \lambda(y(t) - \phi(t)) + \phi'(t),$$

we show the results for $\phi(t)=\sin(t)$ and two cases for the implicit methods,

- PR1b: $y_0 = \phi_0$ and $\lambda = -10^4$. Exact solution is $y(t) = \phi(t)$.
- PR1d: $y_0 = 1$ and $\lambda = -10^4$. Exact solution is $y(t) = \phi(t) + (y_0 \phi_0) \exp(\lambda t)$.
- Kaps Problem:

$$y'(t) = \begin{bmatrix} -y_1(1+y_1) + y_2\\ \lambda(y_1^2 - y_2) - 2y_2 \end{bmatrix}, \quad y(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \quad \operatorname{Re}(\lambda) \gg 1,$$

with exact solution $y(t) = [\exp(-t), \exp(-2t)]^T$

STIFF ODE PROBLEMS

• Prothero-Robinson Problem (PR):

$$y'(t) = \lambda(y(t) - \phi(t)) + \phi'(t),$$

we show the results for $\phi(t)=\sin(t)$ and two cases for the implicit methods,

• PR1b: $y_0 = \phi_0$ and $\lambda = -10^4$. Exact solution is $y(t) = \phi(t)$.

• PR1d: $y_0 = 1$ and $\lambda = -10^4$. Exact solution i

 $y(t) = \varphi(t) + (y_0 - \varphi_0) \exp(\lambda t).$

• Kaps Problem:

$$y'(t) = \begin{bmatrix} -y_1(1+y_1) + y_2\\ \lambda(y_1^2 - y_2) - 2y_2 \end{bmatrix}, \quad y(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \quad \operatorname{Re}(\lambda) \gg 1,$$

with exact solution $y(t) = [\exp(-t), \exp(-2t)]^T$

STIFF ODE PROBLEMS

Prothero-Robinson Problem (PR):

$$y'(t) = \lambda(y(t) - \phi(t)) + \phi'(t),$$

we show the results for $\phi(t)=\sin(t)$ and two cases for the implicit methods,

- PR1b: $y_0 = \phi_0$ and $\lambda = -10^4$. Exact solution is $y(t) = \phi(t)$.
- PR1d: $y_0 = 1$ and $\lambda = -10^4$. Exact solution is $y(t) = \phi(t) + (y_0 \phi_0) \exp(\lambda t)$.

Kaps Problem:

$y'(t) = \begin{bmatrix} -y_1(1+y_1) + y_2\\ \lambda(y_1^2 - y_2) - 2y_2 \end{bmatrix}, \quad y(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \quad \operatorname{Re}(\lambda) \gg 1,$

with exact solution $y(t) = [\exp(-t), \exp(-2t)]^T$

STIFF ODE PROBLEMS

Prothero-Robinson Problem (PR):

$$y'(t) = \lambda(y(t) - \phi(t)) + \phi'(t),$$

we show the results for $\phi(t)=\sin(t)$ and two cases for the implicit methods,

- PR1b: y₀ = φ₀ and λ = −10⁴. Exact solution is y(t) = φ(t).
 PR1d: y₀ = 1 and λ = −10⁴. Exact solution is y(t) = φ(t) + (y₀ − φ₀) exp(λt).
- Kaps Problem:

$$y'(t) = \begin{bmatrix} -y_1(1+y_1) + y_2\\ \lambda(y_1^2 - y_2) - 2y_2 \end{bmatrix}, \quad y(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \quad \operatorname{Re}(\lambda) \gg 1,$$

with exact solution $y(t) = [\exp(-t), \exp(-2t)]^T$.

EXPLICIT METHODS FOR PR PROBLEM

Embedded Explicit Methods for PR Problem

IMPLICIT METHODS FOR PR PROBLEM

IMPLICIT METHODS FOR PR PROBLEM

 $z = \lambda h \to \infty$:

p

Method

IMPLICIT METHODS FOR PR PROBLEM

Local Error

• Order Behaviour – Error for PR problem when $h \rightarrow 0$ and

Global Error

IMPLICIT METHODS FOR PR PROBLEM

p	Method	Local Error	Global Error
3	TDRK232ssL	$\begin{cases} O(h^3/z^2) = O(h/\lambda^2) \\ O(h^4/z) = O(h^3/\lambda) \end{cases}$	$\begin{cases} O(h/\lambda^2) \text{ small } h \\ O(h^3/\lambda) \text{ large } h \end{cases}$

