

Adaptive Filon methods for the computation of highly oscillatory integrals

Marnix Van Daele, Veerle Ledoux

Department of Applied Mathematics and Computer Science Ghent University

SciCADE 2011

A DIA K F A REIN A RIA K DIA K DIA R

 000

 $\overline{\circ}$ 000

K ロ ト K 何 ト K ヨ ト K ヨ ト

 2990 ヨー

Oscillatory integrals

$$
I[f] = \int_0^h f(x) e^{i\omega g(x)} dx
$$

We focus on the particular case

$$
I[f] = \int_0^h f(x) e^{i\omega x} dx
$$

If the integrand oscillates rapidly, and unless we use a huge number of function evaluations, the classical ν -point Gauss rule

Interpretially fitted rules [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 $\frac{1}{20}$ 000000 0000

 000

 $\overline{\circ}$ 000

イロト イ押 トイヨ トイヨ トーヨー

 2990

Oscillatory integrals

$$
I[f] = \int_0^h f(x) e^{i\omega g(x)} dx
$$

We focus on the particular case

$$
I[f] = \int_0^h f(x) e^{i\omega x} dx
$$

If the integrand oscillates rapidly, and unless we use a huge number of function evaluations, the classical ν -point Gauss rule

Interpretially fitted rules [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 $\frac{1}{20}$ 000000 nnnn

 000

 $\overline{O}O$ ooo

YO A GET YEAR ARY YOUR

Oscillatory integrals

$$
I[f] = \int_0^h f(x) e^{i\omega g(x)} dx
$$

We focus on the particular case

$$
I[f] = \int_0^h f(x) e^{i\omega x} dx
$$

If the integrand oscillates rapidly, and unless we use a huge number of function evaluations, the classical ν -point Gauss rule is useless.

Gauss rule applied to oscillatory integrands Example : $f(x) = exp(x)$ and $h = 1/10$

$$
\int_0^h e^x e^{i\omega x} dx = \frac{-1 + e^{h(1+i\omega)}}{1+i\omega}
$$

The absolute error in Gauss-Legendre quadrature for different values of the characteristic frequency $\psi = \omega h$.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A} + \mathbf{B} + \mathbf{A} \oplus \mathbf{A} + \mathbf{B} + \mathbf{A} \oplus \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf$ 2990

Asymptotic expansion

$$
\begin{array}{rcl}\nI[f] & = & \int_{a}^{b} f(x)e^{i\omega x} \, dx \\
& = & \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) - \frac{1}{i\omega} I[f'] \\
& = & \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) \\
& - \frac{1}{(i\omega)^2} \left(f'(b) e^{i\omega b} - f'(a) e^{i\omega a} \right) + \frac{1}{(i\omega)^2} I[f'']\n\end{array}
$$

$$
I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]
$$

(ロトメ部) (文書) (文書) \equiv 990

Asymptotic expansion

$$
\begin{array}{rcl}\nI[f] & = & \int_{a}^{b} f(x) e^{i\omega x} \, dx \\
& = & \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) - \frac{1}{i\omega} I[f'] \\
& = & \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) \\
& - \frac{1}{(i\omega)^2} \left(f'(b) e^{i\omega b} - f'(a) e^{i\omega a} \right) + \frac{1}{(i\omega)^2} I[f'']\n\end{array}
$$

$$
I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]
$$

(ロトメ部) (文書) (文書) \equiv 990

Asymptotic expansion

$$
I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx
$$

\n
$$
= \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) - \frac{1}{i\omega} I[f']
$$

\n
$$
= \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right)
$$

\n
$$
- \frac{1}{(i\omega)^{2}} \left(f'(b) e^{i\omega b} - f'(a) e^{i\omega a} \right) + \frac{1}{(i\omega)^{2}} I[f'']
$$

$$
I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]
$$

(ロトイ団) → イ君 → イ君 → \equiv 990

Asymptotic expansion

$$
I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx
$$

\n
$$
= \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) - \frac{1}{i\omega} I[f']
$$

\n
$$
= \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right)
$$

\n
$$
- \frac{1}{(i\omega)^{2}} \left(f'(b) e^{i\omega b} - f'(a) e^{i\omega a} \right) + \frac{1}{(i\omega)^{2}} I[f'']
$$

$$
I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]
$$

(ロトメ部) (文書) (文書) \equiv 990

 000000 0000

 000

INS [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

ocodooo ooooooo $\overline{\circ}$ 000

Asymptotic rules

$$
I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx
$$

$$
I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]
$$

$$
\mathsf Q_s^A[f] = -\sum_{m=0}^{s-1} \frac{1}{(-\mathrm i \omega)^{m+1}} \left[\mathrm e^{\mathrm i \omega b} f^{(m)}(b) - \mathrm e^{\mathrm i \omega a} f^{(m)}(a) \right]
$$

$$
Q_s^A[f] - I[f] \sim O(\omega^{-s-1}) \quad \omega \to +\infty
$$

This asymptotic method is of asymptotic order $s + 1$. The asymptotic order gives us the rate at which the error decreases with increasing ω .

 000000 0000

 000

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0) $\overline{\circ}$ 000

i

イロト イ押 トイヨ トイヨ トーヨー

 2990

Asymptotic rules

$$
I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx
$$

$$
I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]
$$

$$
Q_s^A[f] = -\sum_{m=0}^{s-1} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]
$$

 $Q_s^A[f] - I[f] \sim O(\omega^{-s-1}) \quad \omega \to +\infty$

This asymptotic method is of asymptotic order $s + 1$. The asymptotic order gives us the rate at which the error decreases with increasing ω .

 000000 0000

 000

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0) $\overline{\circ}$ ooo

Asymptotic rules

$$
I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx
$$

$$
I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]
$$

$$
Q_s^A[f] = -\sum_{m=0}^{s-1} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]
$$

$$
Q_s^A[f] - I[f] \sim O(\omega^{-s-1}) \quad \omega \to +\infty
$$

This asymptotic method is of asymptotic order $s + 1$. The asymptotic order gives us the rate at which the error decreases with increasing ω .

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 CONCLUS OOO COOOOO 000000 0000

 000

 $\overline{O}O$ ooo

Exponential fitting

M. VAN DAELE, G. VANDEN BERGHE AND H. VANDE VYVER, Exponentially fitted quadrature rules of Gauss type for oscillatory integrands, Appl. Numer. Math., 53 (2005), pp. 509–526.

How to compute

 \int_0^1 −1 $F(t)$ dt

whereby $F(x)$ has an oscillatory behaviour with frequency μ ?

$$
I[f] = \int_0^h f(x)e^{i\omega x} dx = \frac{h}{2}e^{i\mu}\int_{-1}^1 f(h(t+1)/2)e^{i\mu t} dt \quad \mu = \frac{\omega h}{2}
$$

KORK ERKERK EI VOOR

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 CONCLUS OOO COOOOO 000000 0000

 000

 $\overline{O}O$ ooo

Exponential fitting

M. VAN DAELE, G. VANDEN BERGHE AND H. VANDE VYVER, Exponentially fitted quadrature rules of Gauss type for oscillatory integrands, Appl. Numer. Math., 53 (2005), pp. 509–526.

How to compute

 \int_0^1 −1 $F(t)$ dt

whereby $F(x)$ has an oscillatory behaviour with frequency μ ?

$$
I[f] = \int_0^h f(x) e^{i\omega x} dx = \frac{h}{2} e^{i\mu} \int_{-1}^1 f(h(t+1)/2) e^{i\mu t} dt \quad \mu = \frac{\omega h}{2}
$$

KORK ERKERK EI VOOR

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

occome **Adaptive Filon**-type ocococo 000000 000 0000

 $\overline{\circ}$ 000

Exponential fitting

$$
\mathcal{L}[F; x; h; \mathbf{a}] = \int_{x-h}^{x+h} F(z)dz - h \sum_{k=1}^{b} w_k F(x + \hat{c}_k h), \quad \hat{c}_k \in [-1, 1]
$$

(put $x = \mathbf{0}$ and $h = \mathbf{1}$ to obtain $\int_{-\mathbf{1}}^{\mathbf{1}} F(t)dt$)

 $\mathcal{L}[F; x; h; a] = 0$ for a reference set of $K + 2(P + 1) + 1 = 2\nu$ functions

$$
1, t, t^2, \ldots t^K,
$$

 $\mathsf{exp}(\pm\mathrm{i}\mu t), t\,\mathsf{exp}(\pm\mathrm{i}\mu t), t^2\,\mathsf{exp}(\pm\mathrm{i}\mu t), \ldots, t^P\,\mathsf{exp}(\pm\mathrm{i}\mu t)$

In this talk we only consider the case $K = -1$, $P = \nu - 1$.

