	Introduction	Asymptotic expansions	00 000000	000	000000	Conclusions
--	--------------	-----------------------	--------------	-----	--------	-------------

Adaptive Filon methods for the computation of highly oscillatory integrals

Marnix Van Daele, Veerle Ledoux

Department of Applied Mathematics and Computer Science Ghent University

SciCADE 2011

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Introduction
 Asymptotic expansio

 ●○
 ○○

Exponentially fitted rule

ules of Filon-typ

Adaptive Filon rules

Conclusions

Oscillatory integrals

$$I[f] = \int_0^h f(x) e^{i\omega g(x)} dx$$

We focus on the particular case

$$I[f] = \int_0^h f(x) e^{\mathrm{i}\omega x} dx$$

If the integrand oscillates rapidly, and unless we use a huge number of function evaluations, the classical ν -point Gauss rule is useless.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

 Introduction
 Asymptotic expansio

 ●○
 ○○

Exponentially fitted rules

ules of Filon-typ

Adaptive Filon rules

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions

Oscillatory integrals

$$I[f] = \int_0^h f(x) e^{i\omega g(x)} dx$$

We focus on the particular case

$$I[f] = \int_0^h f(x) \mathrm{e}^{\mathrm{i}\omega x} \mathrm{d}x$$

If the integrand oscillates rapidly, and unless we use a huge number of function evaluations, the classical ν -point Gauss rule is useless.

 Introduction
 Asymptotic expansio

 ●○
 ○○

Exponentially fitted rule

ules of Filon-typ

Adaptive Filon rules

(日)

Conclusions

Oscillatory integrals

$$I[f] = \int_0^h f(x) e^{i\omega g(x)} dx$$

We focus on the particular case

$$I[f] = \int_0^h f(x) e^{i\omega x} dx$$

If the integrand oscillates rapidly, and unless we use a huge number of function evaluations, the classical ν -point Gauss rule is useless.

00

Gauss rule applied to oscillatory integrands Example : f(x) = exp(x) and h = 1/10

$$\int_0^h e^x e^{i\omega x} dx = \frac{-1 + e^{h(1+i\omega)}}{1 + i\omega}$$

The absolute error in Gauss-Legendre quadrature for different values of the characteristic frequency $\psi = \omega h$.

・ コット (雪) ・ (目) ・ (目)

Asymptotic expansions

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Asymptotic expansion

$$I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx$$

= $\frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) - \frac{1}{i\omega} I[f']$
= $\frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right)$
 $- \frac{1}{(i\omega)^{2}} \left(f'(b) e^{i\omega b} - f'(a) e^{i\omega a} \right) + \frac{1}{(i\omega)^{2}} I[f'']$

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]$$

ヘロト 人間 とくほ とくほとう æ.

Asymptotic expansions

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Asymptotic expansion

$$I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx$$

= $\frac{1}{i\omega} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{i\omega}I[f']$
= $\frac{1}{i\omega} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right)$
 $-\frac{1}{(i\omega)^{2}} \left(f'(b)e^{i\omega b} - f'(a)e^{i\omega a} \right) + \frac{1}{(i\omega)^{2}}I[f'']$

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]$$

ヘロト 人間 とくほ とくほとう æ. oduction Asymptotic expansions

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic expansion

$$I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx$$

= $\frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right) - \frac{1}{i\omega} I[f']$
= $\frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right)$
 $-\frac{1}{(i\omega)^{2}} \left(f'(b) e^{i\omega b} - f'(a) e^{i\omega a} \right) + \frac{1}{(i\omega)^{2}} I[f'']$

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]$$

$$= \frac{1}{i\omega} \left(I(b) e^{i\omega b} - I(a) e^{i\omega a} \right) - \frac{1}{i\omega} I[I]$$

$$= \frac{1}{i\omega} \left(f(b) e^{i\omega b} - f(a) e^{i\omega a} \right)$$

$$- \frac{1}{(i\omega)^2} \left(f'(b) e^{i\omega b} - f'(a) e^{i\omega a} \right) + \frac{1}{(i\omega)^2} I[f'']$$

 $I[f] = \int_{a}^{b} f(x)e^{i\omega x} dx$ $- \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega b} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(a)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(b)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f(b)e^{i\omega a} \right) - \frac{1}{2} \left(f(b)e^{i\omega a} - f($

n

Asymptotic expansions

Rules of Filon-type

Adaptive Filon rules

11 4/1

Asymptotic expansions

Exponentially fitted rules

tules of Filon-typ

Adaptive Filon rules

Conclusions

Asymptotic rules

$$I[f] = \int_a^b f(x) e^{i\omega x} dx$$

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a) \right]$$

$$\mathsf{Q}^{A}_{\mathsf{s}}[f] = -\sum_{m=0}^{\mathsf{s}-1} rac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a)
ight]$$

$$\mathsf{Q}^{\mathcal{A}}_{s}[f] - \mathit{I}[f] \sim \mathit{O}(\omega^{-s-1}) \hspace{0.1in} \omega
ightarrow +\infty$$

This asymptotic method is of asymptotic order s + 1. The asymptotic order gives us the rate at which the error decreases with increasing ω .

Asymptotic expansions

Exponentially fitted rules

tules of Filon-typ

Adaptive Filon rules

Conclusions

Asymptotic rules

$$I[f] = \int_a^b f(x) e^{i\omega x} dx$$

$$I[f] = -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]$$
$$Q_{s}^{A}[f] = -\sum_{m=0}^{s-1} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} f^{(m)}(b) - e^{i\omega a} f^{(m)}(a) \right]$$

$${\sf Q}^{{\sf A}}_{{\sf S}}[f]-{\it I}[f]\sim {\it O}(\omega^{-s-1})\quad\omega
ightarrow+\infty$$

This asymptotic method is of asymptotic order s + 1. The asymptotic order gives us the rate at which the error decreases with increasing ω .

Asymptotic expansions

Exponentially fitted rules

tules of Filon-typ

Adaptive Filon rules

Conclusions

Asymptotic rules

$$I[f] = \int_a^b f(x) e^{i\omega x} dx$$

$$egin{split} &I[f] = -\sum_{m=0}^{\infty} rac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a)
ight] \ &Q_s^{\mathcal{A}}[f] = -\sum_{m=0}^{s-1} rac{1}{(-\mathrm{i}\omega)^{m+1}} \left[e^{\mathrm{i}\omega b} f^{(m)}(b) - e^{\mathrm{i}\omega a} f^{(m)}(a)
ight] \end{split}$$

$$\mathsf{Q}^{\mathcal{A}}_{s}[f] - \mathit{I}[f] \sim \mathit{O}(\omega^{-s-1}) \hspace{0.4cm} \omega
ightarrow +\infty$$

This asymptotic method is of asymptotic order s + 1. The asymptotic order gives us the rate at which the error decreases with increasing ω .

Introduction	Asymptotic	expansions
00	00	

Rules of Filon-type

Adaptive Filon rule

Conclusions

Exponential fitting

M. VAN DAELE, G. VANDEN BERGHE AND H. VANDE VYVER, *Exponentially fitted quadrature rules of Gauss type for oscillatory integrands*, Appl. Numer. Math., 53 (2005), pp. 509–526.

How to compute

 $\int_{-1}^{1} F(t) dt$

whereby F(x) has an oscillatory behaviour with frequency μ ?

$$I[f] = \int_0^h f(x) e^{i\omega x} dx = \frac{h}{2} e^{i\mu} \int_{-1}^1 f(h(t+1)/2) e^{i\mu t} dt \quad \mu = \frac{\omega h}{2}$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ● ● ● ●

Introduction	Asymptotic	expansions
00	00	

Rules of Filon-type

Adaptive Filon rule

Conclusions

Exponential fitting

M. VAN DAELE, G. VANDEN BERGHE AND H. VANDE VYVER, *Exponentially fitted quadrature rules of Gauss type for oscillatory integrands*, Appl. Numer. Math., 53 (2005), pp. 509–526.