IMPLICIT METHODS FOR PR PROBLEM

p	Method	Local Error	Global Error
3	TDRK232ssL	$\begin{cases} O(h^3/z^2) = O(h/\lambda^2) \\ O(h^4/z) = O(h^3/\lambda) \end{cases}$	$\begin{cases} O(h/\lambda^2) \text{ small } h \\ O(h^3/\lambda) \text{ large } h \end{cases}$
3	TDRK334sL	$O(h^4)$	$O(h^4)$

IMPLICIT METHODS FOR PR PROBLEM

p	Method	Local Error	Global Error
3	TDRK232ssL	$\begin{cases} O(h^3/z^2) = O(h/\lambda^2) \\ O(h^4/z) = O(h^3/\lambda) \end{cases}$	$\begin{cases} O(h/\lambda^2) \text{ small } h \\ O(h^3/\lambda) \text{ large } h \end{cases}$
3	TDRK334sL	$O(h^4)$	$O(h^4)$
4	TDRK244sss	$O(h^5/z^2) = O(h^3/\lambda^2)$	$O(h^2/\lambda^2)$
4	TDRK344sss	$O(h^5/z^2) = O(h^3/\lambda^2)$	$O(h^2/\lambda^2)$

IMPLICIT METHODS FOR PR PROBLEM

p	Method	Local Error	Global Error
З	TDRK232ssL	$\begin{cases} O(h^3/z^2) = O(h/\lambda^2) \\ O(h^4/z) = O(h^3/\lambda) \end{cases}$	$\begin{cases} O(h/\lambda^2) \text{ small } h \\ O(h^3/\lambda) \text{ large } h \end{cases}$
3	TDRK334sL	$O(h^4)$	$O(h^4)$
4	TDRK244sss	$O(h^5/z^2) = O(h^3/\lambda^2)$	$O(h^2/\lambda^2)$
4	TDRK344sss	$O(h^5/z^2) = O(h^3/\lambda^2)$	$O(h^2/\lambda^2)$
5	TDRK353ssL	$O(h^4/z^2) = O(h^2/\lambda^2)$	$O(h^2/\lambda^2)$

IMPLICIT METHODS FOR PR PROBLEM

p	Method	Local Error	Global Error
3	TDRK232ssL	$\begin{cases} O(h^3/z^2) = O(h/\lambda^2) \\ O(h^4/z) = O(h^3/\lambda) \end{cases}$	$egin{cases} O(h/\lambda^2) & ext{small } h \ O(h^3/\lambda) & ext{ large } h \end{cases}$
3	TDRK334sL	$O(h^4)$	$O(h^4)$
4	TDRK244sss	$O(h^5/z^2) = O(h^3/\lambda^2)$	$O(h^2/\lambda^2)$
4	TDRK344sss	$O(h^5/z^2) = O(h^3/\lambda^2)$	$O(h^2/\lambda^2)$
5	TDRK353ssL	$O(h^4/z^2) = O(h^2/\lambda^2)$	$O(h^2/\lambda^2)$
6	TDRK366fss	$O(h^7/z^2) = O(h^5/\lambda^2)$	$O(h^4/\lambda^2)$

IMPLICIT METHODS FOR PR PROBLEM

IMPLICIT METHODS FOR KAPS PROBLEM

IMPLICIT METHODS FOR HIRES PROBLEM

CLASSICAL PDE METHODS

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.
- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

$$U_{j-1} \qquad U_{j+1}$$

- Semi-discretization (or Method of Lines) is used to approximate PDEs by
 - firstly, discretize the spatial variables of PDEs to get a set of ODEs,
 - and then integrate along the time variable.
- However, many popular classical PDE methods are not MOL. Why?
- Two main disadvantages of MOL:
 - Stability is restricted by spatial discretization, possibly leading to unstable methods.
 - Approximation to higher order derivatives depends on the discretization used and often leads to non-optimal spread-out schemes.