イロト イ押 トイヨ トイヨ トーヨー 2990

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

occode 000000 000000 000 0000

 $\overline{\circ}$ 000

YO A GET YEAR ARY YOUR

Exponential fitting

$$
\mathcal{L}[F; x; h; \mathbf{a}] = \int_{x-h}^{x+h} F(z) dz - h \sum_{k=1}^{\nu} w_k F(x + \hat{c}_k h), \quad \hat{c}_k \in [-1, 1]
$$

(put
$$
x = 0
$$
 and $h = 1$ to obtain $\int_{-1}^{1} F(t) dt$)

 $\mathcal{L}[F; x; h; a] = 0$ for a reference set of $K + 2(P + 1) + 1 = 2\nu$ functions

$$
1, t, t^2, ... t^K,
$$

 $\mathsf{exp}(\pm\mathrm{i}\mu t), t\,\mathsf{exp}(\pm\mathrm{i}\mu t), t^2\,\mathsf{exp}(\pm\mathrm{i}\mu t), \ldots, t^P\,\mathsf{exp}(\pm\mathrm{i}\mu t)$

In this talk we only consider the case $K = -1$, $P = \nu - 1$.

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

occode 000000 000000 000 0000

 $\overline{O}O$ ooo

Exponential fitting

$$
\mathcal{L}[F; x; h; \mathbf{a}] = \int_{x-h}^{x+h} F(z) dz - h \sum_{k=1}^{\nu} w_k F(x + \hat{c}_k h), \quad \hat{c}_k \in [-1, 1]
$$

(put
$$
x = 0
$$
 and $h = 1$ to obtain $\int_{-1}^{1} F(t) dt$)

 $\mathcal{L}[F; x; h; a] = 0$ for a reference set of $K + 2(P + 1) + 1 = 2\nu$ functions

$$
1, t, t^2, ... t^K,
$$

 $\mathsf{exp}(\pm\mathrm{i}\mu t), t\,\mathsf{exp}(\pm\mathrm{i}\mu t), t^2\,\mathsf{exp}(\pm\mathrm{i}\mu t), \ldots, t^P\,\mathsf{exp}(\pm\mathrm{i}\mu t)$

In this talk we only consider the case $K = -1$, $P = \nu - 1$.

YO A GET YEAR ARY YOUR

 $\frac{00}{000}$

1-node EF rule

$$
\int_{-1}^1 F(x) dx \approx w_1 F(\hat{c}_1)
$$

 \int_0^1 **l__exp**(\pm i μ x)dx − w₁ exp(\pm i ĉ₁ μ) = 0

$$
w_1 = 2\sin(\mu)/\mu \qquad \qquad \hat{c}_1 = 0
$$

$$
I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx
$$

$$
Q_1^{EF}[F] = \frac{h\sin(\mu)}{\mu}F(h/2) = \frac{e^{ih\omega}-1}{i\omega}f(h/2) \quad \mu = \omega h/2
$$

K ロ > K 個 > K 할 > K 할 > 1 할 > 1 이익어

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 $\begin{array}{ccc}\n\circ\circ & \circ\circ & \circ\circ\circ\circ \\
\bullet\circ\circ\circ\circ\circ & \circ\circ & \circ\circ \\
\bullet\circ\circ\circ\circ & \circ\circ\n\end{array}$ 000000 0000

1-node EF rule

$$
\int_{-1}^1 F(x) dx \approx w_1 F(\hat{c}_1)
$$

 \int_0^1 −**1 exp**(±iµx)dx − w**¹ exp**(±i cˆ**¹** µ) = **0**

$$
w_1 = 2\sin(\mu)/\mu \qquad \hat{c}_1 = 0
$$

$$
I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx
$$

$$
Q_1^{EF}[F] = \frac{h\sin(\mu)}{\mu}F(h/2) = \frac{e^{ih\omega}-1}{i\omega}f(h/2) \quad \mu = \omega h/2
$$

 $\frac{00}{000}$

1-node EF rule

$$
\int_{-1}^1 F(x)dx \approx w_1 F(\hat{c}_1)
$$

 \int_0^1 −**1 exp**(±iµx)dx − w**¹ exp**(±i cˆ**¹** µ) = **0**

$$
w_1 = 2\sin(\mu)/\mu \qquad \hat{c}_1 = 0
$$

$$
I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx
$$

$$
Q_1^{EF}[F] = \frac{h\sin(\mu)}{\mu}F(h/2) = \frac{e^{ih\omega}-1}{i\omega}f(h/2) \quad \mu = \omega h/2
$$

K ロ X x 何 X x ミ X x ミ X ミ → つ Q Q →

 $\frac{00}{000}$

1-node EF rule

$$
\int_{-1}^1 F(x)dx \approx w_1 F(\hat{c}_1)
$$

 \int_0^1 −**1 exp**(±iµx)dx − w**¹ exp**(±i cˆ**¹** µ) = **0**

$$
w_1 = 2\sin(\mu)/\mu \qquad \hat{c}_1 = 0
$$

$$
I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx
$$

$$
Q_1^{EF}[F] = \frac{h\sin(\mu)}{\mu}F(h/2) = \frac{e^{ih\omega}-1}{i\omega}f(h/2) \quad \mu = \omega h/2
$$

K ロ X x 何 X x ミ X x ミ X ミ → つ Q Q →

 $\overline{O}O$ ooo

2-node EF rule

$$
\int_{-1}^1 F(x) dx \approx w_1 F(\hat{c}_1) + w_2 F(\hat{c}_2)
$$

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ \int_0^1 −**1 exp**(±iµx)dx − w**¹ exp**(±i cˆ**¹** µ) − w**² exp**(±i cˆ**²** µ) = **0** \int_0^1 −**1** x **exp**(±iµx)dx − w**¹** cˆ**¹ exp**(±i cˆ**¹** µ) − w**2**cˆ**² exp**(±i cˆ**²** µ) = **0**

Assuming $w_1 = w_2$ and $\hat{c}_1 = -\hat{c}_2$:

 \Leftrightarrow $\begin{cases} w_2\mu\cos(\mu\hat{c}_2) - \sin(\mu) = 0 \\ w_2\hat{c}_2\mu^2\sin(\mu\hat{c}_2) - \sin(\mu) \end{cases}$ $w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = 0$ $\mathrm{Q}_{2}^{EF}[F]=\frac{h}{2}w_{2}\left[F\left(\frac{h(1+\hat{c}_{2})}{2}\right)\right]$ $+ F\left(\frac{h(1-\hat{c}_2)}{2}\right)$ $\left[\frac{(-\hat{c}_2)}{2}\right)\left[\begin{array}{cc} & \mu=\frac{\omega h}{2} \end{array}\right]$ **2 2**K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

 $\mathcal C$

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 $\begin{array}{ccc}\n\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\bullet & \bullet & \circ & \circ\n\end{array}$ 000000 0000

 $\frac{00}{000}$

YO A GET YEAR ARY YOUR

2-node EF rule

$$
\int_{-1}^1 F(x) dx \approx w_1 F(\hat{c}_1) + w_2 F(\hat{c}_2)
$$

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ \int_0^1 −**1 exp**(±iµx)dx − w**¹ exp**(±i cˆ**¹** µ) − w**² exp**(±i cˆ**²** µ) = **0** \int_0^1 −**1** x **exp**(±iµx)dx − w**¹** cˆ**¹ exp**(±i cˆ**¹** µ) − w**2**cˆ**² exp**(±i cˆ**²** µ) = **0**