How to compute

 $\int_{-1}^{1} F(t) dt$

whereby F(x) has an oscillatory behaviour with frequency μ ?

$$I[f] = \int_0^h f(x) e^{i\omega x} dx = \frac{h}{2} e^{i\mu} \int_{-1}^1 f(h(t+1)/2) e^{i\mu t} dt \quad \mu = \frac{\omega h}{2}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Introduction	Asymptotic expansions
00	00

Exponentially fitted rules Rules of Filor

h-type Adaptive

Conclusions

Exponential fitting

$$\mathcal{L}[F; x; h; \mathbf{a}] = \int_{x-h}^{x+h} F(z) dz - h \sum_{k=1}^{\nu} w_k F(x + \hat{c}_k h), \quad \hat{c}_k \in [-1, 1]$$
(put $x = \mathbf{0}$ and $h = \mathbf{1}$ to obtain $\int_{-1}^{1} F(t) dt$)

 $\mathcal{L}[F; x; h; \mathbf{a}] = \mathbf{0}$ for a reference set of $K + \mathbf{2}(P + \mathbf{1}) + \mathbf{1} = \mathbf{2}\nu$ functions

$$1, t, t^2, ...t^K,$$

 $\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)$

In this talk we only consider the case K = -1, $P = \nu - 1$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction	Asymptotic expansions
00	00

Exponentially fitted rules Rules of Filon-type

Adaptive Filon rules

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Conclusions

Exponential fitting

$$\mathcal{L}[F; x; h; \mathbf{a}] = \int_{x-h}^{x+h} F(z) dz - h \sum_{k=1}^{\nu} w_k F(x + \hat{c}_k h), \quad \hat{c}_k \in [-1, 1]$$

(put
$$x = 0$$
 and $h = 1$ to obtain $\int_{-1}^{1} F(t) dt$)

 $\mathcal{L}[F; x; h; \mathbf{a}] = \mathbf{0}$ for a reference set of $K + \mathbf{2}(P + \mathbf{1}) + \mathbf{1} = \mathbf{2}\nu$ functions

$$1, t, t^2, ...t^K,$$

 $\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)$

In this talk we only consider the case K = -1, $P = \nu - 1$.

Introduction	Asymptotic expansions
00	00

Exponentially fitted rules Rules of Filon-type

Adaptive Filon rules

Conclusions

Exponential fitting

$$\mathcal{L}[F; x; h; \mathbf{a}] = \int_{x-h}^{x+h} F(z) dz - h \sum_{k=1}^{\nu} w_k F(x + \hat{c}_k h), \quad \hat{c}_k \in [-1, 1]$$

(put
$$x = 0$$
 and $h = 1$ to obtain $\int_{-1}^{1} F(t) dt$)

 $\mathcal{L}[F; x; h; \mathbf{a}] = \mathbf{0}$ for a reference set of $K + \mathbf{2}(P + \mathbf{1}) + \mathbf{1} = \mathbf{2}\nu$ functions

$$1, t, t^2, ...t^K,$$

 $\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)$

In this talk we only consider the case K = -1, $P = \nu - 1$.

▲口→ ▲圖→ ▲国→ ▲国→ 三回 めんの

Introduction	Asymptotic expansions
00	00

Rules of Filon-type

Adaptive Filon rules

1-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1)$$

 $\int_{-1}^{1} \exp(\pm i\mu x) dx - w_1 \exp(\pm i\hat{c}_1 \mu) = \mathbf{0}$

$$w_1 = 2\sin(\mu)/\mu$$
 $\hat{c}_1 = 0$

$$I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx$$

$$Q_1^{EF}[F] = \frac{h\sin(\mu)}{\mu}F(h/2) = \frac{e^{ih\omega} - 1}{i\omega}f(h/2) \quad \mu = \omega h/2$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Introduction	Asymptotic expansions
00	00

Rules of Filon-type

Adaptive Filon rules

1-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1)$$

 $\int_{-1}^{1} \exp(\pm i\mu x) dx - w_1 \exp(\pm i \hat{c}_1 \mu) = \mathbf{0}$

$$w_1 = 2\sin(\mu)/\mu$$
 $\hat{c}_1 = 0$

$$I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx$$

$$Q_1^{EF}[F] = \frac{h\sin(\mu)}{\mu}F(h/2) = \frac{e^{ih\omega} - 1}{i\omega}f(h/2) \quad \mu = \omega h/2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Asymptotic expansions
00	00

Rules of Filon-type

Adaptive Filon rules

1-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1)$$

 $\int_{-1}^{1} \exp(\pm i\mu x) dx - w_1 \exp(\pm i \hat{c}_1 \mu) = \mathbf{0}$

$$w_1 = 2\sin(\mu)/\mu$$
 $\hat{c}_1 = 0$

$$I[f] = \int_0^h f(x) \exp(i\omega x) dx = \int_0^h F(x) dx$$

$$Q_1^{EF}[F] = \frac{h\sin(\mu)}{\mu}F(h/2) = \frac{e^{ih\omega} - 1}{i\omega}f(h/2) \quad \mu = \omega h/2$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Introduction	Asymptotic expansions
00	00

Rules of Filon-type

Adaptive Filon rules

Conclusions

1-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1)$$

$$\int_{-1}^{1} \exp(\pm i\mu x) dx - w_1 \exp(\pm i \hat{c}_1 \mu) = \mathbf{0}$$

$$w_1 = 2\sin(\mu)/\mu$$
 $\hat{c}_1 = 0$

$$I[f] = \int_{0}^{h} f(x) \exp(i\omega x) dx = \int_{0}^{h} F(x) dx$$

$$\mathsf{Q}_{\mathbf{1}}^{\textit{EF}}[\textit{F}] = \frac{h\sin(\mu)}{\mu}\textit{F}(h/\mathbf{2}) = \frac{\mathrm{e}^{\mathrm{i}h\omega} - \mathbf{1}}{\mathrm{i}\omega}f(h/\mathbf{2}) \quad \mu = \omega h/\mathbf{2}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Introduction	Asymptotic expansions
00	00

Rules of Filon-ty

Adaptive Filon rules

・ロ・・ 日・・ ヨ・ ・ ヨ・ うくぐ

Conclusions

2-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1) + w_2 F(\hat{c}_2)$$

 $\begin{cases} \int_{-1}^{1} \exp(\pm i\mu x) dx - w_1 \exp(\pm i \ \hat{c}_1 \ \mu) - w_2 \exp(\pm i \ \hat{c}_2 \ \mu) = \mathbf{0} \\ \int_{-1}^{1} x \exp(\pm i\mu x) dx - w_1 \ \hat{c}_1 \exp(\pm i \ \hat{c}_1 \ \mu) - w_2 \ \hat{c}_2 \exp(\pm i \ \hat{c}_2 \ \mu) = \mathbf{0} \end{cases}$

Assuming $w_1 = w_2$ and $\hat{c}_1 = -\hat{c}_2$:

 $\iff \begin{cases} w_2 \mu \cos(\mu \hat{c}_2) - \sin(\mu) = \mathbf{0} \\ w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = \mathbf{0} \end{cases}$ $Q_2^{EF}[F] = \frac{h}{2} w_2 \left[F\left(\frac{h(1 + \hat{c}_2)}{2}\right) + F\left(\frac{h(1 - \hat{c}_2)}{2}\right) \right] \qquad \mu = \frac{\omega h}{2} \end{cases}$

Introduction	Asymptotic expansions
00	00

C

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node EF rule

$$\int_{-1}^{1} F(x) dx \approx w_1 F(\hat{c}_1) + w_2 F(\hat{c}_2)$$

 $\begin{cases} \int_{-1}^{1} \exp(\pm i\mu x) dx - w_1 \exp(\pm i \ \hat{c}_1 \ \mu) - w_2 \exp(\pm i \ \hat{c}_2 \ \mu) = \mathbf{0} \\ \int_{-1}^{1} x \exp(\pm i\mu x) dx - w_1 \ \hat{c}_1 \exp(\pm i \ \hat{c}_1 \ \mu) - w_2 \ \hat{c}_2 \exp(\pm i \ \hat{c}_2 \ \mu) = \mathbf{0} \end{cases}$

