

On the fast adaptive Fokker-Planck solver for fiber orientation dynamics in turbulent carrier flows

Outline

- Applications: fiber laden flows
- The model
- Numerical scheme
 - Geodesic grids
 - Adaptivity
- Tests and Results
- Conclusion
- Acknowledgement

Applications: fiber laden flows

Why <u>turbulent</u> flows?

Why <u>turbulent</u> flows?

figures by Manhart

и

The model

Orientation description

 $\|\mathbf{n}\| = 1$ \Leftrightarrow $\mathbf{n} \in \partial B(0; 1)$

Orientation description

Orientation dynamics (Fokker-Planck)

$$\partial_t \Psi = -\nabla_{\mathbf{n}} \cdot (\Psi \mathbf{f}(\mathbf{n}, t)) + D_r \Delta_{\mathbf{n}} \Psi$$

Orientation dynamics (Fokker-Planck)

$$\partial_t \Psi = -\nabla_{\mathbf{n}} \cdot (\Psi \mathbf{f}(\mathbf{n}, t)) + D_r \Delta_{\mathbf{n}} \Psi$$

 Ψ : stochastic density of the orientation probability $\mathbf{f}(\mathbf{n}, t)$: Jeffery's equation D_r : rotational diffusion coefficient $\left(=\frac{\dot{\gamma}}{Pe}\right)$

Jeffery's equation

$\mathbf{f}(\mathbf{x}, \mathbf{n}, t) = \mathbf{\Omega}(\mathbf{x}, t) \cdot \mathbf{n} + \kappa \left(\mathbf{D}(\mathbf{x}, t) \cdot \mathbf{n} - \left(\mathbf{n} \cdot \mathbf{D}(\mathbf{x}, t) \cdot \mathbf{n} \right) \mathbf{n} \right)$

Jeffery's equation

$$\begin{split} \mathbf{f}(\mathbf{x}, \mathbf{n}, t) &= \mathbf{\Omega}(\mathbf{x}, t) \cdot \mathbf{n} + \kappa \left(\mathbf{D}(\mathbf{x}, t) \cdot \mathbf{n} - \left(\mathbf{n} \cdot \mathbf{D}(\mathbf{x}, t) \cdot \mathbf{n} \right) \mathbf{n} \right) \\ \mathbf{\Omega} &= \frac{1}{2} \left(\nabla_{\mathbf{x}} \mathbf{u} - \nabla_{\mathbf{x}} \mathbf{u}^T \right) \quad \mathbf{D} = \frac{1}{2} \left(\nabla_{\mathbf{x}} \mathbf{u} + \nabla_{\mathbf{x}} \mathbf{u}^T \right) \quad \kappa = \frac{r^2 - 1}{r^2 + 1} \\ \text{vorticity} & \text{rate-of-strain} & r : \text{aspect ratio} \\ \text{tensor} & \text{tensor} \end{split}$$

Orientation dynamics (Fokker-Planck)

$\partial_t \Psi = -\nabla_{\mathbf{n}} \cdot (\Psi \mathbf{f}(\mathbf{n}, t)) + D_r \Delta_{\mathbf{n}} \Psi$

convection-diffusion problem (convection dominates)

The model

 Newtonian incompressible carrier fluid

$$\nabla \cdot \boldsymbol{u} = 0$$
$$\rho \frac{D\boldsymbol{u}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\tau}^{\mathrm{N}}$$

-200

The model

- Newtonian incompressible carrier fluid
- laden with small particles

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\rho \frac{D\boldsymbol{u}}{Dt} = -\nabla p + \nabla \cdot (\boldsymbol{\tau}^{\mathrm{N}} + \boldsymbol{\tau}^{\mathrm{NN}})$$

Non-Newtonian stress (Batchelor, Brenner)

$$oldsymbol{ au}^{\mathrm{NN}} = oldsymbol{ au}^{\mathrm{NN}}(\Psi)$$

Non-Newtonian stress (Batchelor, Brenner)

$$oldsymbol{ au}^{\mathrm{NN}} = oldsymbol{ au}^{\mathrm{NN}}(\Psi) = oldsymbol{ au}^{\mathrm{NN}}(\langle \mathbf{nn}
angle_{\Psi}, \langle \mathbf{nnnn}
angle_{\Psi})$$

Non-Newtonian stress (Batchelor, Brenner)

$$\boldsymbol{ au}^{\mathrm{NN}} = \boldsymbol{ au}^{\mathrm{NN}}(\Psi) = \boldsymbol{ au}^{\mathrm{NN}}(\langle \mathbf{nn} \rangle_{\Psi}, \langle \mathbf{nnnn} \rangle_{\Psi})$$

$$\langle \mathbf{nn} \rangle_{\Psi} = \langle \mathbf{nn} \rangle_{\Psi}(\mathbf{x}, t) = \int_{\partial B(0;1)} \mathbf{nn}^T \ \Psi(\mathbf{x}, \mathbf{n}, t) \ \mathrm{d}\mathbf{n}$$

Previous approaches

- Monte-Carlo simulation (e.g. Manhart 2003)
- Moment closures (e.g. Shaqfeh 2005)
- Galerkin method with spherical harmonics (e.g. Gillissen 2007)

Novel Numerical Scheme

Novel Numerical Scheme

- Finite Volume Method (FVM)
- on a Triangular Geodesic Grid
- adaptivity to resolve local phenomena

Novel Numerical Scheme

- Finite Volume Method (FVM)
- on a Triangular Geodesic Grid
- adaptivity to resolve local phenomena