Assuming $w_1 = w_2$ and $\hat{c}_1 = -\hat{c}_2$:

$$
\Longleftrightarrow \left\{\begin{array}{l}w_2\mu\cos(\mu\hat{c}_2)-\sin(\mu)=\mathbf{0}\\ w_2\hat{c}_2\mu^2\sin(\mu\hat{c}_2)-\sin(\mu)+\mu\cos(\mu)=\mathbf{0}\end{array}\right.
$$
\n
$$
D_2^{EF}[F]=\frac{h}{2}w_2\left[F\left(\frac{h(1+\hat{c}_2)}{2}\right)+F\left(\frac{h(1-\hat{c}_2)}{2}\right)\right]\qquad\mu=\frac{\omega h}{2}
$$

[Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\frac{00}{000}$

2-node EF rule

 \int $w_2 \mu \cos(\mu \hat{c}_2) - \sin(\mu) = 0$ $w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = 0$ If $cos(\mu\hat{c}_2) \neq 0$ then $w_2 = sin \mu/(\mu cos(\mu\hat{c}_2))$ $G(\hat{c}_2) := (\sin \mu - \mu \cos \mu) \cos(\mu \hat{c}_2) - \mu \hat{c}_2 \sin \mu \sin(\mu \hat{c}_2) = 0$

Figure: $G(x_2)$ for $\mu = 5$, $\mu = 50$ and $\mu = 200$.

KORK ERKERK EI VOOR

 \circ റ്റ്റ

2-node EF rule

 $\int w_2\mu\cos(\mu\hat{c}_2) - \sin(\mu) = 0$ $w_2\hat{c}_2\mu^2\sin(\mu\hat{c}_2)-\sin(\mu)+\mu\cos(\mu)=0$ If $cos(\mu \hat{c}_2) \neq 0$ then $w_2 = sin \mu/(\mu cos(\mu \hat{c}_2))$ $G(\hat{c}_2) := (\sin \mu - \mu \cos \mu) \cos(\mu \hat{c}_2) - \mu \hat{c}_2 \sin \mu \sin(\mu \hat{c}_2) = 0$

Figure: $G(x_2)$ for $\mu = 5$, $\mu = 50$ and $\mu = 200$.

A DIA K F A REIN A RIA K DIA K DIA R

2-node EF rule

Figure: The $\hat{c}_2(\mu)$ and $w_2(\mu)$ curve for the EF method with $\nu = 2$.

K ロ X x 何 X x ミ X x ミ X ミ → つ Q Q →

3-node EF rule

$$
\hat{c}_1 = -\hat{c}_3
$$
 $\hat{c}_2 = 0$ $w_1 = w_3$

Figure: The $\hat{c}_3(\mu)$, $w_1(\mu) = w_3(\mu)$ and $w_2(\mu)$ curves for the $\nu = 3$ EF rule

K ロ ト K 何 ト K ヨ ト K ヨ ト \mathbb{R}^{n-1} 299

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

00

000

000

000

000

000

000

4-node EF rule

$$
\hat{c}_1 = -\hat{c}_4
$$
 $\hat{c}_2 = -\hat{c}_3$ $w_1 = w_4$ $w_2 = w_3$

Figure: Nodes and weights of the EF rule with $\nu = 4$ quadrature nodes.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 000000 ൈറ

 000

 \circ ooo

KOD KOD KED KED ORA

Accuracy of EF rules

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$.

Thus for small $\mu: \mathsf{O}(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu}=\lfloor (\nu-1)/2 \rfloor$

 $\nu=1:\,{\rm O}(\omega^{-1}) \qquad \quad \nu=2,3:\,{\rm O}(\omega^{-2}) \qquad \quad \nu=4,5:\,{\rm O}(\omega^{-3})$

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $\mathsf{O}(h^{2\nu+1})$

What about the accuracy for larger values of $\mu = \omega h/2$?

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu}=\lfloor (\nu-1)/2 \rfloor$

 $\nu=1:\,{\rm O}(\omega^{-1}) \qquad \quad \nu=2,3:\,{\rm O}(\omega^{-2}) \qquad \quad \nu=4,5:\,{\rm O}(\omega^{-3})$

KOD KOD KED KED ORA

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $\mathsf{O}(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu}=\lfloor (\nu-1)/2 \rfloor$

 $\nu=1:\,{\rm O}(\omega^{-1}) \qquad \quad \nu=2,3:\,{\rm O}(\omega^{-2}) \qquad \quad \nu=4,5:\,{\rm O}(\omega^{-3})$

KORKARA KERKER SAGA

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $\mathsf{O}(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, Truncation errors in exponential fitting for oscillatory problems, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu} = \lfloor (\nu-1)/2 \rfloor$

 $\nu=1:\,{\rm O}(\omega^{-1}) \qquad \quad \nu=2,3:\,{\rm O}(\omega^{-2}) \qquad \quad \nu=4,5:\,{\rm O}(\omega^{-3})$

KORK ERKERK EI VOOR

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $\mathsf{O}(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, Truncation errors in exponential fitting for oscillatory problems, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu} = \lfloor (\nu-1)/2 \rfloor$

 $\nu=$ 1 : ${\sf O}(\omega^{-1}$) $\nu = 2, 3: O(\omega^{-2})$ $\nu=4,5:O(\omega^{-3})$

KORKAPA CERRE PROVIDIA

Proof

$$
(\mathcal{O}_{\mathcal{A}}^{\mathcal{A}})^{\mathcal{A}}_{\mathcal{A}}(\mathcal{O}_{\mathcal{A}}^{\mathcal{A}})
$$

$$
\int_{-1}^1 F(t)dt \approx \int_{-1}^1 \bar{F}(t)dt
$$

 $\bar{F}(t) \in \text{span}\{\text{exp}(\pm \mathrm{i} \mu t), t \exp(\pm \mathrm{i} \mu t), t^2 \exp(\pm \mathrm{i} \mu t), \dots, t^P \exp(\pm \mathrm{i} \mu t)\}$

$$
I[f] = \int_0^h f(x)e^{i\omega x} dx = \frac{h}{2} e^{i\frac{\omega h}{2}} \int_{-1}^1 f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt
$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^2, ..., x^{\nu-1}\}$
 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $v(x) := \bar{f}(x) - f(x)$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ \Rightarrow $2Q$

Proof

$$
\int_{-1}^1 F(t)dt \approx \int_{-1}^1 \bar{F}(t)dt
$$

 $\bar{F}(t) \in \text{span}\{\text{exp}(\pm \mathrm{i} \mu t), t \exp(\pm \mathrm{i} \mu t), t^2 \exp(\pm \mathrm{i} \mu t), \dots, t^P \exp(\pm \mathrm{i} \mu t)\}$

$$
I[f] = \int_0^h f(x)e^{i\omega x} dx = \frac{h}{2}e^{i\frac{\omega h}{2}} \int_{-1}^1 f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt
$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^2, \dots, x^{\nu-1}\}\$

 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $v(x) := \bar{f}(x) - f(x)$

A DIA K F A REIN A RIA K DIA K DIA R

Proof

$$
f_{\rm{max}}
$$

$$
\int_{-1}^1 F(t)dt \approx \int_{-1}^1 \bar{F}(t)dt
$$

 $\bar{F}(t) \in \text{span}\{\text{exp}(\pm \mathrm{i} \mu t), t \exp(\pm \mathrm{i} \mu t), t^2 \exp(\pm \mathrm{i} \mu t), \dots, t^P \exp(\pm \mathrm{i} \mu t)\}$

$$
I[f] = \int_0^h f(x)e^{i\omega x} dx = \frac{h}{2}e^{i\frac{\omega h}{2}} \int_{-1}^1 f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt
$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^2, \dots, x^{\nu-1}\}$
 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $V(x) := \bar{f}(x) - f(x)$