Assuming $w_1 = w_2$ and $\hat{c}_1 = -\hat{c}_2$:

$$\iff \begin{cases} w_2 \mu \cos(\mu \hat{c}_2) - \sin(\mu) = \mathbf{0} \\ w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = \mathbf{0} \end{cases}$$
$$w_2 \left[F\left(\frac{h(\mathbf{1} + \hat{c}_2)}{2}\right) + F\left(\frac{h(\mathbf{1} - \hat{c}_2)}{2}\right) \right] \qquad \mu = \frac{\omega h}{2} \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Introduction	Asymptotic expansions
00	00

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node EF rule

 $\begin{cases} w_2 \mu \cos(\mu \hat{c}_2) - \sin(\mu) = \mathbf{0} \\ w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = \mathbf{0} \end{cases}$ If $\cos(\mu \hat{c}_2) \neq \mathbf{0}$ then $w_2 = \sin \mu / (\mu \cos(\mu \hat{c}_2))$

 $m{G}(\hat{m{c}}_{2}):=(m{sin}\,\mu-\mu\,m{cos}\,\mu)\,m{cos}(\mu\hat{m{c}}_{2})-\mu\hat{m{c}}_{2}\,m{sin}\,\mu\,m{sin}(\mu\hat{m{c}}_{2})=m{0}$

Figure: $G(x_2)$ for $\mu = 5$, $\mu = 50$ and $\mu = 200$.

◆□ > ◆□ > ◆豆 > ◆豆 > □ ● ● ● ●

Introduction	Asymptotic expansions
00	00

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node EF rule

 $\begin{cases} w_2 \mu \cos(\mu \hat{c}_2) - \sin(\mu) = 0\\ w_2 \hat{c}_2 \mu^2 \sin(\mu \hat{c}_2) - \sin(\mu) + \mu \cos(\mu) = 0 \end{cases}$ If $\cos(\mu \hat{c}_2) \neq 0$ then $w_2 = \sin \mu / (\mu \cos(\mu \hat{c}_2))$ $G(\hat{c}_2) := (\sin \mu - \mu \cos \mu) \cos(\mu \hat{c}_2) - \mu \hat{c}_2 \sin \mu \sin(\mu \hat{c}_2) = 0$

Figure: $G(x_2)$ for $\mu = 5$, $\mu = 50$ and $\mu = 200$.

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Introduction	Asymptotic	expansions
00	00	

tules of Filon-type

Adaptive Filon rules

Conclusions

2-node EF rule

Figure: The $\hat{c}_2(\mu)$ and $w_2(\mu)$ curve for the EF method with $\nu = 2$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction	Asymptotic	expansions
00	00	

Rules of Filon-ty

Adaptive Filon rules

Conclusion

3-node EF rule

$$\hat{c}_1 = -\hat{c}_3$$
 $\hat{c}_2 = 0$ $w_1 = w_3$

Figure: The $\hat{c}_3(\mu)$, $w_1(\mu) = w_3(\mu)$ and $w_2(\mu)$ curves for the $\nu = 3$ EF rule

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

duction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
	00	00	000	000000	
		0000	000	000	

4-node EF rule

$$\hat{c}_1 = -\hat{c}_4$$
 $\hat{c}_2 = -\hat{c}_3$ $w_1 = w_4$ $w_2 = w_3$

Figure: Nodes and weights of the EF rule with $\nu = 4$ quadrature nodes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Rules of Filon-type

Adaptive Filon rule

Conclusions

Accuracy of EF rules

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$.

Thus for small μ : $O(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, *Truncation errors in exponential fitting for oscillatory problems*, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $O(\mu^{ar{
u}u})$ with $ar{
u} = \lfloor (
u - 1)/2
floor$

 $\nu = 1: O(\omega^{-1})$ $\nu = 2, 3: O(\omega^{-2})$ $\nu = 4, 5: O(\omega^{-3})$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $O(h^{2\nu+1})$

What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, *Truncation errors in exponential fitting for oscillatory problems*, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $O(\mu^{ar{
u}u})$ with $ar{
u} = \lfloor (
u - 1)/2
floor$

 $\nu = 1: O(\omega^{-1})$ $\nu = 2, 3: O(\omega^{-2})$ $\nu = 4, 5: O(\omega^{-3})$

▲□▶▲□▶▲□▶▲□▶ □ のQで

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $O(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, *Truncation errors in exponential fitting for oscillatory problems*, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $\mathsf{O}(\mu^{ar{
u}u})$ with $ar{
u} = \lfloor (
u-1)/2
floor$

 $\nu = 1: O(\omega^{-1})$ $\nu = 2, 3: O(\omega^{-2})$ $\nu = 4, 5: O(\omega^{-3})$

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $O(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, *Truncation errors in exponential fitting for oscillatory problems*, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu} = \lfloor (\nu-1)/2 \rfloor$

 $\nu = 1: O(\omega^{-1})$ $\nu = 2, 3: O(\omega^{-2})$ $\nu = 4, 5: O(\omega^{-3})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

All EF rules reduce to the classical ν -point Gauss(-Legendre) method in the limiting case $\mu = 0$. Thus for small μ : $O(h^{2\nu+1})$ What about the accuracy for larger values of $\mu = \omega h/2$?

J. P. COLEMAN AND L. GR. IXARU, *Truncation errors in exponential fitting for oscillatory problems*, SIAM. J. Numer. Anal., 44 (2006), pp. 1441–1465.

for large μ : $O(\mu^{\bar{\nu}-\nu})$ with $\bar{\nu} = \lfloor (\nu-1)/2 \rfloor$

$$u = 1: O(\omega^{-1})$$
 $u = 2, 3: O(\omega^{-2})$ $u = 4, 5: O(\omega^{-3})$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

$$\int_{-1}^{1} F(t) dt \approx \int_{-1}^{1} \bar{F}(t) dt$$

 $\bar{F}(t) \in \text{span}\{\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)\}$

$$I[f] = \int_{0}^{h} f(x)e^{j\omega x} dx = \frac{h}{2}e^{j\frac{\omega h}{2}} \int_{-1}^{1} f(\frac{h}{2}(t+1))e^{j\frac{\omega h}{2}t} dt$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^{2}, \dots, x^{\nu-1}\}$
 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $\nu(x) := \bar{f}(x) - f(x)$

(日)

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

Ρ

$$\int_{-1}^{1} F(t) dt \approx \int_{-1}^{1} \bar{F}(t) dt$$

 $\bar{F}(t) \in \operatorname{span}\{\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)\}$

$$I[f] = \int_0^h f(x)e^{i\omega x} dx = \frac{h}{2}e^{i\frac{\omega h}{2}}\int_{-1}^1 f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt$$

$$h^2 = \mu \text{ then } I[f] \approx I[\overline{f}] \text{ with } \overline{f}(x) \in \text{span}\{1, x, x^2, \dots, x^{\nu-1}\}$$

・ロット (雪) (日) (日) (日)

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

Proc

$$\int_{-1}^{1} F(t) dt \approx \int_{-1}^{1} \bar{F}(t) dt$$

 $\bar{F}(t) \in \operatorname{span}\{\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)\}$

$$I[f] = \int_{0}^{h} f(x)e^{i\omega x} dx = \frac{h}{2}e^{i\frac{\omega h}{2}} \int_{-1}^{1} f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^{2}, \dots, x^{\nu-1}\}$
 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $\nu(x) := \bar{f}(x) - f(x)$

・ロト・日本・日本・日本・日本

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

$$\int_{-1}^{1} F(t) dt \approx \int_{-1}^{1} \bar{F}(t) dt$$

 $\bar{F}(t) \in \operatorname{span}\{\exp(\pm i\mu t), t \exp(\pm i\mu t), t^2 \exp(\pm i\mu t), \dots, t^P \exp(\pm i\mu t)\}$

$$I[f] = \int_{0}^{h} f(x)e^{i\omega x} dx = \frac{h}{2}e^{i\frac{\omega h}{2}} \int_{-1}^{1} f(\frac{h}{2}(t+1))e^{i\frac{\omega h}{2}t} dt$$