CLASSICAL PDE METHODS

• Consider the advection/wave equation,

 $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \quad \text{on the interval } (0,1) \text{ with } u(0,t) = u(1,t).$

• By using central differences, we semi-discretize the PDE to an ODE system $d\mathbf{u}(t)/dt = A_h \mathbf{u}(t)$ with spatial stepsize h = 1/N, and then integrate the system by an explicit RK method with temporal stepsize δ . It follows that z^* must stay inside the stability region of the RK method to ensure the time integration is stable, where $z^* = \delta \lambda_k$, for $k = 1, \ldots, N$ and λ_k are the eigenvalues of A_h .

CLASSICAL PDE METHODS

• Consider the advection/wave equation,

 $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \quad \text{on the interval } (0,1) \text{ with } u(0,t) = u(1,t).$

By using central differences, we semi-discretize the PDE to an ODE system du(t)/dt = A_hu(t) with spatial stepsize h = 1/N, and then integrate the system by an explicit RK method with temporal stepsize δ. It follows that a must stay inside the stability region of the RK method to ensure the time integration is stable, where a = δλ_k, for k = 1...N and λ_k are the eigenvalues of A_k.

CLASSICAL PDE METHODS

• Consider the advection/wave equation,

 $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \quad \text{on the interval } (0,1) \text{ with } u(0,t) = u(1,t).$

• By using central differences, we semi-discretize the PDE to an ODE system $d\mathbf{u}(t)/dt = A_h \mathbf{u}(t)$ with spatial stepsize h = 1/N, and then integrate the system by an explicit RK method with temporal stepsize δ . It follows that z^* must stay inside the stability region of the RK method to ensure the time integration is stable, where $z^* = \delta \lambda_k$, for $k = 1, \ldots, N$ and λ_k are the eigenvalues of A_h .

CLASSICAL PDE METHODS – METHOD OF LINES

A NOVEL SEMI-DISCRETIZATION METHOD

- We want to develop new discretization methods which overcome the disadvantages of MOL and unify MOL and other classical PDE methods under the same RK/TDRK structure.
- The idea is simple: we discretize the temporal variable t first. This means that the spatial discretization can then be chosen in a more flexible way to meet stability and/or computational requirements.
- ullet Let $f(\eta)$ be a smooth function of η and we examine

$$\frac{\partial u}{\partial t} = f(\mathcal{P}(u)),$$
 (1)

where $\mathcal{P}(u)$ be a linear partial differential operator with constant coefficients. For examples: $\mathcal{P}(u) = \frac{\partial}{\partial x}u$ and $\mathcal{P}(u) = \frac{\partial^2}{\partial x^2}u$.

A NOVEL SEMI-DISCRETIZATION METHOD

- We want to develop new discretization methods which overcome the disadvantages of MOL and unify MOL and other classical PDE methods under the same RK/TDRK structure.
- The idea is simple: we discretize the temporal variable t first. This means that the spatial discretization can then be chosen in a more flexible way to meet stability and/or computational requirements.
- Let $f(\eta)$ be a smooth function of η and we examine

$$\frac{\partial u}{\partial t} = f(\mathcal{P}(u)),\tag{1}$$

where $\mathcal{P}(u)$ be a linear partial differential operator with constant coefficients. For examples: $\mathcal{P}(u) = \frac{\partial}{\partial x}u$ and $\mathcal{P}(u) = \frac{\partial^2}{\partial x^2}u$.

A NOVEL SEMI-DISCRETIZATION METHOD

- We want to develop new discretization methods which overcome the disadvantages of MOL and unify MOL and other classical PDE methods under the same RK/TDRK structure.
- The idea is simple: we discretize the temporal variable t first. This means that the spatial discretization can then be chosen in a more flexible way to meet stability and/or computational requirements.
- $\bullet\,$ Let $f(\eta)$ be a smooth function of η and we examine

$$\frac{\partial u}{\partial t} = f(\mathcal{P}(u)),$$
 (1)

where $\mathcal{P}(u)$ be a linear partial differential operator with constant coefficients. For examples: $\mathcal{P}(u) = \frac{\partial}{\partial x}u$ and $\mathcal{P}(u) = \frac{\partial^2}{\partial x^2}u$.

A NOVEL SEMI-DISCRETIZATION METHOD

• Differentiate (1) with respect to t, we get

$$\frac{\partial^2 u}{\partial t^2} = f_\eta(\mathcal{P}(u))\mathcal{P}(f(\mathcal{P}(u)))$$
$$= f_\eta \mathcal{P}(f).$$

• Compare with $\frac{a}{dt^2} = f_y f$ for y'(t) = f(y).