イロトメ 倒 トメ 君 トメ 君 トー \Rightarrow 299

$$
\mathsf{I}\mathsf{O}\mathsf{O}\mathsf{I}
$$

$$
\int_{-1}^1 F(t)dt \approx \int_{-1}^1 \bar{F}(t)dt
$$

 $\bar{F}(t) \in \text{span}\{\text{exp}(\pm \mathrm{i} \mu t), t \exp(\pm \mathrm{i} \mu t), t^2 \exp(\pm \mathrm{i} \mu t), \dots, t^P \exp(\pm \mathrm{i} \mu t)\}$

$$
I[f] = \int_0^h f(x)e^{i\omega x} dx = \frac{h}{2} e^{i\frac{\omega h}{2}} \int_{-1}^1 f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt
$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^2, ..., x^{\nu-1}\}$
 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $v(x) := \bar{f}(x) - f(x)$

イロト 不優 トイ磨 トイ磨 トー 磨っ 299

Suppose ν is even and $a < c_1 < c_2 < \ldots < c_\nu < b$

$$
c_j = a + \lambda_j/\omega \qquad c_{\nu-j+1} = b - \lambda_j/\omega \quad j = 1, \ldots, \nu/2
$$

$$
v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)
$$

$$
v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega) \qquad s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)
$$

$$
v(b) = s(b) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = O(\omega^{-\nu/2})
$$

$$
v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})
$$

 299

Suppose ν is even and $a < c_1 < c_2 < \ldots < c_\nu < b$

$$
c_j = a + \lambda_j/\omega \qquad c_{\nu-j+1} = b - \lambda_j/\omega \quad j = 1, \ldots, \nu/2
$$

$$
v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)
$$

$$
v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega) \qquad s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)
$$

$$
v(b) = s(b) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = O(\omega^{-\nu/2})
$$

$$
v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})
$$

 299

Suppose ν is even and $a < c_1 < c_2 < \ldots < c_\nu < b$

$$
c_j = a + \lambda_j/\omega \qquad c_{\nu-j+1} = b - \lambda_j/\omega \quad j = 1, \ldots, \nu/2
$$

$$
v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)
$$

$$
v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega) \qquad s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)
$$

$$
v(b) = s(b) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = O(\omega^{-\nu/2})
$$

$$
v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})
$$

 299

Suppose ν is even and $a < c_1 < c_2 < \ldots < c_\nu < b$

$$
c_j = a + \lambda_j/\omega \qquad c_{\nu-j+1} = b - \lambda_j/\omega \quad j = 1, \ldots, \nu/2
$$

$$
v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)
$$

$$
v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega) \qquad s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)
$$

$$
v(b) = s(b) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = O(\omega^{-\nu/2})
$$

$$
v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})
$$

Suppose ν is even and $a < c_1 < c_2 < \ldots < c_\nu < b$

$$
c_j = a + \lambda_j/\omega \qquad c_{\nu-j+1} = b - \lambda_j/\omega \quad j = 1, \ldots, \nu/2
$$

$$
v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)
$$

$$
v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega) \qquad s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)
$$

$$
v(b) = s(b) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = O(\omega^{-\nu/2})
$$

$$
v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\infty} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})
$$

 $v(b) = O(\omega^{-\nu/2})$) $v'(b) = O(\omega^{-\nu/2+1})$

 $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $v^{(n)}(a) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $Q_{\nu}^{EF}[f] - I[f] = I[\nu]$ $=-\sum^{\infty}$ 1 $(-i\omega)^{m+1}$ $\left[e^{i\omega b}v^{(m)}(b)-e^{i\omega a}v^{(m)}(a)\right]$ \sum 2−1 1 $\frac{1}{(-i\omega)^{m+1}}O(\omega^{-\nu/2+m})+O(\omega^{-\nu/2-1})$ $= {\mathsf{O}}(\omega^{-\nu/2-1}) = {\mathsf{O}}(\omega^{\lfloor(\nu-1)/2\rfloor-\nu})$

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$

 $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $v^{(n)}(a) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $Q_{\nu}^{EF}[f] - I[f] = I[\nu]$ $=-\sum^{\infty}$ 1 $(-i\omega)^{m+1}$ $\left[e^{i\omega b}v^{(m)}(b)-e^{i\omega a}v^{(m)}(a)\right]$ \sum 2−1 1 $\frac{1}{(-i\omega)^{m+1}}O(\omega^{-\nu/2+m})+O(\omega^{-\nu/2-1})$ $= {\mathsf{O}}(\omega^{-\nu/2-1}) = {\mathsf{O}}(\omega^{\lfloor(\nu-1)/2\rfloor-\nu})$

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $v^{(n)}(a) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$ $Q_{\nu}^{EF}[f] - I[f] = I[\nu]$ $=-\sum^{\infty}$ 1 $(-i\omega)^{m+1}$ $\left[e^{i\omega b}v^{(m)}(b)-e^{i\omega a}v^{(m)}(a)\right]$

$$
=-\sum_{m=0}^{\nu/2-1}\frac{1}{(-i\omega)^{m+1}}O(\omega^{-\nu/2+m})+O(\omega^{-\nu/2-1})
$$

 $= {\mathsf{O}}(\omega^{-\nu/2-1}) = {\mathsf{O}}(\omega^{\lfloor(\nu-1)/2\rfloor-\nu})$

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$ $v^{(n)}(a) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $Q_{\nu}^{EF}[f] - I[f] = I[\nu]$ $=-\sum^{\infty}$ $m=0$ 1 $(-i\omega)^{m+1}$ $\left[e^{i\omega b}v^{(m)}(b)-e^{i\omega a}v^{(m)}(a)\right]$ \sum 2−1 1 $\frac{1}{(-i\omega)^{m+1}}O(\omega^{-\nu/2+m})+O(\omega^{-\nu/2-1})$ $= {\mathsf{O}}(\omega^{-\nu/2-1}) = {\mathsf{O}}(\omega^{\lfloor(\nu-1)/2\rfloor-\nu})$

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$ $v^{(n)}(a) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

$$
Q_{\nu}^{EF}[f] - I[f] = I[\nu]
$$

= $-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} v^{(m)}(b) - e^{i\omega a} v^{(m)}(a) \right]$
= $-\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1})$
= $O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu})$

 ORO

 \mathbf{h}

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$ $v^{(n)}(a) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

$$
Q_{\nu}^{EF}[f] - I[f] = I[\nu]
$$

= $-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} v^{(m)}(b) - e^{i\omega a} v^{(m)}(a) \right]$
= $-\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1})$
= $O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor-\nu})$

 $2Q$

Filon-type

L. N. G FILON, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh, 49 (1928), pp. 38–47.

Interpolate only the function $f(x)$ at $c_1h, \ldots, c_{\nu}h$ by a polynomial $\bar{f}(x)$

$$
I[f] \approx Q_{\nu}^{F}[f] = \int_{0}^{h} \bar{f}(x)e^{i\omega x} dx = h \sum_{l=1}^{\nu} b_{l}(i\hbar\omega)f(c_{l}h)
$$

$$
b_l(\mathrm{i} h\omega)=\int_0^1 \ell_l(x) \mathrm{e}^{\mathrm{i} h\omega x} \mathrm{d}x
$$

KORK ERKERK EI VOOR

 ℓ_l is the *l*th cardinal polynomial of Lagrangian interpolation.

Filon-type

L. N. G FILON, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh, 49 (1928), pp. 38–47.

Interpolate only the function $f(x)$ at $c_1h, \ldots, c_\nu h$ by a polynomial $\bar{f}(x)$

$$
I[f] \approx Q_{\nu}^{F}[f] = \int_{0}^{h} \overline{f}(x)e^{i\omega x} dx = h \sum_{l=1}^{\nu} b_{l}(ih\omega)f(c_{l}h)
$$

$$
b_{l}(ih\omega) = \int_{0}^{1} \ell_{l}(x)e^{ih\omega x} dx
$$

A DIA K F A REIN A RIA K DIA K DIA R

 ℓ_l is the *l*th cardinal polynomial of Lagrangian interpolation.