If $\frac{\omega h}{2} = \mu$ then $I[f] \approx I[\bar{f}]$ with $\bar{f}(x) \in \text{span}\{1, x, x^{2}, \dots, x^{\nu-1}\}$
 $Q_{\nu}^{EF}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$ $\nu(x) := \bar{f}(x) - f(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

$$c_j = a + \lambda_j / \omega$$
 $c_{\nu-j+1} = b - \lambda_j / \omega$ $j = 1, \dots, \nu/2$

$$v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)$$

$$v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega)$$
 $s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)$

$$\mathbf{v}(\mathbf{b}) = \mathbf{s}(\mathbf{b}) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = \mathbf{O}(\omega^{-\nu/2})$$

$$v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

$$c_j = a + \lambda_j / \omega$$
 $c_{\nu-j+1} = b - \lambda_j / \omega$ $j = 1, \dots, \nu/2$

$$v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)$$

$$V(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega)$$
 $s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)$

$$\mathbf{v}(\mathbf{b}) = \mathbf{s}(\mathbf{b}) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = \mathbf{O}(\omega^{-\nu/2})$$

$$v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

$$c_j = a + \lambda_j / \omega$$
 $c_{\nu-j+1} = b - \lambda_j / \omega$ $j = 1, \dots, \nu/2$

$$v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)$$

$$V(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega)$$
 $s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)$

$$\mathbf{v}(\mathbf{b}) = \mathbf{s}(\mathbf{b}) \prod_{i=1}^{\nu/2} (\lambda_i / \omega) = \mathbf{O}(\omega^{-\nu/2})$$

$$v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

$$c_j = a + \lambda_j / \omega$$
 $c_{\nu-j+1} = b - \lambda_j / \omega$ $j = 1, \dots, \nu/2$

$$v(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{i=1}^{\nu} (x - c_i)$$

$$v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega)$$
 $s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)$

$$\mathbf{v}(\mathbf{b}) = \mathbf{s}(\mathbf{b}) \prod_{i=1}^{\nu/2} (\lambda_i / \omega) = \mathbf{O}(\omega^{-\nu/2})$$

$$v'(b) = s(b)\omega^{-\nu/2+1} \sum_{k=1}^{\nu/2} \prod_{i \neq k} \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 0000	000	000000 00 000	

Suppose ν is even and $a < c_1 < c_2 < \ldots < c_{\nu} < b$

$$c_j = a + \lambda_j / \omega$$
 $c_{\nu-j+1} = b - \lambda_j / \omega$ $j = 1, \dots, \nu/2$

$$v(x) = rac{f^{(
u)}(\xi(x))}{
u!} \prod_{i=1}^{
u} (x - c_i)$$

$$v(x) = s(x) \prod_{i=1}^{\nu/2} (x - b + \lambda_i/\omega)$$
 $s(x) = \frac{f^{(\nu)}(\xi(x))}{\nu!} \prod_{j=1}^{\nu/2} (x - a - \lambda_j/\omega)$

$$v(b) = s(b) \prod_{i=1}^{\nu/2} (\lambda_i/\omega) = O(\omega^{-\nu/2})$$
$$V(b) = s(b) \omega^{-\nu/2+1} \sum_{i=1}^{\nu/2} \prod \lambda_i + O(\omega^{-\nu/2}) = O(\omega^{-\nu/2+1})$$

10

 $k=1 i \neq k$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへの

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), n = 0, 1, ..., \nu/2 - 1$

 $v^{(n)}(a) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

 $\begin{aligned} Q_{\nu}^{EF}[f] - I[f] &= I[\nu] \\ &= -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} \nu^{(m)}(b) - e^{i\omega a} \nu^{(m)}(a) \right] \\ &= -\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1}) \\ &= O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu}) & \text{ for all } \nu \in \mathbb{R}$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	

 $v(b) = O(\omega^{-\nu/2}) \qquad v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

 $v^{(n)}(a) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

$$\begin{aligned} Q_{\nu}^{EF}[f] - I[f] &= I[\nu] \\ &= -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} v^{(m)}(b) - e^{i\omega a} v^{(m)}(a) \right] \\ &= -\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1}) \\ &= O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu}) \end{aligned}$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		0000		000	

 $v(b) = O(\omega^{-\nu/2})$ $v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

$$v^{(n)}(a) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$$

$$\begin{aligned} Q_{\nu}^{EF}[f] - I[f] &= I[\nu] \\ &= -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} v^{(m)}(b) - e^{i\omega a} v^{(m)}(a) \right] \\ &= -\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1}) \\ &= O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu}) \end{aligned}$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 000●	000	000000 00 000	

 $v(b) = O(\omega^{-\nu/2}) \qquad v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

$$v^{(n)}(a) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$$

$$\begin{aligned} Q_{\nu}^{EF}[f] - I[f] &= I[\nu] \\ &= -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} \nu^{(m)}(b) - e^{i\omega a} \nu^{(m)}(a) \right] \\ &= -\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1}) \\ &= O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu}) \end{aligned}$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 000●	000	000000 00 000	

 $v(b) = O(\omega^{-\nu/2}) \qquad v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$ $v^{(n)}(c) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

$$v^{(n)}(a) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$$

$$\begin{aligned} Q_{\nu}^{EF}[f] - I[f] &= I[\nu] \\ &= -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} \nu^{(m)}(b) - e^{i\omega a} \nu^{(m)}(a) \right] \\ &= -\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1}) \\ &= O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu}) \end{aligned}$$

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00 000000 000●	000	000000 00 000	

 $v(b) = O(\omega^{-\nu/2}) \qquad v'(b) = O(\omega^{-\nu/2+1})$ $v^{(n)}(b) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$ $v^{(n)}(a) = O(\omega^{-\nu/2+n}), \ n = 0, 1, \dots, \nu/2 - 1$

$$\begin{aligned} Q_{\nu}^{EF}[f] - I[f] &= I[\nu] \\ &= -\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega b} \nu^{(m)}(b) - e^{i\omega a} \nu^{(m)}(a) \right] \\ &= -\sum_{m=0}^{\nu/2-1} \frac{1}{(-i\omega)^{m+1}} O(\omega^{-\nu/2+m}) + O(\omega^{-\nu/2-1}) \\ &= O(\omega^{-\nu/2-1}) = O(\omega^{\lfloor (\nu-1)/2 \rfloor - \nu}) \end{aligned}$$

Filon-type

L. N. G FILON, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh, 49 (1928), pp. 38–47.

Interpolate only the function f(x) at $c_1 h, \ldots, c_{\nu} h$ by a polynomial $\overline{f}(x)$

$$I[f] \approx Q_{\nu}^{F}[f] = \int_{0}^{h} \overline{f}(x) e^{i\omega x} dx = h \sum_{l=1}^{\nu} b_{l}(ih\omega) f(c_{l}h)$$

$$b_l(\mathrm{i}\hbar\omega) = \int_0^1 \ell_l(x) e^{\mathrm{i}\hbar\omega x} dx$$

(日)

 ℓ_I is the *I*th cardinal polynomial of Lagrangian interpolation.

Filon-type

L. N. G FILON, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh, 49 (1928), pp. 38–47.

Interpolate only the function f(x) at $c_1 h, \ldots, c_{\nu} h$ by a polynomial $\overline{f}(x)$

$$\begin{split} I[f] &\approx Q_{\nu}^{F}[f] = \int_{0}^{h} \bar{f}(x) e^{i\omega x} dx = h \sum_{l=1}^{\nu} b_{l}(ih\omega) f(c_{l}h) \\ &b_{l}(ih\omega) = \int_{0}^{1} \ell_{l}(x) e^{ih\omega x} dx \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

 ℓ_I is the *I*th cardinal polynomial of Lagrangian interpolation.