- Similarly, we can derive all the higher derivatives and apply the tree theory for ODEs on PDEs.
- This enables us to apply ODE methods directly to PDEs.
- If we apply the explicit trapezoidal rule to the wave equation with appropriate compact schemes to approximate the spatial derivatives, we have a method which has order-2 behaviour in both time and space. In fact, this is the well-known Lax-Wendroff scheme.

A NOVEL SEMI-DISCRETIZATION METHOD

• Differentiate (1) with respect to t, we get

$$\frac{\partial^2 u}{\partial t^2} = f_\eta(\mathcal{P}(u))\mathcal{P}(f(\mathcal{P}(u)))$$
$$= f_\eta \mathcal{P}(f).$$

• Compare with
$$\frac{d^2y}{dt^2} = f_y f$$
 for $y'(t) = f(y)$.

 Similarly, we can derive all the higher derivatives and apply the tree theory for ODEs on PDEs.

- This enables us to apply ODE methods directly to PDEs.
- If we apply the explicit trapezoidal rule to the wave equation with appropriate compact schemes to approximate the spatial derivatives, we have a method which has order-2 behaviour in both time and space. In fact, this is the well-known Lax-Wendroff scheme.

A NOVEL SEMI-DISCRETIZATION METHOD

• Differentiate (1) with respect to t, we get

$$\frac{\partial^2 u}{\partial t^2} = f_\eta(\mathcal{P}(u))\mathcal{P}(f(\mathcal{P}(u)))$$
$$= f_\eta \mathcal{P}(f).$$

• Compare with
$$\frac{d^2y}{dt^2} = f_y f$$
 for $y'(t) = f(y)$.

- Similarly, we can derive all the higher derivatives and apply the tree theory for ODEs on PDEs.
- This enables us to apply ODE methods directly to PDEs.
- If we apply the explicit trapezoidal rule to the wave equation with appropriate compact schemes to approximate the spatial derivatives, we have a method which has order-2 behaviour in both time and space. In fact, this is the well-known Lax-Wendroff scheme.

A NOVEL SEMI-DISCRETIZATION METHOD

• Differentiate (1) with respect to t, we get

$$\frac{\partial^2 u}{\partial t^2} = f_\eta(\mathcal{P}(u))\mathcal{P}(f(\mathcal{P}(u)))$$
$$= f_\eta \mathcal{P}(f).$$

• Compare with
$$\frac{d^2y}{dt^2} = f_y f$$
 for $y'(t) = f(y)$.

- Similarly, we can derive all the higher derivatives and apply the tree theory for ODEs on PDEs.
- This enables us to apply ODE methods directly to PDEs.
- If we apply the explicit trapezoidal rule to the wave equation with appropriate compact schemes to approximate the spatial derivatives, we have a method which has order-2 behaviour in both time and space. In fact, this is the well-known Lax-Wendroff scheme.

A NOVEL SEMI-DISCRETIZATION METHOD

• Differentiate (1) with respect to t, we get

$$\frac{\partial^2 u}{\partial t^2} = f_\eta(\mathcal{P}(u))\mathcal{P}(f(\mathcal{P}(u)))$$
$$= f_\eta \mathcal{P}(f).$$

• Compare with
$$\frac{d^2y}{dt^2} = f_y f$$
 for $y'(t) = f(y)$.

- Similarly, we can derive all the higher derivatives and apply the tree theory for ODEs on PDEs.
- This enables us to apply ODE methods directly to PDEs.
- If we apply the explicit trapezoidal rule to the wave equation with appropriate compact schemes to approximate the spatial derivatives, we have a method which has order-2 behaviour in both time and space. In fact, this is the well-known

_ax-Wendroff scheme

A NOVEL SEMI-DISCRETIZATION METHOD

• Differentiate (1) with respect to t, we get

$$\frac{\partial^2 u}{\partial t^2} = f_\eta(\mathcal{P}(u))\mathcal{P}(f(\mathcal{P}(u)))$$
$$= f_\eta \mathcal{P}(f).$$

• Compare with
$$\frac{d^2y}{dt^2} = f_y f$$
 for $y'(t) = f(y)$.