[Exponentially fitted rules](#page-5-0) **[Rules of Filon-type](#page-17-0)** [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

00

000

000

000

000

000

000 000000

K ロ X x 何 X x ミ X x ミ X ミ → つ Q Q →

1-node Filon-type rule

$$
I[f] = \int_0^h F(x)dx = \int_0^h f(x) \exp(i\omega x)dx
$$

$$
Q_1^F[f] = \frac{\exp(ih\omega) - 1}{i\omega}f(c_1 h)
$$

$$
Q_1^{EF}[F] = \frac{e^{ih\omega} - 1}{i\omega}f(h/2)
$$

 $Q_1^F[f] = Q_1^{EF}[F]$ iff $c_1 = \frac{1}{2}$

[Exponentially fitted rules](#page-5-0) **[Rules of Filon-type](#page-17-0)** [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

00

000

000

000

000

000

1-node Filon-type rule

$$
I[f] = \int_0^h F(x)dx = \int_0^h f(x) \exp(i\omega x)dx
$$

$$
Q_1^F[f] = \frac{\exp(ih\omega) - 1}{i\omega}f(c_1 h)
$$

$$
Q_1^{EF}[F] = \frac{e^{ih\omega} - 1}{i\omega}f(h/2)
$$

$$
Q_1^F[f] = Q_1^{EF}[F] \text{ iff } c_1 = \frac{1}{2}
$$

K ロ X x 何 X x ミ X x ミ X ミ → つ Q Q →

[Exponentially fitted rules](#page-5-0) **[Rules of Filon-type](#page-17-0)** [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

00

000

000

000

000

000

1-node Filon-type rule

$$
I[f] = \int_0^h F(x)dx = \int_0^h f(x) \exp(i\omega x)dx
$$

$$
Q_1^F[f] = \frac{\exp(ih\omega) - 1}{i\omega}f(c_1 h)
$$

$$
Q_1^{EF}[F] = \frac{e^{ih\omega} - 1}{i\omega} f(h/2)
$$

$$
Q_1^F[f] = Q_1^{EF}[F] \text{ iff } c_1 = \frac{1}{2}
$$

K ロ X x 何 X x ミ X x ミ X ミ → つ Q Q →

 000000 0000

 000

[Exponentially fitted rules](#page-5-0) **[Rules of Filon-type](#page-17-0)** [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

oooooo $\frac{00}{000}$

2-node Filon-type rule

$$
I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx
$$

If f is interpolated at c_1 h and c_2 h, then

$$
Q_2^F[f] = h \left[\left(\frac{i ((e^{i\psi} - 1) c_2 - e^{i\psi})}{(c_1 - c_2)\psi} + \frac{e^{i\psi} - 1}{(c_1 - c_2)\psi^2} \right) f(c_1 h) + \left(\frac{i ((e^{i\psi} - 1) c_1 - e^{i\psi})}{(c_2 - c_1)\psi} + \frac{e^{i\psi} - 1}{(c_2 - c_1)\psi^2} \right) f(c_2 h) \right]
$$

 $Q_2^F[f] = Q_2^{EF}[F]$ iff the same nodes are used

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 000000 0000

[Exponentially fitted rules](#page-5-0) **[Rules of Filon-type](#page-17-0)** [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 000
 000
 000 $\frac{00}{000}$

2-node Filon-type rule

$$
I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx
$$

If f is interpolated at c_1 h and c_2 h, then

$$
Q_2^F[f] = h \left[\left(\frac{i ((e^{i\psi} - 1) c_2 - e^{i\psi})}{(c_1 - c_2)\psi} + \frac{e^{i\psi} - 1}{(c_1 - c_2)\psi^2} \right) f(c_1 h) + \left(\frac{i ((e^{i\psi} - 1) c_1 - e^{i\psi})}{(c_2 - c_1)\psi} + \frac{e^{i\psi} - 1}{(c_2 - c_1)\psi^2} \right) f(c_2 h) \right]
$$

 $Q_2^F[f] = Q_2^{EF}[F]$ iff the same nodes are used

KORK ERKERK EI VAN

A. ISERLES, On the numerical quadrature of highly-oscillating integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365–391.

For small ω , a Filon-type quadrature method has an order as if $\omega = 0$.

Legendre nodes : order 2ν Lobatto nodes : order 2ν – 2 For large ω :

$$
Q_{\nu}^{F}[f] - I[f] \sim \begin{cases} O(\omega^{-1}) & c_1 > 0 \text{ or } c_{\nu} < 1 \\ O(\omega^{-2}) & c_1 = 0, c_{\nu} = 1 \end{cases}
$$

イロト イ押 トイヨ トイヨ トーヨー QQ

YO A GET YEAR ARY YOUR

Accuracy of Filon-type rules

A. ISERLES, On the numerical quadrature of highly-oscillating integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365–391.

For small ω , a Filon-type quadrature method has an order as if $\omega = 0$.

Legendre nodes : order 2ν Lobatto nodes : order $2\nu - 2$ For large ω :

$$
Q_{\nu}^{F}[f] - I[f] \sim \begin{cases} O(\omega^{-1}) & c_1 > 0 \text{ or } c_{\nu} < 1 \\ O(\omega^{-2}) & c_1 = 0, c_{\nu} = 1 \end{cases}
$$

oo ooo

Accuracy of Filon-type rules

A. ISERLES, On the numerical quadrature of highly-oscillating integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365–391.

For small ω , a Filon-type quadrature method has an order as if $\omega = 0$.

Legendre nodes : order 2ν Lobatto nodes : order $2\nu - 2$ For large ω :

$$
Q_{\nu}^{F}[f] - I[f] \sim \begin{cases} O(\omega^{-1}) & c_1 > 0 \text{ or } c_{\nu} < 1 \\ O(\omega^{-2}) & c_1 = 0, c_{\nu} = 1 \end{cases}
$$

KORK ERKERK EI VOOR

$$
Q_{\nu}^{F}[f] - I[f] \sim \begin{cases} O(\omega^{-1}) & c_1 > 0 \text{ or } c_{\nu} < 1 \\ O(\omega^{-2}) & c_1 = 0, c_{\nu} = 1 \end{cases}
$$

$$
Q_{\nu}^{F}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]
$$

=
$$
-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h}v^{(m)}(h) - v^{(m)}(0)\right]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

If $(c_1, c_v) = (0, 1)$ then $v(h) = v(0) = 0$ $\Rightarrow Q^F_\nu[f] - I[f] = O(\omega^{-2}).$

$$
Q_{\nu}^{F}[f] - I[f] \sim \begin{cases} O(\omega^{-1}) & c_1 > 0 \text{ or } c_{\nu} < 1 \\ O(\omega^{-2}) & c_1 = 0, c_{\nu} = 1 \end{cases}
$$

$$
Q_{\nu}^{F}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]
$$

=
$$
-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h}v^{(m)}(h) - v^{(m)}(0)\right]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

If $(c_1, c_v) = (0, 1)$ then $v(h) = v(0) = 0$ $\Rightarrow Q^F_\nu[f] - I[f] = O(\omega^{-2}).$

$$
Q_{\nu}^{F}[f] - I[f] \sim \begin{cases} O(\omega^{-1}) & c_1 > 0 \text{ or } c_{\nu} < 1 \\ O(\omega^{-2}) & c_1 = 0, c_{\nu} = 1 \end{cases}
$$

$$
Q_{\nu}^{F}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]
$$

=
$$
-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h}v^{(m)}(h) - v^{(m)}(0)\right]
$$

KORKARYKERKE PORCH

If $(c_1, c_v) = (0, 1)$ then $v(h) = v(0) = 0$ $\Rightarrow Q^F_\nu[f] - I[f] = O(\omega^{-2}).$

• by using Hermite interpolation : asymptotic order $p + 1$ can be reached where p is the number of derivatives at the endpoints:

 $\bar{f}^{(l)}(h) = f^{(l)}(h), \bar{f}^{(l)}(0) = f^{(l)}(0), l = 0, \ldots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

10000

How to improve the accuracy of Filon-rules ?

