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Orientation dynamics (Fokker-Planck)

∂tΨ = −∇n · (Ψf(n, t)) +Dr∆nΨ

Thursday, 14 July, 2011



Ψ : stochastic density of the orientation probability

f(n, t) : Jeffery’s equation

Dr : rotational diffusion coefficient
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Orientation dynamics (Fokker-Planck)

∂tΨ = −∇n · (Ψf(n, t)) +Dr∆nΨ
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f(x,n, t) = Ω(x, t) · n+ κ (D(x, t) · n− (n ·D(x, t) · n)n)

Jeffery's equation
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f(x,n, t) = Ω(x, t) · n+ κ (D(x, t) · n− (n ·D(x, t) · n)n)
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Orientation dynamics (Fokker-Planck)

∂tΨ = −∇n · (Ψf(n, t)) +Dr∆nΨ

convection-diffusion problem 
(convection dominates)
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The model

• Newtonian 
incompressible        
carrier fluid
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The model

• Newtonian 
incompressible        
carrier fluid

• laden with small   
particles
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τNN = τNN(Ψ)

Non-Newtonian stress (Batchelor,Brenner)
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Non-Newtonian stress (Batchelor,Brenner)

τNN = τNN(Ψ) = τNN(�nn�Ψ, �nnnn�Ψ)
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�nn�Ψ = �nn�Ψ(x, t) =
�

∂B(0;1)
nnT Ψ(x,n, t) dn

Non-Newtonian stress (Batchelor,Brenner)

τNN = τNN(Ψ) = τNN(�nn�Ψ, �nnnn�Ψ)
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The model

Thursday, 14 July, 2011



Previous approaches

• Monte-Carlo simulation (e.g. Manhart 2003)
• Moment closures (e.g. Shaqfeh 2005)
• Galerkin method with spherical harmonics (e.g. 

Gillissen 2007)
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Novel Numerical Scheme
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Novel Numerical Scheme
n Finite Volume Method 

(FVM)
n on a Triangular Geodesic 

Grid
n adaptivity to resolve local 

phenomena
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Novel Numerical Scheme

• conservative
• robust w.r.t. steep 

gradients
• allows for local adaptivity

n Finite Volume Method 
(FVM)

n on a Triangular Geodesic 
Grid

n adaptivity to resolve local 
phenomena
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Geodesic grids
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Geodesic grids

• Start with a platonic solid 
(e.g. icosahedron) 
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Geodesic grids

• Start with a platonic solid 
(e.g. icosahedron) 

• Project the edges onto 
the circumscribed sphere
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Geodesic grids

• Start with a platonic solid 
(e.g. icosahedron) 

• Project the edges onto 
the circumscribed sphere

• Refine (e.g. uniform 
refinement)
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Geodesic grids (selected publications)

• Baumgardner (1985)
• Heikes & Randall (1995)
• Tomita et al (2001)
• Majewski et al (2002)
• Jablonowski (2004)
• Ahmad el al (2005)
• Ringler, Heikes, Randall (2005)
• Behrens (2005)
• Walko & Avissar (2008)
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Localized peak
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Localized peak
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Localized peak

Idea: use high resolution only where required

Thursday, 14 July, 2011



Adaptivity

=> adaptivity
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Adaptation method
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Analysis
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Analysis
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Goal

�nn�Ψ = �nn�Ψ(x, t) =
�

∂B(0;1)
nnT Ψ(x,n, t) dn

τNN = τNN(Ψ) = τNN(�nn�Ψ, �nnnn�Ψ)
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Control the goal quantity
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Behavior of the estimate

h
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Analysis
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Analysis
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Eigenvalues
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I-Stablity
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Analysis
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Analysis
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Blending

increased upwinding for edges with 
hanging nodes
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Adaptive mesh

Thursday, 14 July, 2011



Results
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Speed
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t
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Solution Quality

��E(t)�2�L1 =

�
�E(t)�2dt ≈

M�

i=1

∆t · �E(ti)�2, (49)

where M is the number of time steps.
The results for two different choices of Pe are documented in Table 3.

Pe solver L1 in time max in time roughness

98 MC 6.20 · 10−2 9.64 · 10−2 12.80 · 10−3

SH 2.10 · 10−2 4.38 · 10−2 2.80 · 10−3

FVM 8.53 · 10−2 1.15 · 10−2 6.70 · 10−3

adaFoP (O2) 5.42 · 10−2 0.49 · 10−2 3.43 · 10−3

adaFoP (RK4) 4.73 · 10−2 0.46 · 10−2 3.26 · 10−3

738 MC 4.75 · 10−2 0.88 · 10−2 6.08 · 10−3

SH 2.30 · 10−2 0.88 · 10−2 1.72 · 10−3

FVM 32.41 · 10−2 2.56 · 10−2 8.26 · 10−3

adaFoP (O2) 10.22 · 10−2 1.08 · 10−2 6.01 · 10−3

adaFoP (RK4) 9.91 · 10−2 1.16 · 10−2 5.83 · 10−3

Table 3: Quality of the solution subject to different measures. Simulation parameters
are chosen as in Table 2

For stronger Brownian motion corresponding to a lower Pe number the Monte-Carlo
solver has a slighty bigger L1 error than our adaptive approach, while the maximal error
in time is much higher. For weaker Brownian Motion on the other hand the Monte-Carlo
solver performs better than the new adaptive solver with respect to both error measures.

We observed, that although the Monte-Carlo solver gives good results in the provided
error measures, the numerical souliton in this case has strong high frequency compo-
nents in time. The temporal evolution of the moments is rather ”rough” compared to
the evolution of the reference solution. Especially in case of coupled simulation this
additional noise in time might cause problems ranging from errors to crashes due to
increased instability of the system. We want to account for this issue by introducing a
third error measure that we will call roughness.

Ideally we would like to use the concept of total variation to measure the error in the
temporal evolution of the time derivatives of the moment. As the Monte-Carlo solver
is based on a Wiener process with a finite series of samples the total variation of the
solution would be infinite thus not allowing for a fair comparison. However in the case
of a fixed time step size we can compute a discrete measure that is closely related to
the total variation but not infinite. We approximate the time derivative of the solution
by means of a central difference at each time step. Then we emloy the midpoint rule in
each time step interval as approximation to an interal in time.

DNi(tj) :=
Ni(tj+1)−Ni(tj−1)

2∆t
, E(ti) = ∆t · |DN1 −DN2| (50)
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movie

Thursday, 14 July, 2011



The End

Thank you for your attention!
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