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Oscillatory integrals

I[f ] =

∫ h

0
f (x)eiωg(x)dx

We focus on the particular case

I[f ] =

∫ h

0
f (x)eiωxdx

If the integrand oscillates rapidly, and unless we use a huge
number of function evaluations, the classical ν-point Gauss rule

is useless.
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Gauss rule applied to oscillatory integrands
Example : f (x) = exp(x) and h = 1/10

∫ h

0
exeiωxdx =

−1 + eh(1+iω)

1 + iω
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The absolute error in Gauss-Legendre quadrature for different
values of the characteristic frequency ψ = ω h.
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Asymptotic expansion

I[f ] =

∫ b

a
f (x)eiωxdx

=
1
iω

(

f (b) eiωb − f (a) eiωa
)

− 1
iω

I[f ′]

=
1
iω

(

f (b) eiωb − f (a) eiωa
)

− 1
(iω)2

(

f ′(b) eiωb − f ′(a) eiωa
)

+
1

(iω)2 I[f ′′]

I[f ] = −
∞
∑

m=0

1
(−iω)m+1

[

eiωbf (m)(b) − eiωaf (m)(a)
]
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Asymptotic rules

I[f ] =

∫ b

a
f (x)eiωxdx

I[f ] = −
∞
∑

m=0

1
(−iω)m+1

[

eiωbf (m)(b) − eiωaf (m)(a)
]

QA
s [f ] = −

s−1
∑

m=0

1
(−iω)m+1

[

eiωbf (m)(b) − eiωaf (m)(a)
]

QA
s [f ] − I[f ] ∼ O(ω−s−1) ω → +∞

This asymptotic method is of asymptotic order s + 1.
The asymptotic order gives us the rate at which the error
decreases with increasing ω.
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Exponential fitting

M. VAN DAELE, G. VANDEN BERGHE AND H. VANDE VYVER,
Exponentially fitted quadrature rules of Gauss type for
oscillatory integrands, Appl. Numer. Math., 53 (2005),
pp. 509–526.

How to compute
∫ 1

−1
F (t)dt

whereby F (x) has an oscillatory behaviour with frequency µ?

I[f ] =

∫ h

0
f (x)eiωxdx =

h
2

eiµ
∫ 1

−1
f (h(t + 1)/2)eiµtdt µ =

ωh
2
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Exponential fitting

L[F ; x ; h; a] =

∫ x+h

x−h
F (z)dz − h

ν
∑

k=1

wkF (x + ĉkh), ĉk ∈ [−1,1]

(put x = 0 and h = 1 to obtain
∫ 1

−1
F (t)dt)

L[F ; x ; h; a] = 0 for a reference set of K + 2(P + 1) + 1 = 2ν
functions

1, t , t2, ...tK ,

exp(±iµt), t exp(±iµt), t2 exp(±iµt), . . . , tP exp(±iµt)

In this talk we only consider the case K = −1, P = ν − 1.
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1-node EF rule

∫ 1

−1
F (x)dx ≈ w1 F (ĉ1)

∫ 1

−1
exp(±iµx)dx − w1 exp(±i ĉ1 µ) = 0

w1 = 2 sin(µ)/µ ĉ1 = 0

I[f ] =

∫ h

0
f (x) exp(iωx)dx =

∫ h

0
F (x)dx

QEF
1 [F ] =

h sin(µ)

µ
F (h/2) =

eihω − 1
iω

f (h/2) µ = ωh/2
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2-node EF rule

∫ 1

−1
F (x)dx ≈ w1 F (ĉ1) + w2 F (ĉ2)















∫ 1

−1
exp(±iµx)dx − w1 exp(±i ĉ1 µ) − w2 exp(±i ĉ2 µ) = 0

∫ 1

−1
x exp(±iµx)dx − w1 ĉ1 exp(±i ĉ1 µ) − w2ĉ2 exp(±i ĉ2 µ) = 0

Assuming w1 = w2 and ĉ1 = −ĉ2:

⇐⇒
{

w2µcos(µĉ2) − sin(µ) = 0

w2ĉ2µ
2 sin(µĉ2) − sin(µ) + µcos(µ) = 0

QEF
2 [F ] =

h
2

w2

[

F
(

h(1 + ĉ2)

2

)

+ F
(

h(1 − ĉ2)

2

)]

µ =
ωh
2
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2-node EF rule
{

w2µcos(µĉ2) − sin(µ) = 0

w2ĉ2µ
2 sin(µĉ2) − sin(µ) + µcos(µ) = 0

If cos(µĉ2) 6= 0 then w2 = sinµ/(µcos(µĉ2))

G(ĉ2) := (sinµ− µcosµ) cos(µĉ2) − µĉ2 sinµsin(µĉ2) = 0
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Figure: G(x2) for µ = 5, µ = 50 and µ = 200.
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2-node EF rule
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Figure: The ĉ2(µ) and w2(µ) curve for the EF method with ν = 2.
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3-node EF rule

ĉ1 = −ĉ3 ĉ2 = 0 w1 = w3
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Figure: The ĉ3(µ), w1(µ) = w3(µ) and w2(µ) curves for the ν = 3 EF
rule
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4-node EF rule

ĉ1 = −ĉ4 ĉ2 = −ĉ3 w1 = w4 w2 = w3
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Figure: Nodes and weights of the EF rule with ν = 4 quadrature
nodes.
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Accuracy of EF rules

All EF rules reduce to the classical ν-point Gauss(-Legendre)
method in the limiting case µ = 0.
Thus for small µ : O(h2ν+1)
What about the accuracy for larger values of µ = ωh/2?

J. P. COLEMAN AND L. GR. IXARU, Truncation errors in
exponential fitting for oscillatory problems, SIAM. J. Numer.
Anal., 44 (2006), pp. 1441–1465.

for large µ : O(µν̄−ν) with ν̄ = ⌊(ν − 1)/2⌋

ν = 1 : O(ω−1) ν = 2,3 : O(ω−2) ν = 4,5 : O(ω−3)
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Proof

∫ 1

−1
F (t)dt ≈

∫ 1

−1
F̄ (t)dt

F̄ (t) ∈ span{exp(±iµt), t exp(±iµt), t2 exp(±iµt), . . . , tP exp(±iµt)}

I[f ] =

∫ h

0
f (x)eiωxdx =

h
2

ei ωh
2

∫ 1

−1
f (

h
2

(t + 1))ei ωh
2 tdt

If ωh
2 = µ then I[f ] ≈ I[f̄ ] with f̄ (x) ∈ span{1, x , x2, . . . , xν−1}

QEF
ν [f ] − I[f ] = I[f̄ ] − I[f ] = I[v ] v(x) := f̄ (x) − f (x)
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Proof
Suppose ν is even and a < c1 < c2 < . . . < cν < b

cj = a + λj/ω cν−j+1 = b − λj/ω j = 1, . . . , ν/2

v(x) =
f (ν)(ξ(x))

ν!

ν
∏

i=1

(x − ci)

v(x) = s(x)

ν/2
∏

i=1

(x − b + λi/ω) s(x) =
f (ν)(ξ(x))

ν!

ν/2
∏

j=1

(x − a − λj/ω)

v(b) = s(b)

ν/2
∏

i=1

(λi/ω) = O(ω−ν/2)

v ′(b) = s(b)ω−ν/2+1
ν/2
∑

k=1

∏

i 6=k
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v(b) = O(ω−ν/2) v ′(b) = O(ω−ν/2+1)

v (n)(b) = O(ω−ν/2+n), n = 0,1, . . . , ν/2 − 1

v (n)(a) = O(ω−ν/2+n), n = 0,1, . . . , ν/2 − 1

QEF
ν [f ] − I[f ] = I[v ]

= −
∞
∑

m=0

1
(−iω)m+1

[

eiωbv (m)(b) − eiωav (m)(a)
]

= −
ν/2−1
∑

m=0

1
(−iω)m+1 O(ω−ν/2+m) + O(ω−ν/2−1)