- Similarly, we can derive all the higher derivatives and apply the tree theory for ODEs on PDEs.
- This enables us to apply ODE methods directly to PDEs.
- If we apply the explicit trapezoidal rule to the wave equation with appropriate compact schemes to approximate the spatial derivatives, we have a method which has order-2 behaviour in both time and space. In fact, this is the well-known Lax-Wendroff scheme.

AN APPLICATION TO PDE

- One popular method for solving PDE problems, such as the heat equation, is Crank-Nicolson method, which is an order-2 method.
- Heat Equation:

 $U_t = U_{xx},$

with I.C. $U(x,0) = \sin(\pi x)$ and B.C. U(0,t) = U(1,t) = 0.

 Crank-Nicolson method: use 3-point second order approximation to U_{xx} and implicit midpoint or trapezoidal rule to solve the resulting tridiagonal system of ODEs.

AN APPLICATION TO PDE

- One popular method for solving PDE problems, such as the heat equation, is Crank-Nicolson method, which is an order-2 method.
- Heat Equation:

$$U_t = U_{xx},$$

with I.C. $U(x, 0) = \sin(\pi x)$ and B.C. U(0, t) = U(1, t) = 0.

 Crank-Nicolson method: use 3-point second order approximation to U_{xx} and implicit midpoint or trapezoidal rule to solve the resulting tridiagonal system of ODEs.

AN APPLICATION TO PDE

- One popular method for solving PDE problems, such as the heat equation, is Crank-Nicolson method, which is an order-2 method.
- Heat Equation:

$$U_t = U_{xx},$$

with I.C. $U(x, 0) = \sin(\pi x)$ and B.C. U(0, t) = U(1, t) = 0.

• Crank-Nicolson method: use 3-point second order approximation to U_{xx} and implicit midpoint or trapezoidal rule to solve the resulting tridiagonal system of ODEs.

HEAT EQUATION

- Practically, Crank-Nicolson method performs better than other higher order methods which suffer order reduction.
- Analyze the diffusion equation with non-homogeneous boundary values

 $rac{\partial u}{\partial t}=rac{\partial^2 u}{\partial x^2}$ on the interval (0,1), $u(0,t)=p(t), \quad u(1,t)=0,$ and u(x,0)=0.

- After obtaining the semi-discrete system, we can decouple it to a equivalent non-homogenous ODE system which can then be written as the Prothero-Robinson equation.
- We conduct experiments for p(t) = t^α with different α values to compare the order behaviour of three methods: Crank-Nicolson, TDRK244sss and Gauss 2-stage methods.

- Practically, Crank-Nicolson method performs better than other higher order methods which suffer order reduction.
- Analyze the diffusion equation with non-homogeneous boundary values

$$\begin{aligned} &\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} & \text{on the interval } (0,1), \\ &u(0,t) = p(t), \quad u(1,t) = 0, \quad \text{and} \quad u(x,0) = 0. \end{aligned}$$

- After obtaining the semi-discrete system, we can decouple it to a equivalent non-homogenous ODE system which can then be written as the Prothero-Robinson equation.
- We conduct experiments for p(t) = t^α with different α values to compare the order behaviour of three methods: Crank-Nicolson, TDRK244sss and Gauss 2-stage methods.

- Practically, Crank-Nicolson method performs better than other higher order methods which suffer order reduction.
- Analyze the diffusion equation with non-homogeneous boundary values

$$\begin{split} &\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{on the interval } (0,1),\\ &u(0,t) = p(t), \quad u(1,t) = 0, \quad \text{and} \quad u(x,0) = 0. \end{split}$$

- After obtaining the semi-discrete system, we can decouple it to a equivalent non-homogenous ODE system which can then be written as the Prothero-Robinson equation.
- We conduct experiments for p(t) = t^α with different α values to compare the order behaviour of three methods: Crank-Nicolson, TDRK244sss and Gauss 2-stage methods.

- Practically, Crank-Nicolson method performs better than other higher order methods which suffer order reduction.
- Analyze the diffusion equation with non-homogeneous boundary values

$$\begin{split} &\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{on the interval } (0,1),\\ &u(0,t) = p(t), \quad u(1,t) = 0, \quad \text{and} \quad u(x,0) = 0. \end{split}$$

- After obtaining the semi-discrete system, we can decouple it to a equivalent non-homogenous ODE system which can then be written as the Prothero-Robinson equation.
- We conduct experiments for $p(t) = t^{\alpha}$ with different α values to compare the order behaviour of three methods: Crank-Nicolson, TDRK244sss and Gauss 2-stage methods.