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

1-node Filon-type rule

$$I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx$$
$$Q_1^F[f] = \frac{\exp(ih\omega) - 1}{i\omega} f(c_1 h)$$

$$Q_1^{EF}[F] = \frac{e^{ih\omega} - 1}{i\omega} f(h/2)$$
$$Q_1^F[f] = Q_1^{EF}[F] \text{ iff } c_1 = \frac{1}{2}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Introduction	Asymptotic expansions
00	00

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

1-node Filon-type rule

$$I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx$$
$$Q_1^F[f] = \frac{\exp(ih\omega) - 1}{i\omega} f(c_1 h)$$

$$Q_1^{EF}[F] = \frac{e^{ih\omega} - 1}{i\omega} f(h/2)$$
$$Q_1^F[f] = Q_1^{EF}[F] \text{ iff } c_1 = \frac{1}{2}$$

・ロト・日本・日本・日本・日本・日本

troduction Asymptotic expansions 0 00 Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

Conclusions

1-node Filon-type rule

$$I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx$$
$$Q_1^F[f] = \frac{\exp(ih\omega) - 1}{i\omega} f(c_1 h)$$

$$Q_1^{EF}[F] = \frac{e^{ih\omega} - 1}{i\omega} f(h/2)$$
$$Q_1^F[f] = Q_1^{EF}[F] \text{ iff } c_1 = \frac{1}{2}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted ru

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node Filon-type rule

$$I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx$$

If f is interpolated at $c_1 h$ and $c_2 h$, then

$$Q_{2}^{F}[f] = h\left[\left(\frac{i\left((e^{i\psi}-1)c_{2}-e^{i\psi}\right)}{(c_{1}-c_{2})\psi}+\frac{e^{i\psi}-1}{(c_{1}-c_{2})\psi^{2}}\right)f(c_{1}h)\right.\\\left.+\left(\frac{i\left((e^{i\psi}-1)c_{1}-e^{i\psi}\right)}{(c_{2}-c_{1})\psi}+\frac{e^{i\psi}-1}{(c_{2}-c_{1})\psi^{2}}\right)f(c_{2}h)\right]$$

 $Q_2^F[f] = Q_2^{EF}[F]$ iff the same nodes are used

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted ru

Rules of Filon-type

Adaptive Filon rules

Conclusions

2-node Filon-type rule

$$I[f] = \int_0^h F(x) dx = \int_0^h f(x) \exp(i\omega x) dx$$

If f is interpolated at $c_1 h$ and $c_2 h$, then

$$Q_{2}^{F}[f] = h\left[\left(\frac{i\left((e^{i\psi}-1)c_{2}-e^{i\psi}\right)}{(c_{1}-c_{2})\psi}+\frac{e^{i\psi}-1}{(c_{1}-c_{2})\psi^{2}}\right)f(c_{1}h)\right.\\\left.+\left(\frac{i\left((e^{i\psi}-1)c_{1}-e^{i\psi}\right)}{(c_{2}-c_{1})\psi}+\frac{e^{i\psi}-1}{(c_{2}-c_{1})\psi^{2}}\right)f(c_{2}h)\right]$$

 $Q_2^F[f] = Q_2^{EF}[F]$ iff the same nodes are used

・ロト・日本・日本・日本・日本・日本

Conclusions

Accuracy of Filon-type rules

A. ISERLES, On the numerical quadrature of highly-oscillating integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365–391.

For small ω , a Filon-type quadrature method has an order as if $\omega = 0$.

Legendre nodes : order 2 ν Lobatto nodes : order 2 ν – 2 For large ω :

$$egin{aligned} {\sf Q}^F_{
u}[f] - {\it I}[f] &\sim egin{cases} {\sf O}(\omega^{-1}) & {\it c}_1 > 0 ext{ or } {\it c}_
u < 1 \ {\sf O}(\omega^{-2}) & {\it c}_1 = 0, {\it c}_
u = 1 \end{aligned}$$

・ロト・西ト・ヨト・日・ うへぐ

Accuracy of Filon-type rules

A. ISERLES, On the numerical quadrature of highly-oscillating integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365–391.

For small ω , a Filon-type quadrature method has an order as if $\omega = 0$.

Legendre nodes : order 2 ν Lobatto nodes : order 2 ν – 2 For large ω :

$$egin{aligned} {\sf Q}^F_
u[f] - I[f] &\sim egin{cases} {\sf O}(\omega^{-1}) & c_1 > 0 ext{ or } c_
u < 1 \ {\sf O}(\omega^{-2}) & c_1 = 0, c_
u = 1 \end{aligned}$$

Rules of Filon-type

Adaptive Filon rule

Conclusions

Accuracy of Filon-type rules

A. ISERLES, On the numerical quadrature of highly-oscillating integrals. I. Fourier transforms, IMA J. Numer. Anal., 24 (2004), pp. 365–391.

For small ω , a Filon-type quadrature method has an order as if $\omega = 0$.

Legendre nodes : order 2 ν Lobatto nodes : order 2 ν – 2 For large ω :

$$egin{aligned} \mathsf{Q}^{F}_{
u}[f] - \mathit{I}[f] &\sim egin{cases} \mathsf{O}(\omega^{-1}) & \mathit{c}_{1} > 0 ext{ or } \mathit{c}_{
u} < 1 \ \mathsf{O}(\omega^{-2}) & \mathit{c}_{1} = \mathbf{0}, \mathit{c}_{
u} = \mathbf{1} \end{aligned}$$

Introduction Asymptotic expansions Exponentially fitted rul

Rules of Filon-type

Adaptive Filon rule

Conclusions

Accuracy of Filon-type rules

$$egin{aligned} {\mathsf{Q}}^{{\mathsf{F}}}_{
u}[f] - {{\mathit{I}}[f]} &\sim egin{cases} {\mathsf{O}}(\omega^{-1}) & {\mathit{c}}_1 > 0 ext{ or } {\mathit{c}}_{
u} < 1 \ {\mathsf{O}}(\omega^{-2}) & {\mathit{c}}_1 = 0, {\mathit{c}}_{
u} = 1 \end{aligned}$$

$$Q_{\nu}^{F}[f] - I[f] = I[\bar{f}] - I[f] = I[v]$$

= $-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]$

If $(c_1, c_\nu) = (0, 1)$ then v(h) = v(0) = 0 $\implies Q_\nu^F[f] - I[f] = O(\omega^{-2}).$

◆□ > ◆□ > ◆豆 > ◆豆 > □ ● ● ● ●

Introduction Asymptotic expansions Exponentially fitted rules R

Rules of Filon-type

Adaptive Filon rule

Conclusions

Accuracy of Filon-type rules

$$egin{aligned} \mathsf{Q}^{m{F}}_{
u}[f] - \mathit{I}[f] &\sim egin{cases} \mathsf{O}(\omega^{-1}) & c_1 > 0 ext{ or } c_
u < 1 \ \mathsf{O}(\omega^{-2}) & c_1 = 0, c_
u = 1 \end{aligned}$$

$$Q_{\nu}^{F}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$$

= $-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} \nu^{(m)}(h) - \nu^{(m)}(0) \right]$

If $(c_1, c_\nu) = (0, 1)$ then v(h) = v(0) = $\implies Q_{\nu}^F[f] - I[f] = O(\omega^{-2}).$

◆□ > ◆□ > ◆豆 > ◆豆 > □ ● ● ● ●

Introduction Asymptotic expansions Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions

Accuracy of Filon-type rules

$$egin{aligned} Q^F_{
u}[f] - I[f] &\sim egin{cases} O(\omega^{-1}) & c_1 > 0 ext{ or } c_
u < 1 \ O(\omega^{-2}) & c_1 = 0, c_
u = 1 \end{aligned}$$

$$Q_{\nu}^{F}[f] - I[f] = I[\bar{f}] - I[f] = I[\nu]$$

= $-\sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]$

If $(c_1, c_\nu) = (0, 1)$ then v(h) = v(0) = 0 $\implies Q_\nu^F[f] - I[f] = O(\omega^{-2}).$ oduction Asymptotic expansions Exponentia

kponentially fitted rules
0
00000
0000

Rules of Filon-type ○○● ○○○

How to improve the accuracy of Filon-rules ?