• by using Hermite interpolation : asymptotic order $p + 1$ can be reached where p is the number of derivatives at the endpoints:

 $\bar{f}^{(l)}(h) = f^{(l)}(h), \bar{f}^{(l)}(0) = f^{(l)}(0), l = 0, \ldots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

• by using Hermite interpolation : asymptotic order $p + 1$ can be reached where p is the number of derivatives at the endpoints:

 $\bar{f}^{(l)}(h) = f^{(l)}(h), \bar{f}^{(l)}(0) = f^{(l)}(0), l = 0, \ldots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

• by using Hermite interpolation : asymptotic order $p + 1$ can be reached where p is the number of derivatives at the endpoints:

 $\bar{f}^{(l)}(h) = f^{(l)}(h), \bar{f}^{(l)}(0) = f^{(l)}(0), l = 0, \ldots, p-1$

 $Q_{\nu}^{F}[f] - I[f] = O(\omega^{-p-1})$

- by using adaptive Filon-type methods allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

KORK ERREAD ADAMS

• by using Hermite interpolation : asymptotic order $p + 1$ can be reached where p is the number of derivatives at the endpoints:

 $\bar{f}^{(l)}(h) = f^{(l)}(h), \bar{f}^{(l)}(0) = f^{(l)}(0), l = 0, \ldots, p-1$

 $Q_{\nu}^{F}[f] - I[f] = O(\omega^{-p-1})$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

KORK ERREAD ADAMS

• by using Hermite interpolation : asymptotic order $p + 1$ can be reached where p is the number of derivatives at the endpoints:

 $\bar{f}^{(l)}(h) = f^{(l)}(h), \bar{f}^{(l)}(0) = f^{(l)}(0), l = 0, \ldots, p-1$

 $Q_{\nu}^{F}[f] - I[f] = O(\omega^{-p-1})$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

KORKARYKERKE PORCH

• by using Hermite interpolation : asymptotic order $p + 1$ can be reached where p is the number of derivatives at the endpoints:

 $\bar{f}^{(l)}(h) = f^{(l)}(h), \bar{f}^{(l)}(0) = f^{(l)}(0), l = 0, \ldots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

[Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)
 ●○○ ●○
●○○ $\frac{00}{000}$

Method of steepest descent

D. HUYBRECHS AND S. VANDEWALLE, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal., 44 (2007) pp 1026–1048.

Method of steepest descent

$$
\int_{a}^{b} f(x)e^{i\omega x} dx
$$
\n
$$
= e^{i\omega a} \int_{0}^{\infty} f(a + ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b + ip)e^{-\omega p} dp
$$
\n
$$
= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a + i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b + i\frac{q}{\omega})e^{-q} dq
$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\,\nu-1}).$

 000

Method of steepest descent

$$
\int_{a}^{b} f(x)e^{i\omega x} dx
$$
\n
$$
= e^{i\omega a} \int_{0}^{\infty} f(a+ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b+ip)e^{-\omega p} dp
$$
\n
$$
= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq
$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\,\nu-1}).$

Method of steepest descent

$$
\int_{a}^{b} f(x)e^{i\omega x} dx
$$
\n
$$
= e^{i\omega a} \int_{0}^{\infty} f(a + ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b + ip)e^{-\omega p} dp
$$
\n
$$
= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a + i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b + i\frac{q}{\omega})e^{-q} dq
$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\,\nu-1}).$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
\int_{a}^{b} f(x)e^{i\omega x} dx
$$
\n
$$
= e^{i\omega a} \int_{0}^{\infty} f(a + ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b + ip)e^{-\omega p} dp
$$
\n
$$
= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a + i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b + i\frac{q}{\omega})e^{-q} dq
$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\,\nu-1})$.

A DIA K F A REIN A RIA K DIA K DIA R

$$
\int_{a}^{b} f(x)e^{i\omega x} dx
$$
\n
$$
= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq
$$

One ends up evaluating f at the points

$$
a + \mathrm{i} \frac{x_{nj}}{\omega}, \text{ and } b + \mathrm{i} \frac{x_{nj}}{\omega}, j = 1, ..., n,
$$

where x_{ni} are the *n* roots of the Laguerre polynomial of degree n.

(ロトイ部) (唐) (唐) (唐

 299

$$
\int_{a}^{b} f(x)e^{i\omega x} dx
$$
\n
$$
= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq
$$

One ends up evaluating f at the points

$$
a + i\frac{x_{nj}}{\omega}
$$
, and $b + i\frac{x_{nj}}{\omega}$, $j = 1, ..., n$,

where x_{ni} are the n roots of the Laguerre polynomial of degree n.

イロト イ押 トイヨ トイヨ トーヨー

 2990

$$
\int_{a}^{b} f(x)e^{i\omega x} dx
$$
\n
$$
= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq
$$

One ends up evaluating f at the points

$$
a + i\frac{x_{nj}}{\omega}
$$
, and $b + i\frac{x_{nj}}{\omega}$, $j = 1, ..., n$,

where x_{ni} are the n roots of the Laguerre polynomial of degree n.

This approach is equivalent to using a Filon rule with the same interpolation points.

A DIA K F A REIN A RIA K DIA K DIA R

YO A GET YEAR ARY YOUR

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
	- accurate for small ω h since the method reduces to Gauss-Legendre quadrature
	- + good results for large ω h since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
	- but : difficult to determine the nodes and weights for a given ω h (iteration needed and ill-conditioned)
- Filon
	- + any set of nodes can be used
	- there is no optimal set of nodes for all ω h
		- most accurate for small ω h if the method is built on Legendre nodes
		- most accurate for large ω h if the endpoints are included in the set of nodes

YO A GET YEAR ARY YOUR

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

• EF

- accurate for small ω h since the method reduces to Gauss-Legendre quadrature
- + good results for large ω h since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
- but : difficult to determine the nodes and weights for a given ω h (iteration needed and ill-conditioned)
- Filon
	- + any set of nodes can be used
	- there is no optimal set of nodes for all ω h
		- most accurate for small ω h if the method is built on Legendre nodes
		- most accurate for large ω h if the endpoints are included in the set of nodes

 \circ $\overline{000}$

KORK ERKERK EI VOOR

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
	- + accurate for small ω h since the method reduces to Gauss-Legendre quadrature
	- + good results for large ω h since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
	- but : difficult to determine the nodes and weights for a given ω h (iteration needed and ill-conditioned)

• Filon

- + any set of nodes can be used
- there is no optimal set of nodes for all ω h
	- most accurate for small ω h if the method is built on Legendre nodes
	- most accurate for large ω h if the endpoints are included in the set of nodes

 \circ ooo

KORK ERKERK EI VOOR

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
	- + accurate for small ω h since the method reduces to Gauss-Legendre quadrature
	- + good results for large ω h since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
	- but : difficult to determine the nodes and weights for a given ω h (iteration needed and ill-conditioned)
- Filon
	- + any set of nodes can be used
	- there is no optimal set of nodes for all ωh
		- most accurate for small ω h if the method is built on Legendre nodes
		- most accurate for large ω h if the endpoints are included in the set of nodes

Intertially fitted rules [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

oconclusions
 \overrightarrow{O} 000000 nnnn

 000

 \circ ooo

YO A GET YEAR ARY YOUR

Adaptive Filon-type rules

Idea : create quadrature rules with ω -dependent nodes that

- reduce to Legendre-nodes for small ω
- reduce to Lobatto-nodes for large ω
- for given value of ω are easy to compute

To do so, we introduce S-shaped functions.

Intertially fitted rules [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

oconclusions
 \overrightarrow{O} 000000 nnnn

 000

 \circ $\overline{000}$

YO A GET YEAR ARY YOUR

Adaptive Filon-type rules

Idea : create quadrature rules with ω -dependent nodes that

- reduce to Legendre-nodes for small ω
- reduce to Lobatto-nodes for large ω
- for given value of ω are easy to compute

To do so, we introduce S-shaped functions.