= O(ω−ν/2−1) = O(ω⌊(ν−1)/2⌋−ν)
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Filon-type

L. N. G FILON, On a quadrature formula for trigonometric
integrals, Proc. Royal Soc. Edinburgh, 49 (1928), pp. 38–47.

Interpolate only the function f (x) at c1h, . . . , cνh by a
polynomial f̄ (x)

I[f ] ≈ QF
ν [f ] =

∫ h

0
f̄ (x)eiωxdx = h

ν
∑

l=1

bl(ihω)f (clh)

bl(ihω) =

∫ 1

0
ℓl(x)eihωxdx

ℓl is the l th cardinal polynomial of Lagrangian interpolation.
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1-node Filon-type rule

I[f ] =

∫ h

0
F (x)dx =

∫ h

0
f (x) exp(iωx)dx

QF
1 [f ] =

exp(ihω) − 1
iω

f (c1 h)

QEF
1 [F ] =

eihω − 1
iω

f (h/2)

QF
1 [f ] = QEF

1 [F ] iff c1 =
1
2
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2-node Filon-type rule

I[f ] =

∫ h

0
F (x)dx =

∫ h

0
f (x) exp(iωx)dx

If f is interpolated at c1 h and c2 h, then

QF
2 [f ] = h

[(

i
(

(eiψ − 1) c2 − eiψ
)

(c1 − c2)ψ
+

eiψ − 1
(c1 − c2)ψ2

)

f (c1 h)

+

(

i
(

(eiψ − 1) c1 − eiψ
)

(c2 − c1)ψ
+

eiψ − 1
(c2 − c1)ψ2

)

f (c2 h)

]

QF
2 [f ] = QEF

2 [F ] iff the same nodes are used
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2-node Filon-type rule

I[f ] =

∫ h

0
F (x)dx =

∫ h

0
f (x) exp(iωx)dx

If f is interpolated at c1 h and c2 h, then

QF
2 [f ] = h

[(

i
(

(eiψ − 1) c2 − eiψ
)

(c1 − c2)ψ
+

eiψ − 1
(c1 − c2)ψ2

)

f (c1 h)

+

(

i
(

(eiψ − 1) c1 − eiψ
)

(c2 − c1)ψ
+

eiψ − 1
(c2 − c1)ψ2

)

f (c2 h)

]

QF
2 [f ] = QEF

2 [F ] iff the same nodes are used
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Accuracy of Filon-type rules

A. ISERLES, On the numerical quadrature of highly-oscillating
integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004),
pp. 365–391.

For small ω, a Filon-type quadrature method has an order as if
ω = 0.

Legendre nodes : order 2 ν Lobatto nodes : order 2 ν − 2
For large ω :

QF
ν [f ] − I[f ] ∼

{

O(ω−1) c1 > 0 or cν < 1

O(ω−2) c1 = 0, cν = 1
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Accuracy of Filon-type rules

QF
ν [f ] − I[f ] ∼

{

O(ω−1) c1 > 0 or cν < 1

O(ω−2) c1 = 0, cν = 1

QF
ν [f ] − I[f ] = I[f̄ ] − I[f ] = I[v ]

= −
∞
∑

m=0

1
(−iω)m+1

[

eiωhv (m)(h) − v (m)(0)
]

If (c1, cν) = (0,1) then v(h) = v(0) = 0

=⇒ QF
ν [f ] − I[f ] = O(ω−2).
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How to improve the accuracy of Filon-rules ?

• by using Hermite interpolation : asymptotic order p + 1 can
be reached where p is the number of derivatives at the
endpoints:

f̄ (l)(h) = f (l)(h), f̄ (l)(0) = f (l)(0), l = 0, . . . ,p − 1

QF
ν [f ] − I[f ] = O(ω−p−1)

• by using adaptive Filon-type methods : allowing the
interpolation points to depend on ω (is discussed later)

• by using nodes in the complex plane (=method of steepest
descent)
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Method of steepest descent
D. HUYBRECHS AND S. VANDEWALLE, On the evaluation of highly oscillatory integrals

by analytic continuation, SIAM J. Numer. Anal., 44 (2007) pp 1026–1048.
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Method of steepest descent