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

oduction Asymptotic expansions Exponential

nentially fitted rules

Rules of Filon-type

Conclusions

How to improve the accuracy of Filon-rules ?

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

 $\mathsf{Q}_{\nu}^{\mathsf{F}}[f] - I[f] = O(\omega^{-p-1})$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

 by using Hermite interpolation : asymptotic order p + 1 can be reached where p is the number of derivatives at the endpoints:

 $\overline{f}^{(l)}(h) = f^{(l)}(h), \overline{f}^{(l)}(0) = f^{(l)}(0), l = 0, \dots, p-1$

- by using adaptive Filon-type methods : allowing the interpolation points to depend on ω (is discussed later)
- by using nodes in the complex plane (=method of steepest descent)

Introduction	Asymptotic	expansions
00	00	

Exponentially	fitted	rules
00		
000000		
0000		

Rules of Filon-type

Adaptive Filon rules

< □ > < 同 > < 回 > < 回

Conclusions

nac

Method of steepest descent

D. HUYBRECHS AND S. VANDEWALLE, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal., 44 (2007) pp 1026–1048.

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type
00	00	00	000
		000000	000

Adaptive Filon rule

Conclusions

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x} dx$$

$$= e^{i\omega a} \int_{0}^{\infty} f(a+ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b+ip)e^{-\omega p} dp$$

$$= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\nu-1})$.

Introduction	Asymptotic expansions	Exponentially fitted rules
00	00	00
		000000

Rules of Filon-type

Adaptive Filon rule

Conclusions

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x} dx$$

$$= e^{i\omega a} \int_{0}^{\infty} f(a+ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b+ip)e^{-\omega p} dp$$

$$= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\nu-1})$.

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	A
00	00	00	000	0
		000000	000	0

Adaptive Filon rules

Conclusions

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x} dx$$

$$= e^{i\omega a} \int_{0}^{\infty} f(a+ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b+ip)e^{-\omega p} dp$$

$$= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\nu-1})$.

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adapt
00	00	00	000	0000
		000000	000	00

Adaptive Filon rules

Conclusions

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x} dx$$

$$= e^{i\omega a} \int_{0}^{\infty} f(a+ip)e^{-\omega p} dp - e^{i\omega b} \int_{0}^{\infty} f(b+ip)e^{-\omega p} dp$$

$$= \frac{e^{i\omega a}}{\omega} \int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q} dq - \frac{e^{i\omega b}}{\omega} \int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q} dq$$

This leads to the numerical evaluation of the two resulting integrals with classical Gauss-Laguerre quadrature.

High asymptotic order is obtained : using ν points for each integral, the error behaves as $O(\omega^{-2\nu-1})$.

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	
		0000		000	

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x}dx$$

= $\frac{e^{i\omega a}}{\omega}\int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q}dq - \frac{e^{i\omega b}}{\omega}\int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q}dq$

One ends up evaluating f at the points

$$a+\mathrm{i}rac{\mathbf{x}_{nj}}{\omega}, \ \mathrm{and} \ b+\mathrm{i}rac{\mathbf{x}_{nj}}{\omega}, \ j=1,...,n,$$

where x_{nj} are the *n* roots of the Laguerre polynomial of degree *n*.

This approach is equivalent to using a Filon rule with the same interpolation points.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	
		0000		000	

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x}dx$$

= $\frac{e^{i\omega a}}{\omega}\int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q}dq - \frac{e^{i\omega b}}{\omega}\int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q}dq$

One ends up evaluating f at the points

$$a + i \frac{x_{nj}}{\omega}$$
, and $b + i \frac{x_{nj}}{\omega}$, $j = 1, ..., n$,

where x_{nj} are the *n* roots of the Laguerre polynomial of degree *n*.

This approach is equivalent to using a Filon rule with the same interpolation points.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	
		0000		000	

Method of steepest descent

$$\int_{a}^{b} f(x)e^{i\omega x}dx$$

= $\frac{e^{i\omega a}}{\omega}\int_{0}^{\infty} f(a+i\frac{q}{\omega})e^{-q}dq - \frac{e^{i\omega b}}{\omega}\int_{0}^{\infty} f(b+i\frac{q}{\omega})e^{-q}dq$

One ends up evaluating f at the points

$$a + i \frac{x_{nj}}{\omega}$$
, and $b + i \frac{x_{nj}}{\omega}$, $j = 1, ..., n_{j}$

where x_{nj} are the *n* roots of the Laguerre polynomial of degree *n*.

This approach is equivalent to using a Filon rule with the same interpolation points.

(日) (日) (日) (日) (日) (日) (日)

Rules of Filon-type

Adaptive Filon rules

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Conclusions

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
 - + accurate for small ω *h* since the method reduces to Gauss-Legendre quadrature
 - + good results for large ω *h* since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
 - but : difficult to determine the nodes and weights for a given ωh (iteration needed and ill-conditioned)
- Filon
 - + any set of nodes can be used
 - there is no optimal set of nodes for all ω h
 - most accurate for small ω *h* if the method is built on Legendre nodes
 - most accurate for large ω *h* if the endpoints are included in the set of nodes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Conclusions

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
 - + accurate for small ω *h* since the method reduces to Gauss-Legendre quadrature
 - + good results for large ω *h* since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
 - but : difficult to determine the nodes and weights for a given ωh (iteration needed and ill-conditioned)
- Filon
 - + any set of nodes can be used
 - there is no optimal set of nodes for all ω h
 - most accurate for small ω *h* if the method is built on Legendre nodes
 - most accurate for large ω *h* if the endpoints are included in the set of nodes

Rules of Filon-type

Adaptive Filon rules

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Conclusions

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
 - + accurate for small ω *h* since the method reduces to Gauss-Legendre quadrature
 - + good results for large ω *h* since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
 - but : difficult to determine the nodes and weights for a given ωh (iteration needed and ill-conditioned)

• Filon

- + any set of nodes can be used
 - there is no optimal set of nodes for all ω h
 - most accurate for small ω *h* if the method is built on Legendre nodes
 - most accurate for large ω *h* if the endpoints are included in the set of nodes

Rules of Filon-type

Adaptive Filon rules

(日)

Conclusions

Adaptive Filon-type rules

Idea : combine best properties of EF and Filon quadrature

- EF
 - + accurate for small ω *h* since the method reduces to Gauss-Legendre quadrature
 - + good results for large ωh since the nodes tend to the endpoints (at a rate proportional to ω^{-1})
 - but : difficult to determine the nodes and weights for a given ωh (iteration needed and ill-conditioned)
- Filon
 - + any set of nodes can be used
 - there is no optimal set of nodes for all ωh
 - most accurate for small ω *h* if the method is built on Legendre nodes
 - most accurate for large ω *h* if the endpoints are included in the set of nodes

Introduction	Asymptotic	expansion
00	00	

xponentially fitted rul o ooooo Rules of Filon-type

Adaptive Filon rules

(日)

Conclusions

Adaptive Filon-type rules

Idea : create quadrature rules with ω -dependent nodes that

- reduce to Legendre-nodes for small ω
- reduce to Lobatto-nodes for large $\boldsymbol{\omega}$
- for given value of ω are easy to compute

To do so, we introduce S-shaped functions.

Introduction	Asymptotic	expansion
00	00	

xponentially fitted rul o ooooo Rules of Filon-type

Adaptive Filon rules

(日)

Conclusions

Adaptive Filon-type rules

Idea : create quadrature rules with ω -dependent nodes that

- reduce to Legendre-nodes for small ω
- reduce to Lobatto-nodes for large $\boldsymbol{\omega}$
- for given value of ω are easy to compute

To do so, we introduce S-shaped functions.