HEAT EQUATION WITH $u(0,t) = t^{\alpha}$

HEAT EQUATION WITH $u(0,t) = t^{\alpha}$

- TDRK methods are more efficient compared with some popular RK methods for the stiff problems we tested.
- The second derivative terms in TDRK give us more freedom and enable us to construct methods with higher stage order.
- Although the cost of calculating the second derivatives may be higher than the first derivatives, the advantage gained makes their use beneficial.
- For ODE problems: Our study suggests it will be of interest to implement a variable stepsize code for implicit TDRK methods.

- TDRK methods are more efficient compared with some popular RK methods for the stiff problems we tested.
- The second derivative terms in TDRK give us more freedom and enable us to construct methods with higher stage order.
- Although the cost of calculating the second derivatives may be higher than the first derivatives, the advantage gained makes their use beneficial.
- For ODE problems: Our study suggests it will be of interest to implement a variable stepsize code for implicit TDRK methods.

- TDRK methods are more efficient compared with some popular RK methods for the stiff problems we tested.
- The second derivative terms in TDRK give us more freedom and enable us to construct methods with higher stage order.
- Although the cost of calculating the second derivatives may be higher than the first derivatives, the advantage gained makes their use beneficial.
- For ODE problems: Our study suggests it will be of interest to implement a variable stepsize code for implicit TDRK methods.

- TDRK methods are more efficient compared with some popular RK methods for the stiff problems we tested.
- The second derivative terms in TDRK give us more freedom and enable us to construct methods with higher stage order.
- Although the cost of calculating the second derivatives may be higher than the first derivatives, the advantage gained makes their use beneficial.
- For ODE problems: Our study suggests it will be of interest to implement a variable stepsize code for implicit TDRK methods.
- We have developed a novel approach for the discretization of PDEs.
- This approach allows for more compact finite schemes for the higher derivatives and will provide a systematic way to apply ODE methods to PDEs.
- Many classical PDE schemes can be interpreted in the same way in terms of our new approach.
- The order-4 TDRK244sss method only requires twice the cost of the order-2 Crank-Nicolson method and is shown to be more efficient.
- We will further explore this type of numerical scheme for solving diffusion and diffusion-advection equations of higher dimension in the future.

- We have developed a novel approach for the discretization of PDEs.
- This approach allows for more compact finite schemes for the higher derivatives and will provide a systematic way to apply ODE methods to PDEs.
- Many classical PDE schemes can be interpreted in the same way in terms of our new approach.
- The order-4 TDRK244sss method only requires twice the cost of the order-2 Crank-Nicolson method and is shown to be more efficient.
- We will further explore this type of numerical scheme for solving diffusion and diffusion-advection equations of higher dimension in the future.

- We have developed a novel approach for the discretization of PDEs.
- This approach allows for more compact finite schemes for the higher derivatives and will provide a systematic way to apply ODE methods to PDEs.
- Many classical PDE schemes can be interpreted in the same way in terms of our new approach.
- The order-4 TDRK244sss method only requires twice the cost of the order-2 Crank-Nicolson method and is shown to be more efficient.
- We will further explore this type of numerical scheme for solving diffusion and diffusion-advection equations of higher dimension in the future.

- We have developed a novel approach for the discretization of PDEs.
- This approach allows for more compact finite schemes for the higher derivatives and will provide a systematic way to apply ODE methods to PDEs.
- Many classical PDE schemes can be interpreted in the same way in terms of our new approach.
- The order-4 TDRK244sss method only requires twice the cost of the order-2 Crank-Nicolson method and is shown to be more efficient.
- We will further explore this type of numerical scheme for solving diffusion and diffusion-advection equations of higher dimension in the future.

- We have developed a novel approach for the discretization of PDEs.
- This approach allows for more compact finite schemes for the higher derivatives and will provide a systematic way to apply ODE methods to PDEs.
- Many classical PDE schemes can be interpreted in the same way in terms of our new approach.
- The order-4 TDRK244sss method only requires twice the cost of the order-2 Crank-Nicolson method and is shown to be more efficient.
- We will further explore this type of numerical scheme for solving diffusion and diffusion-advection equations of higher dimension in the future.