∫ b

a
f (x)eiωxdx

= eiωa
∫ ∞

0
f (a + ip)e−ωpdp − eiωb

∫ ∞

0
f (b + ip)e−ωpdp

=
eiωa

ω

∫ ∞

0
f (a + i

q
ω

)e−qdq − eiωb

ω

∫ ∞

0
f (b + i

q
ω

)e−qdq

This leads to the numerical evaluation of the two resulting
integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each
integral, the error behaves as O(ω−2 ν−1).
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Method of steepest descent

∫ b

a
f (x)eiωxdx

=
eiωa

ω

∫ ∞

0
f (a + i

q
ω

)e−qdq − eiωb

ω

∫ ∞

0
f (b + i

q
ω

)e−qdq

One ends up evaluating f at the points

a + i
xnj

ω
, and b + i

xnj

ω
, j = 1, ...,n,

where xnj are the n roots of the Laguerre polynomial of degree
n.
This approach is equivalent to using a Filon rule with the same
interpolation points.



Introduction Asymptotic expansions Exponentially fitted rules Rules of Filon-type Adaptive Filon rules Conclusions

Method of steepest descent

∫ b

a
f (x)eiωxdx

=
eiωa

ω

∫ ∞

0
f (a + i

q
ω

)e−qdq − eiωb

ω

∫ ∞

0
f (b + i

q
ω

)e−qdq

One ends up evaluating f at the points

a + i
xnj

ω
, and b + i

xnj

ω
, j = 1, ...,n,

where xnj are the n roots of the Laguerre polynomial of degree
n.
This approach is equivalent to using a Filon rule with the same
interpolation points.



Introduction Asymptotic expansions Exponentially fitted rules Rules of Filon-type Adaptive Filon rules Conclusions

Method of steepest descent

∫ b

a
f (x)eiωxdx

=
eiωa

ω

∫ ∞

0
f (a + i

q
ω

)e−qdq − eiωb

ω

∫ ∞

0
f (b + i

q
ω

)e−qdq

One ends up evaluating f at the points

a + i
xnj

ω
, and b + i

xnj

ω
, j = 1, ...,n,

where xnj are the n roots of the Laguerre polynomial of degree
n.
This approach is equivalent to using a Filon rule with the same
interpolation points.



Introduction Asymptotic expansions Exponentially fitted rules Rules of Filon-type Adaptive Filon rules Conclusions

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

• EF
+ accurate for small ω h since the method reduces to

Gauss-Legendre quadrature
+ good results for large ω h since the nodes tend to the

endpoints (at a rate proportional to ω−1)
- but : difficult to determine the nodes and weights for a given
ω h (iteration needed and ill-conditioned)

• Filon
+ any set of nodes can be used
- there is no optimal set of nodes for all ω h

• most accurate for small ω h if the method is built on
Legendre nodes

• most accurate for large ω h if the endpoints are included in
the set of nodes
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Adaptive Filon-type rules

Idea : create quadrature rules with ω-dependent nodes that

• reduce to Legendre-nodes for small ω

• reduce to Lobatto-nodes for large ω

• for given value of ω are easy to compute

To do so, we introduce S-shaped functions.
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Adaptive Filon-type methods

S(ψ; r ; n) =
1 − ψn−rn

1+|ψn−rn|

1 + rn

1+rn

0 5 10 15 20
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0.4
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0.7

0.8

0.9

1

Figure: S(x , r ,1) and S(x , r ,2) (dashed) for r = 5 in [0,20]
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Adaptive Filon-type methods

• ν = 2 : c1(ψ) =
3 −

√
3

6
S(ψ; 2π; 1); c2(ψ) = 1 − c1(ψ)

• ν = 3 : c1(ψ) =
10 −

√
15

5
S(ψ; 3π; 1); c3(ψ) = 1 − c1(ψ)

0 5 10 15 20 25 30 35 40 45 50
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ωh
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Figure: c2(ψ) of the adaptive Filon method QF -A
2 and c3(ψ) of the

adaptive Filon method QF -A
3 .
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Asymptotic analysis for QF -A
2

c̃1 = c1h = σ1(ω) and c̃2 = c2 h = h + σ2(ω) with σ1,2(ω) ∼ ω−1

v(x) = sh(x)(x − h − σ2) sh(x) =
f ′′(ξh(x))

