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Why GLMs?

Traditional numerical methods for solving an initial value
problem generally fall into two main classes: linear multistep

(multivalue) and Runge–Kutta (multistage) methods.

In 1966, Butcher introduced General Linear Methods

(GLMs) as a unifying framework for the traditional methods to
study the properties of consistency, stability and convergence,
and to formulate new methods with clear advantages over these
classes.
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Representation of GLMs

We recall general linear methods (GLMs) for the numerical
solution of an autonomous system of ordinary differential
equations

y′ = f(y(x)), x ∈ [x0, x], y : [x0, x] → R
m, f : Rm → R

m,
(1)

where m is dimension of the system.

GLMs for ODEs can be characterized by four integers:
p the order of method; q the stage order;
r the number of external stages; s the number of internal
stages.
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Representation of GLMs

If h be stepsize, then the representation of GLMs takes the form

Y [n] = h(A⊗ Im)f(Y [n]) + (U ⊗ Im)y[n−1],

y[n] = h(B ⊗ Im)f(Y [n]) + (V ⊗ Im)y[n−1].
(2)

Here, Y [n] = [Y
[n]
i ]si=1 is an approximation of stage order q to

the vector
y(xn + ch) = [y(xn + cih)]

s
i=1,

and f(Y [n])) = [f(Y
[n]
i )]si=1.

If r = p+ 1, y[n] = [y
[n]
i ]ri=1 is an approximation of order p to

the Nordsieck vector y(xn, h) = [hi−1y(i−1)(xn)]
r
i=1.
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Why SGLMs?

One of the main directions to construct methods with higher
order and extensive stability region, is the using higher
derivatives of the solutions.

Although the mentioned GLMs include linear multistep
methods, Runge–Kutta and many other standard methods, but
for the above reasons, it thought that it could be extended to
the case in which second derivatives of solution, as well as first
derivatives, can be calculated. These methods were introduced
by Butcher and Hojjati.
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Representation of SGLMs

A Second derivative General Linear Method (SGLM) is
characterized by six matrices denoted by A,A ∈ R

s×s,
U ∈ R

s×r, B,B ∈ R
r×s and V ∈ R

r×r.

By denoting the second derivative stage value of step number n

by g(Y [n])) = [g(Y
[n]
i )]si=1, where g(·) = f ′(·)f(·) and using of

previous notations, the representation of SGLMs takes the form

Y [n] = h(A⊗ Im)f(Y [n]) + h2(A⊗ Im)g(Y [n]) + (U ⊗ Im)y[n−1],

y[n] = h(B ⊗ Im)f(Y [n]) + h2(B ⊗ Im)g(Y [n]) + (V ⊗ Im)y[n−1].
(3)
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Representation of SGLMs

It is convenient to write coefficients of the method, that is
elements of A, A, U , B, B and V as a partitioned
(s+ r)× (2s+ r) matrix

[
A A U

B B V

]

.
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Consistency and Stability

Definition 1:

An SGLM (A,A,U,B,B, V ) is ‘pre-consistent’ if V has an
eigenvalue equal to 1 and u be a corresponding eigenvector and
also Uu = e.

Definition 2:

An SGLM (A,A,U,B,B, V ) is ‘consistent’ if it is pre-consistent
with pre-consistency vector u and there exists a vector v
(consistency vector) such that Be + V v = u+ v.
Definition 3:

An SGLM (A,A,U,B,B, V ) is ‘stable’ if there exists a constant
k such that

‖V n‖ ≤ k, for all n = 1, 2, · · · .
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Convergence

Theorem 1:

If the SGLM (A,A,U,B,B, V ) is convergent, then it is stable.

Theorem 2:

Let (A,A,U,B,B, V ) denote a convergent SGLM which is,

moreover, covariant with pre-consistency vector u. Then it is

consistent.

Theorem 3:

A consistent and stable SGLM is convergent.
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Order conditions

To obtain order conditions, we assume that

y
[n−1]
i =

p
∑

k=0

hkαiky
(k)(xn−1) +O(hp+1), i = 1, 2, · · · , r.

The values αik must be chosen so that

Y
[n]
i =

p
∑

k=0

cki
k!
hky(k)(xn−1) +O(hq+1), i = 1, 2, · · · , s,

and

y
[n]
i =

p
∑

k=0

hkαiky
(k)(xn) +O(hp+1), i = 1, 2, · · · , r,

for the same numbers αik.
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Order Conditions

Theorem 4: An SGLM has order p and stage order q = p iff

ecz = zAecz + z2Aecz + Uw +O(zp+1), (4)

ezw = zBecz + z2Becz + V w +O(zp+1). (5)
where the exp function is applied component-wise to a vector

and w = w(z) is a vector with elements given by

wi =

p
∑

k=0

αikz
k, i = 1, 2, · · · , r.
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Let us to denote αk = [α1k α2k · · · αrk]
T for k = 0, 1, · · · , p.