Exponentially fitted

Rules of Filon-type

Adaptive Filon rules

Conclusions

Adaptive Filon-type methods

$$S(\psi; r; n) = rac{1 - rac{\psi^n - r^n}{1 + |\psi^n - r^n|}}{1 + rac{r^n}{1 + r^n}}$$

Figure: S(x, r, 1) and S(x, r, 2) (dashed) for r = 5 in [0, 20]

◆ロ▶ ◆母▶ ◆ヨ▶ ◆ヨ ◆ ④ ◆ ○

Rules of Filon-type

Adaptive Filon rules 000000

Adaptive Filon-type methods • $\nu = 2$: $c_1(\psi) = \frac{3 - \sqrt{3}}{6} S(\psi; 2\pi; 1); c_2(\psi) = 1 - c_1(\psi)$

•
$$\nu = 3$$
: $c_1(\psi) = \frac{10 - \sqrt{15}}{5}S(\psi; 3\pi; 1); c_3(\psi) = 1 - c_1(\psi)$

Figure: $c_2(\psi)$ of the adaptive Filon method Q_2^{F-A} and $c_3(\psi)$ of the adaptive Filon method Q_2^{F-A} . (日) (日) (日) (日) (日) (日) (日)

xponentially fitted ru o ooooo Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic analysis for Q_2^{F-A}

 $\tilde{c}_1 = c_1 h = \sigma_1(\omega)$ and $\tilde{c}_2 = c_2 h = h + \sigma_2(\omega)$ with $\sigma_{1,2}(\omega) \sim \omega^{-1}$

 $\begin{array}{lll} v(x) &=& s_h(x)(x-h-\sigma_2) & s_h(x) = \frac{f''(\xi_h(x))}{2}(x-\sigma_1) \\ v'(x) &=& s_h(x) + s'_h(x)(x-h-\sigma_2) \\ v''(x) &=& 2s'_h(x) + s''_h(x)(x-h-\sigma_2) \\ &\vdots \end{array}$

 $v(h) = -s_h(h)\sigma_2$ $v'(h) = s_h(h) - s'_h(h)\sigma_2$ $v''(h) = 2s'_h(h) - s''_h(h)\sigma_2$

Similar results for the other endpoint.

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Introduction	Asymptotic	expansions
00	00	

Adaptive Filon rules 000000

Asymptotic analysis for Q_2^{F-A}

 $\tilde{c}_1 = c_1 h = \sigma_1(\omega)$ and $\tilde{c}_2 = c_2 h = h + \sigma_2(\omega)$ with $\sigma_{1,2}(\omega) \sim \omega^{-1}$

$$\begin{array}{rcl} v(x) &=& s_h(x)(x-h-\sigma_2) & s_h(x) = \frac{f''(\xi_h(x))}{2}(x-\sigma_1) \\ v'(x) &=& s_h(x) + s'_h(x)(x-h-\sigma_2) \\ v''(x) &=& 2s'_h(x) + s''_h(x)(x-h-\sigma_2) \\ &\vdots \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Asymptotic	expansions
00	00	

Exponentially fitted rules

Rules of Filon-type

Adaptive Filon rules

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Conclusions

Asymptotic analysis for Q_2^{F-A}

$$\tilde{c}_1 = c_1 h = \sigma_1(\omega)$$
 and $\tilde{c}_2 = c_2 h = h + \sigma_2(\omega)$ with $\sigma_{1,2}(\omega) \sim \omega^{-1}$

$$\begin{aligned} \mathbf{v}(\mathbf{x}) &= s_h(\mathbf{x})(\mathbf{x} - \mathbf{h} - \sigma_2) & s_h(\mathbf{x}) = \frac{f''(\xi_h(\mathbf{x}))}{2}(\mathbf{x} - \sigma_1) \\ \mathbf{v}'(\mathbf{x}) &= s_h(\mathbf{x}) + s'_h(\mathbf{x})(\mathbf{x} - \mathbf{h} - \sigma_2) \\ \mathbf{v}''(\mathbf{x}) &= 2s'_h(\mathbf{x}) + s''_h(\mathbf{x})(\mathbf{x} - \mathbf{h} - \sigma_2) \\ &\vdots \end{aligned}$$

$$v(h) = -s_h(h)\sigma_2$$

 $v'(h) = s_h(h) - s'_h(h)\sigma_2$
 $v''(h) = 2s'_h(h) - s''_h(h)\sigma_2$
 \vdots

Similar results for the other endpoint.

Exponentially fitted ru

Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic analysis for Q_2^{F-A}

$$Q_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

 $\sigma_2 = -\sigma_1 \text{ with } \sigma_{1,2}(\omega) \sim \psi^{-1} \iff \mathsf{Q}_2^{F-A}[f] - I[f] \sim \mathsf{O}(\psi^{-2})$

Exponentially fitted ru Do Doocoo Dooco Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic analysis for Q_2^{F-A}

$$Q_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

 $\sigma_2 = -\sigma_1 \text{ with } \sigma_{1,2}(\omega) \sim \psi^{-1} \iff \mathsf{Q}_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] \sim \mathsf{O}(\psi^{-2})$

Exponentially fitted ru Do Doocoo Dooco Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic analysis for Q_2^{F-A}

$$Q_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

 $\sigma_2 = -\sigma_1 \text{ with } \sigma_{1,2}(\omega) \sim \psi^{-1} \iff Q_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] \sim O(\psi^{-2})$

Exponentially fitted ru

Rules of Filon-type

Adaptive Filon rules

Conclusions

Asymptotic analysis for Q_2^{F-A}

$$Q_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] = I[v] \sim \sum_{m=0}^{\infty} \frac{1}{(-i\omega)^{m+1}} \left[e^{i\omega h} v^{(m)}(h) - v^{(m)}(0) \right]$$

Reordering for $s_h(h)$, $s'_h(h)$, ...

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

 $\sigma_2 = -\sigma_1 \text{ with } \sigma_{1,2}(\omega) \sim \psi^{-1} \iff \mathsf{Q}_2^{\mathcal{F}-\mathcal{A}}[f] - I[f] \sim \mathsf{O}(\psi^{-2})$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Introduction Asymp 00 00

mptotic expansions

Exponentially fitted

Rules of Filon-type

Adaptive Filon rules

▲□▶▲□▶▲□▶▲□▶ □ のQで

Conclusions

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

Yes : Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow Q_2^{F-C}[f] - I[f] \sim O(\psi^{-3}).$

$$\mathsf{Q}_2^{ extsf{F-C}} = rac{\mathrm{i}h\left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi}f\left((i+\psi)h/\psi
ight)
ight]}{\psi}, \hspace{1em} \psi = \omega h$$

Rules of Filon-type

Adaptive Filon rules 0000

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

$$\mathsf{Q}_2^{ extsf{F-C}} = rac{\mathrm{i}h\left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi}f\left((i+\psi)h/\psi
ight)
ight]}{\psi}, \hspace{1em} \psi = \omega h$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

otic expansions Ex

xponentially fitted i

Rules of Filon-type

Adaptive Filon rules

Conclusions

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

Yes : Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow Q_2^{F-C}[f] - I[f] \sim O(\psi^{-3}).$

$$\mathsf{Q}_2^{ extsf{F-C}} = rac{\mathrm{i}h\left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi}f\left((i+\psi)h/\psi
ight)
ight]}{\psi}, \hspace{1em} \psi = \omega h$$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$I[v] \sim s_h(h)e^{i\psi}\left[\frac{\sigma_2}{i\omega} - \frac{1}{\omega^2}\right] + s'_h(h)e^{i\psi}\left[\frac{\sigma_2}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots + s_0(0)\left[\frac{\sigma_1}{i\omega} - \frac{1}{\omega^2}\right] + s'_0(0)\left[\frac{\sigma_1}{\omega^2} + \frac{2}{i\omega^3}\right] + \dots$$

Yes : Suppose $\sigma_1 = \sigma_2 = i/\omega \Longrightarrow Q_2^{F-C}[f] - I[f] \sim O(\psi^{-3})$.