000000 0000

 $\frac{00}{000}$

Adaptive Filon-type methods

$$
S(\psi; r; n) = \frac{1 - \frac{\psi^{n} - r^{n}}{1 + |\psi^{n} - r^{n}|}}{1 + \frac{r^{n}}{1 + r^{n}}}
$$

Figure: $S(x, r, 1)$ and $S(x, r, 2)$ (dashed) for $r = 5$ in [0, 20]

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) **[Adaptive Filon rules](#page-26-0)** [Conclusions](#page-37-0)

oo ooo ooo oooooo ooo

000000 0000

 000

 0000

Adaptive Filon-type methods • $\nu = 2 : c_1(\psi) = \frac{3 - \sqrt{3}}{6}$ $\frac{1}{6}$ S(ψ ; 2 π ; 1); $c_2(\psi) = 1 - c_1(\psi)$

•
$$
\nu = 3
$$
: $c_1(\psi) = \frac{10 - \sqrt{15}}{5} S(\psi; 3\pi; 1)$; $c_3(\psi) = 1 - c_1(\psi)$

Figure: $\mathbf{c}_2(\psi)$ of the adaptive Filon method $\mathsf{Q}_2^{\mathsf{F-A}}$ and $\mathbf{c}_3(\psi)$ of the adaptive Filon method Q_3^{F-A} . **A DIA K F A REIN A RIA K DIA K DIA R**

 000000 nnnn

 000

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

oco ooo oooooo $\frac{00}{000}$

Asymptotic analysis for Q_2^{F-A}

 $\tilde{c}_1 = c_1 h = \sigma_1(\omega)$ and $\tilde{c}_2 = c_2 h = h + \sigma_2(\omega)$ with $\sigma_{1,2}(\omega) \sim \omega^{-1}$

 $v(x) = s_h(x)(x - h - \sigma_2)$ $s_h(x) = \frac{f''(\xi_h(x))}{2}$ $\frac{n(x)}{2}(x-\sigma_1)$ $v'(x) = s_h(x) + s'_h(x)(x - h - \sigma_2)$ $v''(x) = 2s'_h(x) + s''_h(x)(x - h - \sigma_2)$

> $v(h) = -s_h(h)\sigma_2$ $v'(h) = s_h(h) - s'_h(h)\sigma_2$ $v''(h) = 2s'_h(h) - s''_h(h)\sigma_2$

Similar results for the other endpoint.

KORK ERKERK EI VOOR

 000000 nnnn

 000

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0) $\frac{00}{000}$

KORK ERKERK EI VOOR

Asymptotic analysis for Q_2^{F-A}

 $\tilde{c}_1 = c_1 h = \sigma_1(\omega)$ and $\tilde{c}_2 = c_2 h = h + \sigma_2(\omega)$ with $\sigma_{1,2}(\omega) \sim \omega^{-1}$

 $v(x) = s_h(x)(x - h - \sigma_2)$ $s_h(x) = \frac{f''(\xi_h(x))}{2}$ $\frac{n(x)}{2}(x-\sigma_1)$ $v'(x) = s_h(x) + s'_h(x)(x - h - \sigma_2)$ $v''(x) = 2s'_h(x) + s''_h(x)(x - h - \sigma_2)$. . .

> $v(h) = -s_h(h)\sigma_2$ $v'(h) = s_h(h) - s'_h(h)\sigma_2$ $v''(h) = 2s'_h(h) - s''_h(h)\sigma_2$

Similar results for the other endpoint.

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

KORKARYKERKE PORCH

Asymptotic analysis for Q_2^{F-A}

 $\tilde{c}_1 = c_1 h = \sigma_1(\omega)$ and $\tilde{c}_2 = c_2 h = h + \sigma_2(\omega)$ with $\sigma_{1,2}(\omega) \sim \omega^{-1}$

$$
v(x) = s_h(x)(x - h - \sigma_2) \qquad s_h(x) = \frac{f''(\xi_h(x))}{2}(x - \sigma_1)
$$

\n
$$
v'(x) = s_h(x) + s'_h(x)(x - h - \sigma_2)
$$

\n
$$
v''(x) = 2s'_h(x) + s''_h(x)(x - h - \sigma_2)
$$

\n
$$
\vdots
$$

$$
v(h) = -s_h(h)\sigma_2
$$

\n
$$
v'(h) = s_h(h) - s'_h(h)\sigma_2
$$

\n
$$
v''(h) = 2s'_h(h) - s''_h(h)\sigma_2
$$

\n
$$
\vdots
$$

Similar results for the other endpoint.

 000

Intertially fitted rules [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

ocodoon cooocoon $\frac{000}{000}$

Asymptotic analysis for Q_2^{F-A}

$$
Q_2^{F-A}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]
$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$
I[V] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

 $\sigma_2 = -\sigma_1$ with $\sigma_{1,2}(\omega) \sim \psi^{-1} \Longleftrightarrow Q_2^{F-A}[f] - I[f] \sim O(\psi^{-2})$

YO A GET YEAR ARY YOUR

 000

Intertially fitted rules [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

ocodoon cooocoon $\frac{000}{000}$

KORK ERKERK EI VOOR

Asymptotic analysis for Q_2^{F-A}

$$
Q_2^{F-A}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]
$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$
I[V] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

 $\sigma_2 = -\sigma_1$ with $\sigma_{1,2}(\omega) \sim \psi^{-1} \Longleftrightarrow Q_2^{F-A}[f] - I[f] \sim O(\psi^{-2})$

 000

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

oooooo $\frac{000}{000}$

KORK ERKERK EI VOOR

Asymptotic analysis for Q_2^{F-A}

$$
Q_2^{F-A}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]
$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$
I[V] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

 $\sigma_2 = -\sigma_1$ with $\sigma_{1,2}(\omega) \sim \psi^{-1} \Longleftrightarrow Q_2^{F-A}[f] - |[f] \sim O(\psi^{-2})$

 000

[Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

ooooooo $\frac{000}{000}$

Asymptotic analysis for Q_2^{F-A}

$$
Q_2^{F-A}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]
$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$
I[V] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

 $\sigma_2 = -\sigma_1$ with $\sigma_{1,2}(\omega) \sim \psi^{-1} \Longleftrightarrow \mathsf{Q}_2^{F-A}[f] - I[f] \sim \mathsf{O}(\psi^{-2})$

YO A GET YEAR ARY YOUR

 \bullet $\frac{80}{000}$

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

0000

$$
I[V] \sim s_h(h)e^{i\psi} \left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi} \left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0) \left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0) \left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

Yes : Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow \mathsf{Q}_2^{F-G}[f] - I[f] \sim \mathsf{O}(\psi^{-3}).$

$$
\mathsf{Q}_2^{\mathsf{F}\text{-}\mathsf{C}} = \frac{\mathsf{i} \mathsf{h}\left[\mathsf{f}(\mathsf{i} \mathsf{h}/\psi) - \mathsf{e}^{\mathsf{i} \psi}\mathsf{f}\left((\mathsf{i} + \psi)\mathsf{h}/\psi\right)\right]}{\psi}, \quad \psi = \omega \mathsf{h}
$$

KORK EXTERNE MORA

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

 \bullet $\overline{000}$

KORKAPA CERRE PROVIDIA

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$
I[V] \sim s_h(h)e^{i\psi} \left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi} \left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0) \left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0) \left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

Yes : Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow \mathsf{Q}_2^{F-G}[f] - I[f] \sim \mathsf{O}(\psi^{-3}).$

$$
\mathsf{Q}^{\mathsf{F}\text{-}\mathsf{C}}_2=\frac{\mathsf{i} \mathsf{h}\left[\mathsf{f}(\mathsf{i} \mathsf{h}/\psi) - \mathsf{e}^{\mathsf{i} \psi}\mathsf{f}\left((\mathsf{i}+\psi)\mathsf{h}/\psi\right)\right]}{\psi},\quad \psi=\omega \mathsf{h}
$$