2
(x − σ1)

v ′(x) = sh(x) + s′
h(x)(x − h − σ2)

v ′′(x) = 2s′
h(x) + s′′

h(x)(x − h − σ2)

...

v(h) = −sh(h)σ2

v ′(h) = sh(h) − s′
h(h)σ2

v ′′(h) = 2s′
h(h) − s′′

h(h)σ2

...

Similar results for the other endpoint.
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Asymptotic analysis for QF -A
2

QF−A
2 [f ] − I[f ] = I[v ] ∼

∞
∑

m=0

1
(−iω)m+1

[

eiωhv (m)(h) − v (m)(0)
]

Reordering for sh(h), s′
h(h), . . .

I[v ] ∼ sh(h)eiψ
[

σ2

iω
− 1
ω2

]

+ s′
h(h)eiψ

[

σ2

ω2 +
2

iω3

]

+ . . .

+ s0(0)

[

σ1

iω
− 1
ω2

]

+ s′
0(0)

[

σ1

ω2 +
2

iω3

]

+ . . .

σ2 = −σ1 with σ1,2(ω) ∼ ψ−1 ⇐⇒ QF−A
2 [f ] − I[f ] ∼ O(ψ−2)
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A complex adaptive Filon-rule : QF -C
2

Are there better options than choosing σ2 = −σ1?

I[v ] ∼ sh(h)eiψ
[

σ2

iω
− 1
ω2

]

+ s′
h(h)eiψ

[

σ2

ω2 +
2

iω3

]

+ . . .

+ s0(0)

[

σ1

iω
− 1
ω2

]

+ s′
0(0)

[

σ1

ω2 +
2

iω3

]

+ . . .

Yes : Suppose σ1 = σ2 = i/ω =⇒ QF−C
2 [f ] − I[f ] ∼ O(ψ−3).

QF -C
2 =

ih
[

f (ih/ψ) − eiψf ((i + ψ)h/ψ)
]

ψ
, ψ = ωh
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Illustration
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Figure: The normalised errors in some ν = 2 Filon-type schemes for
f (x) = ex ,h = 1/10 and different values of ω.
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Error control for QF -C
2

QF -C
2 =

ih
[

f (ih/ψ) − eiψf ((i + ψ)h/ψ)
]

ψ
, ψ = ωh.

Obtained by replacing f by interpolating polynomial f̄ in nodes
i h/ω and h + i h/ω (for large ψ : ∼ ψ−3)
Similarly : QF -C

3 by replacing f by interpolating polynomial f̃ in
nodes i h/ω, h/2 and h + i h/ω (for large ψ : also ∼ ψ−3 but
about 100 times more accurate)

I[f ] − I[f̄ ] ≈ I[f̃ ] − I[f̄ ] =
(1 − eiψ)2h
ψ2(4 + ψ2)

×
(

(2 − iψ) f (
i
ω

) − (2 + iψ) f (h +
i
ω

) + (2iψ)f (
h
2

)

)
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Illustration
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Figure: Error estimations for the QF -A
2 and QF -C

2 method applied on
the problem with f (x) = ex ,h = 2.
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Illustration
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Figure: Error estimations for the QF -A
2 and QF -C

2 method applied on
the problem with f (x) = ex ,h = 2.
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Conclusions

• Filon rules, EF rules, and steepest descent rules are built
up starting from different points of view, the basic
underlying idea is the same : f (x) is interpolated by a
polynomial.

• Different choices can be made for the interpolation nodes.

• A choice of the (complex) interpolation nodes can improve
the asymptotic behaviour of the quadrature rule.

• Even better asymptotic behaviour is obtained if the nodes
are frequency dependent.

• Cheap error estimation is possible.
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