- conservative
- robust w.r.t. steep gradients
- allows for local adaptivity

• Start with a platonic solid (e.g. icosahedron)

- Start with a platonic solid (e.g. icosahedron)
- Project the edges onto the circumscribed sphere

N = 1

- Start with a platonic solid (e.g. icosahedron)
- Project the edges onto the circumscribed sphere
- Refine (e.g. uniform refinement)

N = 8

Geodesic grids (selected publications)

- Baumgardner (1985)
- Heikes & Randall (1995)
- Tomita et al (2001)
- Majewski et al (2002)
- Jablonowski (2004)
- Ahmad el al (2005)
- Ringler, Heikes, Randall (2005)
- Behrens (2005)
- Walko & Avissar (2008)

Localized peak

Localized peak

Localized peak

Idea: use high resolution only where required

Adaptivity

=> adaptivity

Adaptation method

Analysis

Analysis

Goal

$$\boldsymbol{\tau}^{\mathrm{NN}} = \boldsymbol{\tau}^{\mathrm{NN}}(\Psi) = \boldsymbol{\tau}^{\mathrm{NN}}(\langle \mathbf{nn} \rangle_{\Psi}, \langle \mathbf{nnnn} \rangle_{\Psi})$$

$$\langle \mathbf{nn} \rangle_{\Psi} = \langle \mathbf{nn} \rangle_{\Psi}(\mathbf{x}, t) = \int_{\partial B(0;1)} \mathbf{nn}^T \ \Psi(\mathbf{x}, \mathbf{n}, t) \ \mathrm{d}\mathbf{n}$$

Control the goal quantity

$$\langle \mathbf{nn} \rangle_{\Psi}^h pprox \langle \mathbf{nn} \rangle_{\Psi} + c_1 h^2$$

$$\langle \mathbf{nn} \rangle_{\Psi}^{\frac{h}{2}} \approx \langle \mathbf{nn} \rangle_{\Psi} + c_2 \frac{h^2}{2}$$

Control the goal quantity

$$\langle \mathbf{nn} \rangle_{\Psi}^h pprox \langle \mathbf{nn} \rangle_{\Psi} + c_1 h^2$$

$$\langle \mathbf{nn} \rangle_{\Psi}^{\frac{h}{2}} \approx \langle \mathbf{nn} \rangle_{\Psi} + c_2 \frac{h^2}{2}$$

assume: $c_1 = c_2$

$$c_1 = c_2 =: c$$

Control the goal quantity

$$\langle \mathbf{nn} \rangle_{\Psi}^{h} - \langle \mathbf{nn} \rangle_{\Psi}^{\frac{h}{2}} = c \left(h^2 - \frac{h^2}{4} \right) = \frac{3}{4} c h^2$$

$$=\frac{3}{4}c_1h^2=:\frac{3}{4}err_{\mathbf{nn}}$$

Behavior of the estimate

Analysis

Analysis

Eigenvalues

I-Stablity

Analysis

Analysis

Blending

increased upwinding for edges with hanging nodes

Adaptive mesh

Results

Speed

Pe	solver	maximal grid level	average number of cells	CPU time (s)
98	MC	-	10000 samples	2.39
	SH	-	50 modes	3.85
	FVM	3	640	2.86
	adaFoP (O2)	5	951	1.17
	adaFoP (RK4)	5	952	1.56
738	MC	-	10000 samples	2.39
	SH	-	80 modes	15.83
	FVM	4	2560	14.46
	adaFoP $(O2)$	6	1110	1.68
	adaFoP (RK4)	6	1134	2.18

Table 2: Runtimes for the turbulent channel flow test case

TECHNISCHE UNIVERSITAT MUNCHEN

Solution Quality

Pe	solver	L_1 in time	max in time	roughness
98	MC	$6.20 \cdot 10^{-2}$	$9.64 \cdot 10^{-2}$	$12.80 \cdot 10^{-3}$
	SH	$2.10\cdot10^{-2}$	$4.38\cdot10^{-2}$	$2.80 \cdot 10^{-3}$
	FVM	$8.53 \cdot 10^{-2}$	$1.15 \cdot 10^{-2}$	$6.70 \cdot 10^{-3}$
	adaFoP $(O2)$	$5.42 \cdot 10^{-2}$	$0.49 \cdot 10^{-2}$	$3.43 \cdot 10^{-3}$
	adaFoP $(RK4)$	$4.73 \cdot 10^{-2}$	$0.46 \cdot 10^{-2}$	$3.26 \cdot 10^{-3}$
738	MC	$4.75 \cdot 10^{-2}$	$0.88 \cdot 10^{-2}$	$6.08 \cdot 10^{-3}$
	SH	$2.30 \cdot 10^{-2}$	$0.88 \cdot 10^{-2}$	$1.72 \cdot 10^{-3}$
	FVM	$32.41 \cdot 10^{-2}$	$2.56\cdot10^{-2}$	$8.26 \cdot 10^{-3}$
	adaFoP $(O2)$	$10.22 \cdot 10^{-2}$	$1.08\cdot 10^{-2}$	$6.01 \cdot 10^{-3}$
	adaFoP (RK4)	$9.91 \cdot 10^{-2}$	$1.16 \cdot 10^{-2}$	$5.83 \cdot 10^{-3}$

Acknowledgement

IGSSE Project 3-02 "Particle Dynamics in Turbulent Flows"

Team: Prof. Manhart, Prof. Simeon, Dr. le Duc A. Moosaie, E. Zharovsky

Showtime

movie

The End

Thank you for your attention!

Channel DNS