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

 000

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$
I[V] \sim s_h(h)e^{i\psi} \left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi} \left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0) \left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0) \left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

Yes: Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow Q_2^{F-C}[f] - I[f] \sim O(\psi^{-3}).$

$$
\mathsf{Q}^{\mathsf{F}\text{-}\mathsf{C}}_2=\frac{\mathsf{i} \mathsf{h}\left[\mathsf{f}(\mathsf{i} \mathsf{h}/\psi) - \mathsf{e}^{\mathsf{i} \psi}\mathsf{f}\left((\mathsf{i}+\psi)\mathsf{h}/\psi\right)\right]}{\psi},\quad \psi=\omega \mathsf{h}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | K 9 Q @

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

KORKAPA CERRE PROVIDIA

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$
I[V] \sim s_h(h)e^{i\psi} \left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi} \left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0) \left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0) \left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

Yes : Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow Q_2^{F-C}[f] - |[f] \sim O(\psi^{-3}).$

$$
\mathsf{Q}_2^{\mathsf{F}\text{-}\mathsf{C}}=\frac{\mathsf{i} \mathsf{h}\left[\mathsf{f}(\mathsf{i} \mathsf{h}/\psi) - \mathsf{e}^{\mathsf{i} \psi}\mathsf{f}\left((\mathsf{i}+\psi)\mathsf{h}/\psi\right)\right]}{\psi},\quad \psi=\omega \mathsf{h}
$$

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

KORK EXTERNE MORA

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$
I[V] \sim s_h(h)e^{i\psi} \left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi} \left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots
$$

+ $s_0(0) \left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0) \left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$

Yes: Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow Q_2^{F-C}[f] - I[f] \sim O(\psi^{-3}).$

$$
\mathsf{Q}_2^{\mathsf{F}\text{-}\mathsf{C}} = \frac{\mathsf{i} \mathsf{h}\left[\mathsf{f}(\mathsf{i} \mathsf{h}/\psi) - \mathsf{e}^{\mathsf{i} \psi}\mathsf{f}\left((\mathsf{i} + \psi)\mathsf{h}/\psi\right)\right]}{\psi}, \quad \psi = \omega \mathsf{h}
$$

[Introduction](#page-1-0) [Asymptotic expansions](#page-3-0) [Exponentially fitted rules](#page-5-0) [Rules of Filon-type](#page-17-0) [Adaptive Filon rules](#page-26-0) [Conclusions](#page-37-0)

YO A GET YEAR ARY YOUR

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$
I[v] \sim s_h(h)e^{i\psi} \left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2} \right] + s'_h(h)e^{i\psi} \left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3} \right] + \dots
$$

+ $s_0(0) \left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2} \right] + s'_0(0) \left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3} \right] + \dots$
Yes : Suppose $\sigma_1 = \sigma_2 = i/\omega \implies Q_2^{F-G}[f] - I[f] \sim O(\psi^{-3}).$

$$
Q_2^{F\text{-}C} = \frac{\mathrm{i}h \left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi} f((\mathrm{i}+\psi)h/\psi) \right]}{\psi}, \quad \psi = \omega h
$$

 000000

 $\frac{0}{000}$

Illustration

Figure: The normalised errors in some $\nu = 2$ Filon-type schemes for $f(x) = e^x$, $h = 1/10$ and different values of ω .

> 4 ロ > 4 何 > 4 ヨ > 4 ヨ > 1 \equiv 2990

000000 nnnn

 000

oo \bullet

Error control for Q_2^{F-C}

$$
Q_2^{F\text{-}C}=\frac{\mathrm{i}h\left[f(\mathrm{i}h/\psi)-e^{\mathrm{i}\psi}f((\mathrm{i}+\psi)h/\psi)\right]}{\psi},\quad \psi=\omega h.
$$

Obtained by replacing f by interpolating polynomial \bar{f} in nodes $\sinh(\omega \textrm{ and } h+ \textrm{i}\,h/\omega$ (for large ψ : $\sim \psi^{-3})$

Similarly : Q_3^{F-C} by replacing f by interpolating polynomial \tilde{f} in nodes i h/ω , $h/2$ and $h+{\rm i}\, h/\omega$ (for large ψ : also $\sim \psi^{-3}$ but about 100 times more accurate)

$$
I[f] - I[\bar{f}] \approx I[\tilde{f}] - I[\bar{f}] = \frac{(1 - e^{i\psi})2h}{\psi^2(4 + \psi^2)} \times \left((2 - i\psi) f(\frac{i}{\omega}) - (2 + i\psi) f(h + \frac{i}{\omega}) + (2i\psi) f(\frac{h}{2}) \right)
$$

KORK ERKERK EI VOOR

000000 nnnn

 000

 \circ \bullet

KORK ERKERK EI VOOR

Error control for
$$
Q_2^{F-C}
$$

$$
Q_2^{F\text{-}C}=\frac{\text{i}h\left[f(\text{i}h/\psi)-e^{\text{i}\psi}f((\text{i}+\psi)h/\psi)\right]}{\psi},\quad \psi=\omega h.
$$

Obtained by replacing f by interpolating polynomial \bar{f} in nodes $i \, h/\omega$ and $h + i \, h/\omega$ (for large ψ : $\sim \psi^{-3}$) Similarly : Q_3^{F-C} by replacing f by interpolating polynomial \tilde{f} in nodes i h/ω , $h/2$ and $h+{\rm i}\, h/\omega$ (for large ψ : also $\sim \psi^{-3}$ but about 100 times more accurate)

$$
I[f] - I[\bar{f}] \approx I[\tilde{f}] - I[\bar{f}] = \frac{(1 - e^{i\psi})2h}{\psi^2(4 + \psi^2)} \times \left((2 - i\psi) f\left(\frac{i}{\omega}\right) - (2 + i\psi) f(h + \frac{i}{\omega}) + (2i\psi) f\left(\frac{h}{2}\right) \right)
$$

000000 nnnn

 000

 \circ \bullet

KORK ERKERK EI VOOR

Error control for
$$
Q_2^{F-C}
$$

$$
Q_2^{F\text{-}C}=\frac{\text{i}h\left[f(\text{i}h/\psi)-e^{\text{i}\psi}f((\text{i}+\psi)h/\psi)\right]}{\psi},\quad \psi=\omega h.
$$

Obtained by replacing f by interpolating polynomial \bar{f} in nodes $i \, h/\omega$ and $h + i \, h/\omega$ (for large ψ : $\sim \psi^{-3}$) Similarly : Q_3^{F-C} by replacing f by interpolating polynomial \tilde{f} in nodes i h/ω , $h/2$ and $h+{\rm i}\, h/\omega$ (for large ψ : also $\sim \psi^{-3}$ but about 100 times more accurate)

$$
I[f] - I[\bar{f}] \approx I[\tilde{f}] - I[\bar{f}] = \frac{(1 - e^{i\psi})2h}{\psi^2(4 + \psi^2)} \times \left((2 - i\psi) f(\frac{i}{\omega}) - (2 + i\psi) f(h + \frac{i}{\omega}) + (2i\psi) f(\frac{h}{2}) \right)
$$

 $\frac{00}{000}$

Illustration

Figure: Error estimations for the Q_2^{F-A} and Q_2^{F-C} method applied on the problem with $f(x) = e^x$, $h = 2$.

 000000

 $\frac{00}{00}$

Illustration

Figure: Error estimations for the Q_2^{F-A} and Q_2^{F-C} method applied on the problem with $f(x) = e^x$, $h = 2$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : $f(x)$ is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.
- Cheap error estimation is possible.

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : $f(x)$ is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

KORK ERKERK EI VOOR

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : $f(x)$ is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

KORK ERKERK EI VOOR

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : $f(x)$ is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

KORK ERKERK EI VOOR

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : $f(x)$ is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

KORK ERKERK EI VOOR

Conclusions

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : $f(x)$ is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

KORK ERKERK EI VOOR

• Cheap error estimation is possible.