Adaptive Filon rules 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$\begin{split} I[v] &\sim s_h(h)e^{\mathrm{i}\psi}\left[\frac{\sigma_2}{\mathrm{i}\omega}-\frac{1}{\omega^2}\right]+s'_h(h)e^{\mathrm{i}\psi}\left[\frac{\sigma_2}{\omega^2}+\frac{2}{\mathrm{i}\omega^3}\right]+\dots\\ &+ s_0(0)\left[\frac{\sigma_1}{\mathrm{i}\omega}-\frac{1}{\omega^2}\right]+s'_0(0)\left[\frac{\sigma_1}{\omega^2}+\frac{2}{\mathrm{i}\omega^3}\right]+\dots\\ \end{split}$$

$$\begin{aligned} \mathsf{Yes}: \text{Suppose } \sigma_1=\sigma_2=i/\omega \Longrightarrow Q_2^{\mathsf{F}-\mathsf{C}}[f]-I[f]\sim O(\psi^{-3}). \end{split}$$

Adaptive Filon rules 0000

A complex adaptive Filon-rule : Q_2^{F-C}

Are there better options than choosing $\sigma_2 = -\sigma_1$?

$$\begin{split} I[v] &\sim s_h(h)e^{\mathrm{i}\psi}\left[\frac{\sigma_2}{\mathrm{i}\omega}-\frac{1}{\omega^2}\right]+s'_h(h)e^{\mathrm{i}\psi}\left[\frac{\sigma_2}{\omega^2}+\frac{2}{\mathrm{i}\omega^3}\right]+\dots\\ &+ s_0(0)\left[\frac{\sigma_1}{\mathrm{i}\omega}-\frac{1}{\omega^2}\right]+s'_0(0)\left[\frac{\sigma_1}{\omega^2}+\frac{2}{\mathrm{i}\omega^3}\right]+\dots\\ \end{split}$$

$$\end{split}$$

$$\begin{split} \mathsf{Yes: Suppose } \sigma_1 &= \sigma_2 = i/\omega \Longrightarrow \mathsf{Q}_2^{F-C}[f]-I[f]\sim \mathsf{O}(\psi^{-3}),\\ \mathsf{Q}_2^{F-C} &= \frac{\mathrm{i}h\left[f(\mathrm{i}h/\psi)-e^{\mathrm{i}\psi}f\left(((i+\psi)h/\psi)\right]\right]}{\omega^4}, \quad \psi = \omega h \end{split}$$

 ψ

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Asymptotic	expansio
00	00	

Exponentially fitted

Rules of Filon-typ

Adaptive Filon rules

・ロット (雪) ・ (日) ・ (日)

ъ

Conclusions

Illustration

Figure: The normalised errors in some $\nu = 2$ Filon-type schemes for $f(x) = e^x$, h = 1/10 and different values of ω .

xpansions Exponer

ntially fitted rules

ules of Filon-type

Adaptive Filon rules 000

Conclusions

Error control for Q_2^{F-C}

$$\mathsf{Q}_2^{\mathsf{F}\text{-}\mathsf{C}} = \frac{\mathrm{i}h\left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi}f\left((i+\psi)h/\psi\right)\right]}{\psi}, \quad \psi = \omega h.$$

Obtained by replacing *f* by interpolating polynomial \overline{f} in nodes i h/ω and $h + i h/\omega$ (for large $\psi : \sim \psi^{-3}$)

Similarly : Q_3^{F-C} by replacing f by interpolating polynomial \tilde{f} in nodes i h/ω , h/2 and $h + i h/\omega$ (for large ψ : also $\sim \psi^{-3}$ but about 100 times more accurate)

$$\begin{split} I[f] - I[ar{f}] &\approx I[ar{f}] - I[ar{f}] = rac{(1 - e^{\mathrm{i}\psi})2h}{\psi^2(4 + \psi^2)} imes \ \left((2 - \mathrm{i}\psi) \, f(rac{\mathrm{i}}{\omega}) - (2 + \mathrm{i}\psi) \, f(h + rac{\mathrm{i}}{\omega}) + (2\mathrm{i}\psi) f(rac{h}{2})
ight) \end{split}$$

Dansions Exponenti

tially fitted rules

Rules of Filon-type

Adaptive Filon rules

(日) (日) (日) (日) (日) (日) (日)

Conclusions

Error control for Q_2^{F-C}

$$\mathsf{Q}_2^{\mathsf{F}\text{-}\mathsf{C}} = \frac{\mathrm{i}h\left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi}f\left((i+\psi)h/\psi\right)\right]}{\psi}, \quad \psi = \omega h.$$

Obtained by replacing *f* by interpolating polynomial \overline{f} in nodes i h/ω and $h + i h/\omega$ (for large $\psi : \sim \psi^{-3}$) Similarly : Q_3^{F-C} by replacing *f* by interpolating polynomial \tilde{f} in nodes i h/ω , h/2 and $h + i h/\omega$ (for large ψ : also $\sim \psi^{-3}$ but about 100 times more accurate)

$$\begin{split} I[f] - I[\bar{f}] &\approx I[\tilde{f}] - I[\bar{f}] = \frac{(1 - \mathrm{e}^{\mathrm{i}\psi})2h}{\psi^2(4 + \psi^2)} \times \\ &\left((2 - \mathrm{i}\psi) f(\frac{\mathrm{i}}{\omega}) - (2 + \mathrm{i}\psi) f(h + \frac{\mathrm{i}}{\omega}) + (2\mathrm{i}\psi)f(\frac{h}{2}) \right) \end{split}$$

ic expansions Expo

ponentially fitted ru 0 00000 000 Rules of Filon-type

Adaptive Filon rules

(日) (日) (日) (日) (日) (日) (日)

Conclusions

Error control for Q_2^{F-C}

$$\mathsf{Q}_2^{\mathsf{F}\text{-}\mathsf{C}} = \frac{\mathrm{i}h\left[f(\mathrm{i}h/\psi) - e^{\mathrm{i}\psi}f\left((i+\psi)h/\psi\right)\right]}{\psi}, \quad \psi = \omega h.$$

Obtained by replacing *f* by interpolating polynomial \overline{f} in nodes i h/ω and $h + i h/\omega$ (for large $\psi : \sim \psi^{-3}$) Similarly : Q_3^{F-C} by replacing *f* by interpolating polynomial \tilde{f} in nodes i h/ω , h/2 and $h + i h/\omega$ (for large ψ : also $\sim \psi^{-3}$ but about 100 times more accurate)

$$\begin{split} I[f] - I[\bar{f}] &\approx I[\tilde{f}] - I[\bar{f}] = \frac{(1 - e^{\mathrm{i}\psi})2h}{\psi^2(4 + \psi^2)} \times \\ &\left((2 - \mathrm{i}\psi) f(\frac{\mathrm{i}}{\omega}) - (2 + \mathrm{i}\psi) f(h + \frac{\mathrm{i}}{\omega}) + (2\mathrm{i}\psi) f(\frac{h}{2}) \right) \end{split}$$

Introduction	Asymptotic expansions	Expon
00	00	00

xponentially fitted rule o ooooo Rules of Filon-type

Adaptive Filon rules

Conclusions

Illustration

Figure: Error estimations for the Q_2^{F-A} and Q_2^{F-C} method applied on the problem with $f(x) = e^x$, h = 2.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction	Asymptotic
00	00

ymptotic expansions

Exponentially fitted r

ules of Filon-typ

Adaptive Filon rules

00

Conclusions

Illustration

Figure: Error estimations for the Q_2^{F-A} and Q_2^{F-C} method applied on the problem with $f(x) = e^x$, h = 2.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction	Asymptotic expansions	Exponentially fitted rules	Rules of Filon-type	Adaptive Filon rules	Conclusions
00	00	00	000	000000	
		000000	000	00	
		0000		000	

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : f(x) is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.
- Cheap error estimation is possible.

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : f(x) is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : f(x) is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : f(x) is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

(日)

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : f(x) is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

(日)

- Filon rules, EF rules, and steepest descent rules are built up starting from different points of view, the basic underlying idea is the same : f(x) is interpolated by a polynomial.
- Different choices can be made for the interpolation nodes.
- A choice of the (complex) interpolation nodes can improve the asymptotic behaviour of the quadrature rule.
- Even better asymptotic behaviour is obtained if the nodes are frequency dependent.

(日)