Corollary: For the case of U = Is in an SGLM with p = q, the
vectors αk have the form

α0 = e, α1 = c−Ae, αk =
ck

k!
−

Ack−1

(k − 1)!
−

Ack−2

(k − 2)!
, k = 2, 3, . . . , p,

where e = [1, 1, . . . , 1]T ∈ R
s.
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Stability matrix and RKS property

The stability matrix of SGLMs is obtained by applying these
methods to the standard test problem of Dahlquist y′ = qy,
where q is a (possibly complex) number, which it is

M(z) = V +
(
zB + z2B

)(
I − zA− z2A

)−1
U.

Definition 5: If the characteristic polynomial of M(z), known
as the stability function, has the special form

p(w, z) = det
(
wI −M(z)

)
= wr−1

(
w −R(z)

)
,

then the method is said to possess ‘Runge–Kutta stability’
(RKS).
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Types of SGLMs

We divide SGLMs into four types, depending on the nature of
the differential system to be solved and the computer
architecture that is used to implement these methods.

For type 1 or 2 methods, matrices A and A have the form

A =








λ
a21 λ
...

...
. . .

as1 as2 · · · λ







, A =








µ
a21 µ
...

...
. . .

as1 as2 · · · µ







,

where λ = µ = 0 or λ > 0, µ < 0, respectively.

For type 3 or 4 methods, A = λI and A = µI, where
λ = µ = 0 or λ > 0, µ < 0, respectively.
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Types of SGLMs (cont’d)

An obvious extension to the idea of type 4 methods is to allow
the matrices A and A to be

A = diag







λ1, · · · , λ1
︸ ︷︷ ︸

k1 times

, λ2, · · · , λ2
︸ ︷︷ ︸

k2 times

, · · · , λd, · · · , λd
︸ ︷︷ ︸

kd times







,

A = diag







µ1, · · · , µ1
︸ ︷︷ ︸

k1 times

, µ2, · · · , µ2
︸ ︷︷ ︸

k2 times

, · · · , µd, · · · , µd
︸ ︷︷ ︸

kd times







,

(generalized type 4) where
∑d

i=1 ki = s and λi 6= λj , µi 6= µj for
i 6= j.
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Order barriers

Let p be the order of an SGLM of type 2 with RKS
property. Then

p ≤

{

2s+ 2, if µ < −λ2

4 ,

2s+ 1, if µ ≥ −λ2

4 ,

where s is the number of internal stages.

The orders of types 3 and 4 SGLMs with RKS property
cannot exceed two and four respectively.
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Order barriers (cont’d)

Let p be the order of a SGLM of generalized type 4 with
RKS property. Then

p ≤







4d ∀j = 1, 2, · · · , d : µj < −
λ2

j

4
,

4d− 2ℓ+ 1 ∀i = 1, 2, · · · , ℓ, s.t. ji ∈ {1, · · · , d} : µji ≥ −
λ2

ji

4
,

where ℓ ≤ d and ji1 6= ji2 for i1 6= i2.
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Order 3 methods
Order 4 methods

Methods with r = s = 1

Y [n] = hλf(Y [n]) + h2
(
1
6 − 1

2λ
)
g(Y [n]) + y[n−1],

y[n] = hf(Y [n]) + h2
(
1
2 − λ

)
g(Y [n]) + y[n−1],

(6)

where
Y [n] = y(xn−1 + c1h) +O(h4),

with c1 as a free parameter.

This method is A-stable of maximal order p = q = 3, if

λ ≥
√
3+1√
3
.
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Order 3 methods
Order 4 methods

Methods with r = s = 2

Pairs of (λ, µ) values in domain [0, 2]× [−1, 0] giving A-stability
are shown in the following Figure.

Figure: A-stable choices of (λ, µ) in domain [0, 2]× [−1, 0] for s = 2
and p = 3.
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Order 3 methods
Order 4 methods

Methods with r = s = 2 (cont’d)

The coefficients for the method with (λ, µ) = (25 ,−
1
12) and

c = [0 1]T are










2
5 0 − 1

12 0 1 0

a21
2
5 −2

5a21 +
5
9 − 1

12 0 1
81
100 + 1

10a21
9

100
1
18 − 1

25a21 0 9
10

1
10

171
100 − 4

5a21
19
100 − 1

10a21
41
90 − 49

100a21
2
45 − 1

20a21
9
10

1
10











,

with the free parameter a21. If we select a21 =
55
27 , the method

will be L-stable.
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Order 3 methods
Order 4 methods

Methods with r = s = 1

Y [n] = 1
2hf(Y

[n])− 1
12h

2g(Y [n]) + y[n−1],

y[n] = hf(Y [n]) + y[n−1],

(7)

where
Y [n] = y(xn−1 + c1h) +O(h4),

with c1 as a free parameter. This methods is A-stable.
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Order 3 methods
Order 4 methods

Methods with r = s = 2

The only method in this class with A-stability property is










1
2 0 − 1

12 0 1 0

1 1
2 0 − 1

12 0 1

1 0 0 0 1 0

1 0 0 0 1 0
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We note that this method is not a genuine r = s = 2 SGLM,
because it reduces to the r = s = 1 SGLM given by (7).
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Implemented methods

In what follows, we describe details of the implemented
methods:

Method 1: SGLM-maximal order 3 (6) with λ = 5
3 ,

c1 = 1,

Method 2: SGLM-maximal order 4 (7) with c1 = 1,

Method 3: SDIRK order 3,

Method 4: SDIRK order 4.
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Stiff problems

I. The non-linear stiff system of ODEs
{

y′1 = −10004y1 + 10000y42, y1(0) = 1,
y′2 = y1 − y2(1 + y32), y2(0) = 1,

with the exact solution y1(x) = exp(−4x) and y2(x) = exp(−x).
This problem is stiff with approximately stiffness ratio 104 near
to x = 0.

II. The Robertson chemical kinetics problem






y′1 = −0.04y1 + 104y2y3, y1(0) = 1,
y′2 = 0.04y1 − 104y2y3 − 3× 107y22, y2(0) = 0,
y′3 = 3× 107y22, y3(0) = 0.
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Stiff problems

I. The non-linear stiff system of ODEs
{

y′1 = −10004y1 + 10000y42, y1(0) = 1,
y′2 = y1 − y2(1 + y32), y2(0) = 1,

with the exact solution y1(x) = exp(−4x) and y2(x) = exp(−x).
This problem is stiff with approximately stiffness ratio 104 near
to x = 0.

II. The Robertson chemical kinetics problem






y′1 = −0.04y1 + 104y2y3, y1(0) = 1,
y′2 = 0.04y1 − 104y2y3 − 3× 107y22, y2(0) = 0,
y′3 = 3× 107y22, y3(0) = 0.
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Numerical results for problem I

Table: The global error at the end of the interval of integration [0, 1]
for problem I.

h 2−1 2−2 2−3 2−4 2−5

Method 1 2.88E − 03 4.41E − 04 6.20E − 05 8.28E − 06 1.07E − 06
R(h) 6.53 7.11 7.49 7.74

Method 2 3.34E − 05 2.08E − 06 1.29E − 07 8.05E − 09 5.03E − 10
R(h) 16.06 16.12 16.02 16.00

Note that R(h) = Err(h)/Err(h/2).

0 5 10 15 20 25 30 35 40
38

16:00 16:25



Introduction to GLMs and SGLMs
Basic concepts and theory for SGLMs

Order conditions and stability matrix for SGLMs
Types of SGLMs and some order barriers

Order barriers for SGLMs with RKS
Some SGLMs with RKS

Numerical results

Numerical results for problem I (cont’d)

Figure: Errors versus stepsize for problem I: (A) solved by Method 1
and Method 3, (B) solved by Method 2 and Method 4.
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Numerical results for problem II

Table: Numerical results for Robertson problem solved by Methods 1
and 3.

x ns
Method 1 Method 3

[y1, y2, y3]
T nfe + nge [y1, y2, y3]

T nfe

0.4 400
9.851721150 × 10−1

2 × 819
9.851721139 × 10−1

28133.386395399 × 10−5 3.386395379 × 10−5

1.479402101 × 10−2 1.479402211 × 10−2

4 4000
9.055186791 × 10−1

2 × 8019
9.055186786 × 10−1

280132.240475693 × 10−5 2.240475688 × 10−5

9.445891614 × 10−2 9.445891662 × 10−2

40 40000
7.158270688 × 10−1

2 × 80019
7.158270687 × 10−1

2527709.185534768 × 10−6 9.185534765 × 10−6

2.841637457 × 10−1 2.841637457 × 10−1

400 400000
4.505186685 × 10−1

2 × 800019
4.505186685 × 10−1

24127703.222901442 × 10−6 3.222901442 × 10−6

5.494781086 × 10−1 5.494781086 × 10−1
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Numerical results for problem II (cont’d)

Table: Numerical results for Robertson problem solved by Methods 2
and 4.

x ns
Method 2 Method 4

[y1, y2, y3]
T nfe + nge [y1, y2, y3]

T nfe

0.4 400
9.851721139 × 10−1

2 × 809
9.851721139 × 10−1

36183.386395379 × 10−5 3.386395379 × 10−5

1.479402217 × 10−2 1.479402218 × 10−2

4 4000
9.055186786 × 10−1

2 × 8009
9.055186786 × 10−1

360182.240475688 × 10−5 2.240475688 × 10−5

9.445891665 × 10−2 9.445891666 × 10−2

40 40000
7.158270687 × 10−1

2 × 80009
7.158270687 × 10−1

3325939.185534765 × 10−6 9.185534765 × 10−6

2.841637457 × 10−1 2.841637457 × 10−1

400 400000
4.505186685 × 10−1

2 × 800009
4.505186685 × 10−1

32125933.222901442 × 10−6 3.222901442 × 10−6

5.494781086 × 10−1 5.494781086 × 10−1
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Thank you for your attention
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